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Abstract 

It is imperative to identify patients with prostate cancer (PCa) who will benefit from androgen 

receptor signaling inhibitors that can impact quality of life upon prolonged use. Using our 

extensively-validated artificial-intelligence technique: cellular morphometric biomarker via 

machine learning (CMB-ML), we identified 13 CMBs from whole slide images of needle 

biopsies from the trial specimens (NCT02430480, n=37) that accurately predicted response to 

neoadjuvant androgen deprivation therapy (NADT) (AUC: 0.980). Notably, 13-CMB model 

stratified PCa patients into responder and non-responder groups after NADT treatment in an 

independent hospital cohort (n=122) that significantly associated with pathologic complete 

response (p=0.0005), biochemical-recurrence-free survival (p=0.024) and mTOR signaling 

pathway (p=0.03), suggesting potentially more clinical benefit from mTOR inhibitors in non-

responder group. Additionally, genetic and genomic analysis revealed interplay between genetic 

variants and CMBs on NADT resistance, and provided molecular annotations for CMBs. Overall, 

prospective clinical implementation of 13-CMB model could assist precision care of PCa 

patients.  

 

Significance 

We describe a highly accurate CMB model to predict the therapeutic benefit in prostate cancer 

patients and uncover the complex interplay between genetic variants and CMBs on NADT 

resistance. Our model relies only on widely available needle biopsy specimens and provides a 

robust and cost-effective solution for clinical implementation. 
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Introduction 

Prostate cancer (PCa) is the most commonly diagnosed non-skin cancer in men in the United 

States and will be the second-leading cause of cancer-related death in men in 2024 (1), with an 

estimated 299,010 new cases and 35,250 deaths this year (2). Developing accurate and cost-

effective biomarkers to identify men at the greatest risk of poor outcomes following intervention 

is crucial.  

Many patients with localized PCa, i.e., without metastases in other organs or non-regional lymph 

nodes, can be cured with appropriate management. Depending on the risk stratification using 

clinical and pathological features (3) and life expectancy, those with low-risk disease may be 

managed through active surveillance, radical prostatectomy, or radiation therapy (4).  In contrast, 

those with intermediate-high risk may need additional therapies such as androgen deprivation 

therapy (ADT), androgen receptor signaling inhibitors, and chemotherapy.  

Although the effectiveness of neoadjuvant ADT (NADT) was demonstrated in a series of phase-

II clinical trials (5-14), both European and American guidelines recommend against the use of 

NADT prior to radical prostatectomy due to a lack of clinically significant efficacy results and 

notable side effects (3,15). Other outcomes, such as pathologic complete response rate, varied 

across cohorts. Correlative studies from window of opportunity trials, however, did show a 

subgroup of patients that had favorable pathologic responses, and reduced cancer volume at 

the time of surgery (16-18), with the use of NADT, thus suggesting that patients who responded 

to, or were resistant to, hormonal therapies could be predicted.   

Multidisciplinary cancer research has been essential for precision medicine and personalized 

therapy of cancer patients, including patients diagnosed with PCa. To allow accurate and cost-

effective cancer patient stratification, we have recently developed and validated an artificial 

intelligence framework for cellular morphometric biomarker (CMB) discovery from whole slide 

images (WSIs) of tissue histology.  In other cancers, CMBs are associated with specific 

molecular alterations, immune microenvironment, prognosis, or treatment response (19). In this 

study, we hypothesized that CMBs assessed from PCa can enable precision prognosis and 

prediction of response to ADT or other therapeutic agents. 
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Results 

Retrospective Study Cohorts 

The clinical trial cohort (NCT02430480, Supplementary Table 1) enrolled thirty-seven patients 

with intermediate or high-risk PCa, whose targeted biopsies had been obtained before they 

received six months of NADT plus enzalutamide.  A cut point of 0.05 cm3 for residual cancer 

burden was used to define exceptional responders (ER, n=15) and incomplete and non-

responders (INR, n=22) (20,21). Sections of formalin-fixed, paraffin-embedded (FFPE) needle 

biopsy tissues were stained with hematoxylin and eosin (H&E), and slides were scanned at 20x 

magnification. The retrospective validation hospital cohort (Supplementary Table 2) consisted 

of 122 needle biopsies (obtained before NADT treatment) from localized primary PCa patients at 

or above intermediate risk according to National Comprehensive Cancer Network (NCCN) risk 

classification (22) with complete clinical, pathological, and follow-up information. Sections of 

H&E stained, FFPE needle biopsy slides were scanned at 20x magnification. The TCGA-PRAD 

cohort (Supplementary Table 3) comprises 396 H&E-stained diagnostic slides from localized 

primary PCa patients with matching clinical data. 

 

CMBs accurately predict NADT response in the NCT02430480 trial cohort 

CMBs are artificial intelligence-mined imaging biomarkers from WSIs that have demonstrated 

association with tumor microenvironments, prognosis, and treatment response in different tumor 

types (23-25) and model systems (26).  The predictive CMBs (Figure 1A and 1B) were mined 

from baseline tissue needle biopsy from patients with intermediate- to high-risk PCa categorized 

as ER (n=15) or INR (n=22).   A total of 256 CMBs were identified, among which the 

abundance levels of 13 CMBs (i.e., low and high) were significantly associated with treatment 

response (Figure 1E and 1F, chi-square test, p<0.05; Supplementary Table 4). A LASSO 

regression model based on the abundance levels of these 13 CMBs (13-CMB model) accurately 

predicted response to NADT (Figure 1G, AUC: 0.980; accuracy: 0.892; sensitivity: 0.818; 

specificity: 1.000), compared to other promising models previously reported (20). Precisely 

(Figure 1G and 1H), the baseline 4-factor-model (AUC=0.891) consists of four factors: IDC-P 

(presence of intraductal carcinoma); 10q loss (at least half of chromosome arm 10q deleted 

hemizygously as determined using the GISTIC algorithm (27)); ERG (immunohistochemical 
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overexpression of nuclear ERG); TP53 (loss-of-function alterations or hotspot mutations to TP53, 

including copy number loss, as determined by GISTIC). The 4-factor model performance was 

further improved by including magnetic resonance imaging baseline tumor burden (AUC=0.973) 

or baseline relative tumor burden (AUC=0.976). Despite these refinements on the 4-factor model, 

the CMB model continued to perform better (Figure 1G and 1H) in comparison, thus making the 

CMB model an accurate option for patient selection. 

 

CMBs stratified PCa patients treated with NADT from an independent hospital cohort into 

groups with distinct treatment responses and prognosis 

To test the predictive value of the 13-CMB model, an independent cohort of 122 localized PCa 

patients treated with NADT was assessed (Figure 2A).  13-CMB model classified patients into 

ER-like (n=22) and INR-like (n=100) groups. The ER-like group had significantly better rates of 

pathologic complete response (p=0.0005, Figure 2B), and significantly better biochemical-

recurrence-free survival (p=0.024, Figure 2C). We next applied the 13-CMB model on the 

TCGA-PRAD cohort of 396 localized primary PCa patients with diagnostic slides and classified 

them into ER-like (n=252) and INR-like (n=144) groups (Figure 2 D-F). In this cohort, the ER-

like group had significantly better progression-free survival (PFS) (Figure 2E, p=0.0017) than 

patients in the INR-like group. Lastly, we constructed a cellular morphometric biomarker risk 

score (CMBRS) based on 13 CMBs that stratified the TCGA-PRAD cohort into CMBRS-low, 

intermediate, and high groups with significant prognostic value after adjusting for important 

clinical factors such as stage, Gleason score, PSA at the time of diagnosis, and age (Figure 2 G-

I). Our findings confirm that the 13-CMB model carries both predictive and prognostic value in 

patients with localized PCa treated with/without NADT. 

 

The interplay between genetic variants and cellular morphometric biomarkers contributes to 

NADT resistance 

Germline genetic single nucleotide polymorphisms (SNPs) have been identified by genome-wide 

association studies and found to be associated with PCa (28) and the treatment response to ADT 

(29). However, the interplay between genetic variants and cellular morphometric architecture on 
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treatment response remains unknown. To explore the potential relationships between genetic 

variants and CMBs as well as their synergistic effect on the response to NADT, we studied the 

146 risk SNPs profiled in the NCT02430480 cohort. Among the 13 CMBs, 12 were significantly 

associated (Mann-Whitney non-parametric, p<0.05) with 34 SNPs (Figure 3A). Interestingly, 

through mediation analysis, we identified that the interplay between 4 SNPs and 2 CMBs 

(rs61890184 and CMB 236; rs56232506 and CMB 216; rs130067 and CMB 216; rs10009409 

and CMB 216) significantly contribute to the individual response to NADT (total effect p < 0.05; 

average causal mediation effects (ACME) p < 0.05; Figure 3B). Unsurprisingly, the four genes 

associated with above four SNPs (rs10009409: COX18; rs130067: CCHCR1; rs56232506: TNS3; 

rs61890184: PPFIBP2) provide significant and independent prognostic value in TCGA-PRAD 

cohort, after adjusting for CMBs and key clinical factors such as stage, Gleason score, PSA level 

at diagnosis and age (Figure 4 A-C). The multimodal signature (combining the SNP-associated 

four genes and 13 CMBs) improved stratification in the TCGA-PRAD cohort, especially for 

identifying the patient subgroup with the poorest PFS and hence worse prognosis (Figure 4 D-F). 

Our findings uncover a complex interaction between genetic variants and cellular morphometric 

architecture that together help predict response to NADT. 

 

CMBs are significantly associated with tumor microenvironment 

PCa has a distinct tumor microenvironment (TME) consisting of stromal cells, immune cells, and 

a dense extracellular matrix. The TME has been shown to play a role in determining survival, 

therapeutic response, and metastasis (30). The TCGA-PRAD cohort enables efficient assessment 

of the association between CMBs and the previously inferred (i.e., using RNA-seq) TME 

constituents (Supplementary Figure 2A). Interestingly, CMB 141, an unfavorable CMB in 

NADT treatment response (Figure 1F, Odds Ratio > 1), was seen to be significantly and 

positively associated with immune cell infiltration in the TME, including CD4+ T cells, 

regulatory T cells, mast cells, and M2 macrophages. At the same time, CMB 236, a favorable 

CMB for NADT treatment response (Figure 1F, Odds Ratio < 1), was seen to be significantly 

and negatively associated with immune cell infiltration in the TME.  

 

CMBs are significantly associated with genome instability  
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As a heterogeneous multifocal cancer, localized PCa has signs of genomic instability (31,32) that 

are associated with recurrence and progression to aggressive cancer (33). Using the resources 

provided in the TCGA-PRAD cohort, we revealed a significant association between CMBs and 

genomic instability (GI) (Supplementary Figure 2B). Specifically, CMB 141, an unfavorable 

CMB in NADT treatment response (Figure 1F, Odds Ratio > 1), was significantly associated 

with elevated genomic instability in terms of aneuploidy score, microsatellite instability (MSI) 

MANTIS score, and fraction of genome altered. CMB 212 and 236, favorable CMBs for NADT 

treatment response (Figure 1F, Odds Ratio < 1), were significantly associated with lower 

genomic instability regarding tumor mutation burden, nonsynonymous mutation count, and 

MSIsensor score.  

 

CMBs are significantly associated with essential molecular functions 

To gain insight into molecular annotation underlying CMBs, we identified genes significantly 

associated with individual CMB in the TCGA-PRAD cohort, performed Gene Ontology (GO) 

functional enrichment analysis on biological process (BP), cellular components (CC), molecular 

function (MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and explored 

the molecular annotation underlying CMBs through the CMB-BP-Network (Figure 5A), CMB-

CC-Network (Supplementary Figure 3), CMB-MF-Network (Supplementary Figure 4) and 

CMB-KEGG-Network (Supplementary Figure 5). Interestingly, many of the CMBs (e.g., CMB 

16, CMB 108, CMB 118, CMB 201, CMB 212, CMB 236) co-registered with cell cycle-related 

biological processes, which play an essential role in drug resistance such that inhibition of 

prostate cell proliferation helps overcome the resistance to AR inhibitors (34). Other CMBs are 

associated with distinct functional groups (e.g., CMB 132, CMB 216), revealing potentially 

different molecular functions underlying these CMBs. 

 

ER-like and INR-like patients have distinct signatures related to tumor features, TME, and 

metabolism 

In the TCGA-PRAD cohort, the distinction of molecular features between ER-like and INR-like 

groups was characterized by tumor functional state feature-related signatures; TME-related 
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signatures, including immune and stromal components; and metabolic reprogramming signatures 

(Figure 5A and 5B, Supplementary Figure 7). Specifically, 29 signatures (including 

PI3K_AKT_MTOR_SIGNALING, cell cycle, Homologous recombination repair (HRR), DNA 

damage repair (DDR), Endothelial-to-Mesenchymal transition (EMT), Mismatch repair (MMR), 

and MTORC1_SIGNALING) were used to describe the functional states of tumor cells. HRR 

signature (Figure 5B top pane, p=1.3e-06), PI3K_AKT_MTOR (Figure 5B top pane, p=0.0055), 

and DDR signature (Supplementary Figure 7, p=1.3e-05) had higher GSVA scores in the INR-

like group compared to the ER-like group. In comparison, the signature of the 

ESTROGEN_RESPONSE functional states of tumor cells (Supplementary Figure 7, p=0.0041) 

had higher GSVA scores in the ER-like group.  We observed marked upregulation of anti-tumor 

immune components, such as natural killer cells and T regulatory cells (Figure 5B top pane, 

p=1.7e-05), suggesting immune escape components were distinctly regulated in the INR-like 

group. Metabolic reprogramming also differed significantly between the ER-like and INR-like 

groups. We analyzed the metabolic pathways obtained from the KEGG database and observed 

that steroid hormone metabolism (Figure 5B top pane, p=0.00012), and steroid hormone 

biosynthesis (Figure 5B top pane, p=0.00095) downregulated in the INR-like group. 

Unsurprisingly, the 13 CMBs were predictive of many of these signature scores, including HRR 

(Figure 5B bottom pane, R=0.29, p=8.5e-09), natural killer cells (Figure 5B bottom pane, 

R=0.29, p=3e-09) and DDR (Supplementary Figure 7, R = 0.27, p=8.6e-06). In addition, using 

these pre-built CMB-signature models from the TCGA-PRAD cohort, we can predict the 

signature scores in the independent hospital cohort, which show significant differences between 

the ER-like and INR-like patient groups and are consistent with our observations in the TCGA-

PRAD cohort (Supplementary Figure 8, Supplementary Table 5). 

 

INR-like patients have more robust activation of the mTOR signaling pathway and are more 

sensitive to mTOR inhibitor 

Applying the pre-built CMB-signature models from the TCGA-PRAD cohort on a subset of 

patients in the independent cohort (n=20) with matching specimens before and after NADT 

treatment revealed the impact of NADT treatment on various molecular signatures 

(Supplementary Table 6). Specifically, in both ER-like (n=10) and INR-like (n=10) groups, 
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NADT treatment led to increased NK cells (Figure 6B; ER-like: p=4.1e-05; INR-like: p=2.8e-6), 

increased EMT (Figure 6C; ER-like: p=4.1e-05; INR-like: p=2.8e-6), and defected homologous 

recombination repair (Figure 6D; ER-like: p=0.00016; INR-like: p=5.7e-6). Interestingly, the 

mTOR activity seems not to be affected by NADT treatment (Figure 6A; ER-like: p=0.67; INR-

like: p=0.065), and it remains higher in the INR-like group regardless of NADT treatment. This 

observation was consistent with the higher protein expression related to mTOR pathway in the 

TCGA-PRAD INR-like group (Figure 6E; p-mTOR: p=0.15; p70S6K: p=1.6e-05) and 

suggested that the INR-like group is significantly more sensitive to mTOR inhibitors (Figure 

6G-8H; Rapamycin: p=8.3e-05; Temsirolimus: p=0.57). Notably, the substantially higher mTOR 

activity in the INR-like group was validated using immunohistochemical (IHC) staining in the 

independent hospital cohort (Figure 6I-8K, p-mTOR, p=0.063; Figure 6M-8O, p70S6K, p=0.03; 

Supplementary Table 7). The strong and significant correlation between the predicted mTOR 

signaling score and the protein expression of p-mTOR (Figure 6L, R=0.66, p=0.0015) and 

p70S6K (Figure 6O, R=0.68, p=0.0013) confirmed the predictive power of the prebuilt CMB-

signature models.  

 

Discussion 

Intense NADT trials have yielded lower recurrence rates among PCa patients with 

minimal residual disease after treatment (5-14). Genomic and histologic features associated with 

NADT treatment resistance at baseline have recently been identified (20); here, we developed 

and validated robust artificial intelligence-powered CMB predictive biomarkers of NADT 

response. Discovery using whole slide images of needle biopsies from a clinical trial cohort 

identified 13 CMBs employed in a predictive model, the 13-CMB model. This model was 

validated in two independent cohorts to accurately predict both response to NADT and prognosis. 

We also describe the interplay of the CMBs with genetic variants towards NADT resistance, and 

association with distinct molecular alterations and the TME. Furthermore, we constructed 

predictive models using 13 CMBs towards various molecular signatures, validated the predictive 

power and our findings on the mTOR signaling pathway through IHC staining, and revealed 

potential benefits from mTOR inhibition in patients resistant to NADT. In addition, the predicted 

changes of specific molecular signatures, including NK cells, EMT and Homologous 
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recombination before and after NADT treatment are consistent with our current understanding of 

the impact of ADT on DNA repair (35), EMT (36), and immune system response (37).  The 

application of CMBs may provide an accurate method for personalized management of PCa, 

whereas the association of CMB with specific molecular features may help with developing an 

understanding of its biology, thus facilitating future drug development.  

 Current guidelines (3) include clinical and pathologic features, such as PSA level, to 

define risk classes in prostate cancer. Prior studies have shown clinical factors such as baseline 

PSA and PSA dynamics and extent of bone involvement as predictors of response to ADT (38). 

Molecular features such as loss of chromosome 10q (containing PTEN) and TP53 alterations, as 

well as nuclear ERG expression and the presence of intraductal carcinoma of the prostate have 

been shown to be predictive of poor outcomes (20). Androgen receptor mutations are frequently 

seen in patients with metastatic castrate-resistant PCa (39) and prior studies have shown these 

mutations may even contribute to resistance to androgen receptor signaling inhibitors such as 

enzalutamide and abiraterone (40). Additional mutations such as ATM, BRCA, and TP53 may 

confer resistance to these drugs and thus lead to poor outcomes as well (40). Baseline tumor 

volume estimation using a multi-parametric MRI was predictive of response to NADT as well. 

The CMB model we describe here was shown to perform better than the described models that 

incorporated an MRI, presence of intraductal carcinoma, 10q loss, nuclear ERG overexpression, 

or altered TP53.  

 Previously, genome-wide association studies have identified >100 common SNPs that 

may be associated with susceptibility to PCa (41). Genetic polymorphisms associated with the 

efficacy of ADT have also been described (29). In this study, we reveal the potential interplay 

between genetic variants and cellular morphometric architecture on NADT treatment response 

and describe a multimodal signature that combines the four SNP-associated genes and 13 CMBs 

with an increased power to predict prognosis. This is the first effort where the causal effects 

between genetic polymorphic changes and cell morphometric architecture on NADT response 

are described.  

Genomic instability (31,32) is associated with localized PCa recurrence and progression 

to aggressive cancer (33). It is reported that a high tumor mutational burden (TMB) and MSI-

high status are predictive of response to immune checkpoint blockade in patients with PCa 
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(42,43). In our analysis, we discover that the majority of CMBs associated with favorable 

response to NADT treatment are associated with lower TMB and/or MSI. In contrast, the 

majority of CMBs associated with unfavorable NADT response are related to elevated TMB 

and/or MSI, suggesting that this group of patients may have a better response if treated 

additionally with immune checkpoint inhibitors. Thus, certain CMBs could be used in 

conjunction as biomarkers that predict response to immunotherapy with or without ADT (44-46).  

 The TME includes immune and non-immune components that have been shown to 

contribute to disease prognosis (47). In our analyses, we report the association of TME immune 

elements (CD4+ T cells, regulatory T cells, and mast cells) with a CMB that associates with poor 

response to ADT. Previous studies have shown mast cells to be pro-tumorigenic (48). There have 

been conflicting data on the relationship between infiltration of lymphocytes and survival in 

prostate cancer. However, studies suggest CD4+ regulatory T cells are associated with a worse 

prognosis (49).  

In addition to predicting response to ADT, we also show that certain CMBs may be able 

to predict molecular signatures and the response to drugs targeting specific pathways, including 

the mTOR pathway and DDR pathway. The abnormal regulation of mTOR has been extensively 

reported within human carcinomas from several different origins (50), and the combination of 

ADT and mTOR inhibition may be of therapeutic value in PCa treatment (51). We discovered 

(proteomics in TCGA-PRAD) and validated (IHC in independent hospital cohort) higher mTOR 

activity in the INR-like group compared to the ER-like group, which is consistent with a 

previous report of mTOR signaling as a resistance mechanism for PCa ADT therapy (52). 

Moreover, we revealed higher sensitivity (estimated by IC50 score) to mTOR inhibitor 

(rapamycin) of the INR-like group compared to the ER-like group, suggesting potential benefit 

from mTOR targeted therapy for patients in the INR-like group. Although multiple studies have 

shown no clinical benefit from metformin in prostate cancer (53,54), there was a subgroup of 

patients with high-volume disease in the latter trial, where clinical benefit was described. These 

findings align with what we describe here in that we see potential benefits from mTOR pathway 

inhibition in the INR-like group, warranting further evaluation of drugs to block this pathway in 

this specific subgroup of patients.  
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DNA–damage repair (DDR) pathway alterations are detected in about 20% of patients 

with prostate cancer and are associated with improved sensitivity to poly(ADP ribose) 

polymerases (PARP) inhibitors. Several mechanisms can be activated to repair damaged DNA, 

one of the most crucial ones being homologous recombination repair (HRR), with the breast 

cancer genes (BRCA1 and BRCA2) playing a pivotal role. Recently, several clinical trials have 

reported on the benefit of PARP inhibitors in these patients (55-57). We discovered that DDR 

signature has higher activity (estimated by GSVA score) in the INR-like group compared to the 

ER-like group, a potential benefit from DDR-targeted therapy for patients in the INR-like group 

(58-62) and also warrants evaluation in a prospective setting. 

Steroid hormones, particularly androgens, play an essential role in both the development 

of benign prostatic hyperplasia and the stimulation of PCa growth (63), and genes associated 

with steroid hormones predict the PCa prognosis (64). Upregulation of cholesterol and steroid 

hormone biosynthesis in PCa cells, driving them into androgen receptor targeted therapy 

resistance. Blocking both pathways may, therefore, be a promising approach to overcome 

resistance to androgen receptor deprivation therapies in PCa (65), which may explain the ADT 

sensitivity of patients in the ER-like group, given its elevated activity in steroid hormone 

biosynthesis.  

This study has several limitations. First, the clinical trial cohort for 13-CMB model 

development was relatively small. Second, the hospital validation was performed retrospectively 

with only one center involved. Third, the treatment information in the TCGA-PRAD cohort is 

incomplete. Nevertheless, our findings on both the 13-CMB model and its underlying molecular 

association warrant future evaluation in larger multicenter cohorts and in a prospective clinical 

trial. However, our findings demonstrate that the predictive power of the CMB model remains 

robust even when validated in a heterogeneous dataset such as TCGA-PRAD, which includes 

variability in clinical practices and incomplete standardization of treatment history. This 

highlights the model's ability to generalize across diverse clinical settings, suggesting strong 

potential for real-world application. The ability to achieve significant results under these 

conditions supports the resilience and practicality of our AI-driven approach, underscoring its 

suitability for implementation in diverse and less controlled clinical environments. 
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In conclusion, we developed the 13-CMB model based on a needle biopsy H&E that may 

accurately predict NADT treatment response and prognosis in localized PCa. This model shows 

associations with TME composition, markers of genome instability, and important biological 

pathways that suggest the underlying molecular mechanisms for its predictive power. We also 

show the predictive power of the 13-CMB model, including validation of prediction of mTOR 

activity, where we confirmed the elevated mTOR activity in the INR-like group and revealed the 

increased sensitivity and potential therapeutic benefit from mTOR inhibitors in the INR-like 

group. Our study highlights a novel advancement of AI in digital pathology through the 

unification of robust predictive power with biological interpretability, molecular mechanisms, 

and treatment optimization potentials, which the classic deep learning systems (66)  can rarely 

offer. Thus, it warrants future prospective validation in larger cohorts.  

 

Methods 

Retrospective Study Design 

The study design is illustrated in Figure 1 (A-D). Specifically, the CMB-ML pipeline was 

applied on WSI of needle biopsy (Figure 1A) from 37 patients enrolled in a clinical trial 

(NCT02430480) for CMB identification and model construction (Figure 1B). The independent 

validation hospital cohort of 122 localized primary PCa patients at or above intermediate risk 

according to NCCN risk classification (22) with needle biopsy, complete clinical, pathological, 

and follow-up information between 2017 and 2022 was retrospectively retrieved from the 

Nanjing Drum Tower Hospital (Figure 1C).  The entire cohort of 272 patients included 150 

cases excluded due to missing clinical and/or pathological data (56 cases), loss to follow-up (61 

cases), and insufficient quality of specimens for analysis (33 cases). Patients were followed up 

through January 2024. The validation study was independently carried out at the Nanjing Drum 

Tower Hospital, and the study was approved by the Ethics Board of the Nanjing Drum Tower 

Hospital with a waiver of informed consent. Clinical, epidemiological, and histopathologic 

features are summarized in Table 1. The TCGA-PRAD cohort (Figure 1D), consisting of 396 

H&E-stained diagnostic slides from localized primary PCa patients with matching clinical data, 

was used to evaluate the prognosis and molecular association of the CMB model. 
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CMB identification and predictive model construction 

Based on the stacked predictive sparse decomposition (67) technique and our cellular 

morphometric biomarker by machine learning (CMB-ML) pipeline (68-70), we defined 256 

CMBs from cellular objects extracted from the WSI of H&E stained tissue histology sections 

from the needle biopsies of 37 patients enrolled in a clinical trial (NCT02430480). In the CMB-

ML pipeline, we used a single network layer with 256 dictionary elements (i.e., CMBs) and a 

sparsity constraint of 30 at a fixed random sampling rate of 1000 cellular objects per WSIs from 

the cohort. The pre-trained SPSD model reconstructed each cellular region as a sparse 

combination of pre-defined 256 CMBs and thereafter represents each patient as an aggregation 

of all delineated cellular objects belonging to the same patient. 

The predictive effect of high or low levels of each CMB on NADT treatment response (i.e., INR 

and ER) was assessed by chi-square test, where the NCT02430480 cohort was divided into two 

groups (i.e., CMB-high and CMB-low groups) based on each CMB with cut-off point optimized 

towards minimized p-value during the chi-square test. The set of CMBs with p-value < 0.05 was 

selected as a predictive signature for LASSO (Least Absolute Shrinkage and Selection Operator, 

glmnet package in R, Version 4.1-4) regression model construction towards NADT treatment 

response (i.e., INR and ER). The model parameter (i.e., lambda and coefficients) was optimized 

using cross-validation (Supplementary Figure 1A and B), and the cut point at 64.2% on 

estimated probability was optimized by bootstrapping strategy (80% sampling rate with 100 

iterations) on the Youden index (cutpointr package in R, Version 1.1.2). 

 

Exploration of the underlying association between genetic variants and CMBs and their 

interplay in NADT treatment resistance 

Mann-Whitney non-parametric test was used to evaluate a significant association between CMBs 

and 146 risk SNPs related to PCa provided by the NCT02430480 cohort (p<0.05).  CMB-SNP-

Network was then constructed and visualized in Cytoscape (version 3.8.2). Mediation analysis, a 

statistical model to determine whether the relationship between two variables (e.g., genetic 

variant and NADT treatment resistance) is mediated through a third variable (e.g., CMB), was 

performed using a mediation package (version 4.4.7) and visualized using the ggplot2 package 

(version 3.2.1) in R (version 3.6.0). 
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Exploration of the underlying association between tumor microenvironments (TMEs) and CMBs 

in TCGA-PRAD 

The TME (i.e., abundances of member cell types in a mixed cell population) was assessed using 

ConsensusTME (version: 0.0.1.9000) (71). The association between CMBs and TMEs was 

calculated by Spearman rank correlation, and represented by a heatmap (ComplexHeatmap 

package in R, version 3.18).  

 

Exploration of the underlying association between genomic instability and CMBs in TCGA-

PRAD 

Genomic instability in terms of aneuploidy score and fraction of genome altered, mutation 

counts, mutation burden, and prognosis (i.e., overall survival and progression-free survival) were 

downloaded from cBioPortal, and the association between CMBs and genomic instability 

parameters was calculated by Spearman correlation, and represented by a heatmap 

(ComplexHeatmap package in R, version 3.18).  

 

Exploration of underlying molecular associations of CMB in TCGA-PRAD 

The CMB-Enrichment-Network study was performed based on the following steps: (1) 

significantly CMB-associated genes were selected per cancer type per CMB (Spearman 

correlation, |correlation coefficient|>0.20 and p<0.05, R version 3.6.0); (2) Enrichment analysis 

(i.e., BP/Biological Process, CC/Cellular Component, MF/Molecular Function, and KEGG/ 

Kyoto Encyclopedia of Genes and Genomes) was performed (clusterProfiler package in R, 

version 4.1.0) on CMB-associated genes per CMB; and (3) CMB-BP-Network, CMB-CC-

Network, CMB-MF-Network and CMB-KEGG network were then constructed and visualized in 

Cytoscape (version 3.8.2).  

 

Evaluation of the TME-related signature scores in TCGA-PRAD patients 
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After reviewing previously published studies (72-77), the Molecular Signatures Database 

(MSigDB; http://www.gsea-msigdb.org/gsea/msigdb/index.jsp), and the Reactome pathway 

portal (https://reactome.org/PathwayBrowser/), we identified relevant biomarker genes for tumor, 

immune, stromal, and metabolic reprogramming signatures. The 61 TME-related signature as 

well as the source of each signature were included in this study. The signature score of each 

TME-related signature was calculated per sample using gene set variation analysis (GSVA) 

(‘GSVA’ package, version 1.46.0). Except for particular indications, heatmap visualization was 

achieved using the R package ggplot2 (version 3.4.1).  

 

Evaluation of other biological pathway enrichment scores in TCGA-PRAD patients 

Human metabolism-related pathways were obtained from the KEGG database 

(https://www.genome.jp/kegg/). A previously published study retrieved 86 human metabolism-

related pathways and ten oncogenic signatures containing an HR signature. GSVA was 

performed to calculate the enrichment score of each signature for each sample. To identify the 

potential differences in the biological functions of genes among high and low-risk groups, GSEA 

was performed based on the gene signatures using the R package ‘clusterprofiler’ (version 4.6.2). 

 

Construction and evaluation of CMB-Signature models for the prediction of molecular signature 

scores in TCGA-PRAD and independent hospital cohort 

Random forest regression model (randomForest package in R, Version 4.6-14) and 5-fold cross-

validation strategy were deployed to assess the predictive power of CMBs towards the molecular 

signatures on hold-out samples (i.e., the samples were not used during training) in TCGA-PRAD 

patients, and therefore constructed five models per signature. Spearman correlation was used to 

evaluate the performance of predicted scores compared to the ground truth (i.e., scores estimated 

by GSVA). During the CMB-Signature model application in an independent hospital cohort, the 

predicted score for a specific signature was defined as an average score from all five models 

corresponding to this signature. 
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Cellular Morphometric Biomarker Risk Score (CMBRS) Construction and Patient Stratification 

in the TCGA-PRAD cohort 

The construction of the cellular morphometric biomarker risk score (CMBRS) in the TCGA-

PRAD cohort is defined below. The coefficients of the final CMBs as categorical variables were 

obtained from multivariate CoxPH regression analysis on PFS: 

CMBRS � ��	
���
	
��� 
� ���_�����
���� � ����_�����
���  �
�

���

 

In the above equation, N is the number of final predictive CMBs that were pre-selected from 

NCT02430480 cohort, and  ���_�����
���  is the category of the  
�� CMB (i.e., CMB-high=1; 

CMB-low=0) where TCGA-PRAD cohort was divided into CMB-high/-low groups based on 

each CMB (cut-off estimated using survminer package in R, version 0.4.8, based on PFS). Then, 

we stratified the TCGA-PRAD cohort into three groups (High: top third; Intermediate: middle 

third; and Low: bottom third) based on CMBRS. 

 

Gene Risk Score (GERS) Construction and Patient Stratification in TCGA-PRAD cohort 

The construction of the GERS in the TCGA-PRAD cohort is defined below. The coefficients of 

the genes as categorical variables were obtained from multivariate CoxPH regression analysis on 

PFS: 

GERS � ��	
���
	
��� 
�  ���_�����
���� � � ���_�����
���  �
�

���

 

In the above equation, N is the number of genes that were pre-selected from NCT02430480 

cohort that associated with specific SNPs, and   ���_�����
���  is the category of the  
�� gene 

(i.e., Gene-high=1; Gene-low=0) where TCGA-PRAD cohort was divided into Gene-high/-low 

groups based on each gene (cut-off estimated using survminer package in R, version 0.4.8, based 

on PFS). Then, we stratified the TCGA-PRAD cohort into three groups (High: top third; 

Intermediate: middle third; and Low: bottom third) based on GERS. 
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Cellular Morphometric Biomarker and Gene Risk Score (CMBGERS) Construction and Patient 

Stratification in TCGA-PRAD cohort 

Construction of the cellular morphometric biomarker and gene risk score (CMBGERS) in the 

TCGA-PRAD cohort is defined below. The coefficients of the CMBRS and GERS were obtained 

from multivariate CoxPH regression analysis on PFS: 

CMBGERS � coef%icient of CMBRS � CMBRS ) coef%icient of GERS � GERS 

Then, we stratified the TCGA-PRAD cohort into three groups (High: top third; Intermediate: 

middle third; and Low: bottom third) based on CMBGERS. 

 

Immunohistochemical (IHC) Staining 

IHC staining was carried out on 4-μm sections of formalin-fixed and paraffin-embedded tissues 

according to the standard protocol on a subset of the independent hospital cohort (20 patients in 

total; 10 patients from the ER-like group, and 10 patients from the INR-like group). The 

selection criteria are: (1) availability of sufficient specimens from needle biopsy before NADT 

for IHC staining; (2) availability of matching diagnostic slides from prostatectomy after NADT; 

and (3) balanced number of patients in ER-like and INR-like groups that meet the requirements 

(1) and (2).   During IHC staining, sections were dewaxed and rehydrated in serial alcohol 

washes, and then endogenous peroxidase activities were blocked. After the nonspecific sites 

were saturated with 5% normal goat serum, the sections were incubated overnight at 4°C with 

anti-phospho-mTOR (1:50, mouse mAb, #67778-1-Ig, Proteintech) and anti-phospho-p70s6k 

(1:50, rabbit pAb, #ab2571, Abcam), and then incubated with anti-rabbit or anti-mouse Ig 

secondary antibodies. The sections were visualized using the biotin-peroxidase complex and 

counterstained with hematoxylin. 
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To assess p-mTOR and p-p70s6k, the stained sections were screened at low-power magnification 

(×20), and five hot spots were selected. The expression levels of p-mTOR and p-p70s6k were 

quantified using the H-score method (78), which was a semi-quantitative assessment combining 

both staining intensity (0: no staining; 1: weak staining; 2: moderate staining; and 3: intense 

staining) and percentage of positive cells with a numerical range from 0 to 300.   

 

Statistical analysis 

All analysis was performed with R (Version 4.0.2). A predictive model based on CMB signature 

was constructed using logistic regression in R. Predictive power was assessed by accuracy, 

sensitivity, specificity, and area under the ROC Curve (AUC, pROC package in R, version 

1.18.0). Survival differences between subtypes or groups were examined by log-rank test. 

Differences concerning the expression of immune checkpoints, immune cell infiltration, and 

genomic instability between groups were analyzed with the Mann-Whitney non-parametric test 

(for continuous variables) or Chi-square test (for categorical variables). P value (FDR corrected 

if applicable) < 0.05 was considered statistically significant.  

 

Data Availability 

Whole slide images and clinical data of the NCT02430480 cohort were downloaded from the 

Cancer Imaging Archive (TCIA, https://doi.org/10.7937/TCIA.JHQD-FR46). Clinical and 

metadata were acquired from the original publication of the NCT02430480 study. Whole slide 

images of the TCGA-PRAD cohort were downloaded from the TCGA GDC portal 

(https://portal.gdc.cancer.gov/). Clinical and molecular data were downloaded from cBioportal 

(https://www.cbioportal.org/). All NCT02430480 and TCGA data were publicly available 

without modification. Raw data from the Nanjing Drum Tower Hospital is not currently 

permitted in public repositories because ethical and legal implications are still being discussed at 

an institutional level. 
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Figure Legends 

Figure 1. (A-D) Study design. (A) CMB-ML pipeline for the discovery of CMBs from needle 

biopsy of NADT patients; (B) Discovery cohort; (C) Hospital validation cohort; (D) Molecular 

annotation. (E) Representative examples of CMBs. (F) Association of individual CMB with 

treatment resistance; (G) Predictive probability between ER and INR groups across different 

models, where the 4-factor model is based on IDC (presence of intraductal carcinoma); 10q loss 

(at least half of chromosome arm 10q deleted hemizygously as determined using the GISTIC 

algorithm); ERG (overexpression of nuclear ERG determined by immunohistochemistry); TP53 

(loss-of-function alterations or hotspot mutations to TP53, including copy number loss, as 

determined by GISTIC); (H) Receiver operating characteristic (ROC) curve across different 

models. The p values in (F) were obtained using logistic regression, and the p values in (G) were 

obtained using Non-parametric Mann-Whitney tests. Abbreviations: ER: Exceptional responder; 

INR: Incomplete and non-responder. Panels (A-D) are created with BioRender.com. 

Figure 2. (A) Patient inclusion chart for the hospital validation cohort. (B) 13-CMB model is 

significantly associated with NADT response. (C) 13-CMB model is significantly associated 

with biochemical recurrence-free survival. (D-F) 13-CMB model stratifies TCGA-PRAD 

patients into groups with significantly different resistance risk score (D), and progression-free 

survival (E), but no difference in overall survival (F). (G-I) Re-optimization of 13 CMBs in the 

TCGA-PRAD cohort provides independent and significant prognostic value after adjusting for 

clinical factors (G) that stratify TCGA-PRAD patients into groups with significantly different 

progression-free survival (H) despite no difference in overall survival (I). 

Figure 3. (A) Association network between CMBs and risk SNPs previously identified by 

GWAS projects as having significant associations with prostate cancer; (B) Four genetic variants 

and two CMBs that mediate NADT treatment resistance together (ADE: Average Direct Effects; 

ACME: Average Causal Mediation Effects). Figure 4B is created with BioRender.com. 

Figure 4. (A-C) Four genes associated with four SNPs (identified by mediation analysis) that 

provide independent and significant prognostic value, after adjusting for clinical factors and 

CMBRS (A). These stratify TCGA-PRAD patients into groups with significantly different 

progression-free survival after adjusting for clinical factors (B), despite no difference in overall 
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survival (C). The combination of 13-CMB and 4-Gene signatures provides independent and 

significant prognostic value (D) that stratifies TCGA-PRAD patients into groups with 

significantly different progression-free survival (E) despite no difference in overall survival (F). 

Figure 5. Association between ER- or INR-like groups and signatures related to tumor features, 

tumor microenvironment (TME), and metabolism (A); Examples of significantly different 

signature scores between ER- or INR-like groups (B, top pane); and prediction of these signature 

scores on hold-out samples during 5-fold cross-validation (B, bottom pane). 

Figure 6. Predicted (A) HALLMARK_MTORC1_SIGNALING, (B) NK_cells, (C) EMT, and 

(D) Homologous_recombination scores before and after NADT treatment in the independent 

hospital cohort, using CMB-Signature models pre-built from TCGA-PRAD cohort. (E-F) Protein 

expression of p-mTOR and p70S6K in TCGA-PRAD ER-like and INR-like tumors. (G-H) 

Sensitivity prediction of mTOR inhibitors (i.e., rapamycin and temsirolimus) between TCGA-

PRAD ER-like and INR-like tumors based on RNA-seq data using pRRophetic in TCGA-PRAD 

cohort, where rapamycin shows significantly higher sensitivity in the INR-like tumors as 

indicated by lower predicted IC50 values. (I-K) Immunohistochemical (IHC) staining shows the 

tendency of more p-mTOR in INR-like tumors in the independent hospital cohort, and (L) the p-

mTOR protein expression is strongly and significantly correlated with the predicted 

HALLMARK_MTORC1_SIGNALING score. (M-O) Immunohistochemical (IHC) staining 

shows significantly more p70S6K in INR-like tumors in the independent hospital cohort, and (P) 

the p70S6K protein expression is strongly and significantly correlated with the predicted 

HALLMARK_MTORC1_SIGNALING score. Scale bar = 100 µm, p values in (A-H, P, O) 

were obtained using non-parametric Mann-Whitney tests, and p values in (L, P) were obtained 

using the Spearman correlation. 
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