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Abstract 1 

Human organ structure and function are important endophenotypes for clinical outcomes. 2 

Genome-wide association studies (GWAS) have identified numerous common variants 3 

associated with phenotypes derived from magnetic resonance imaging (MRI) of the brain 4 

and body. However, the role of rare protein-coding variations affecting organ size and 5 

function is largely unknown. Here we present an exome-wide association study that 6 

evaluates 596 multi-organ MRI traits across over 50,000 individuals from the UK Biobank. 7 

We identified 107 variant-level associations and 224 gene-based burden associations (67 8 

unique gene-trait pairs) across all MRI modalities, including PTEN with total brain volume, 9 

TTN with regional peak circumferential strain in the heart left ventricle, and TNFRSF13B 10 

with spleen volume. The singleton burden model and AlphaMissense annotations 11 

contributed 8 unique gene-trait pairs including the association between an approved drug 12 

target gene of KCNA5 and brain functional activity. The identified rare coding signals 13 

elucidate some shared genetic regulation across organs, prioritize previously identified 14 

GWAS loci, and are enriched for drug targets. Overall, we demonstrate how rare variants 15 

enhance our understanding of genetic effects on human organ morphology and function 16 

and their connections to complex diseases.  17 
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 4 

Magnetic resonance imaging (MRI)-derived traits enable us to study the structure, 1 

function, and abnormalities of human organs in vivo. Many of these traits serve as 2 

established endophenotypes implicated in complex diseases and related traits. Therefore, 3 

it is of great interest to uncover genetic effects using imaging data to better understand 4 

the biology of human organs in health and disease. Recent genome-wide association 5 

studies (GWAS) have successfully identified common variants associated with multi-organ 6 

imaging traits, including brain structural, diffusion, and functional MRI1-8, as well as 7 

cardiovascular magnetic resonance imaging (CMR)9-11 and abdominal MRI12-14. However, 8 

a limitation of common variant signals identified by GWAS is that they often reside in non-9 

coding regions and exhibit small effect sizes, which complicates the direct derivation of 10 

biological insights or the identification of causal genes15-19. By focusing on rare variants in 11 

protein-coding regions of the genome, whole exome sequencing (WES) studies aim to 12 

directly identify genes of interest. 13 

 14 

Although existing exome-wide association studies16,17,20,21 (ExWAS) have identified 15 

associations for some imaging traits, our knowledge of the rare variant genetic 16 

architectures of human organs and their roles in various diseases remains substantially 17 

limited. Specifically, most previous ExWAS have focused on a single organ and/or a small 18 

set of imaging traits, lacking a multi-organ perspective that simultaneously explores the 19 

genetic effects of the human brain and body. For example, Park et al.20 analyzed CT 20 

imaging-derived hepatic fat, Haas et al.14 studied liver fat based on abdominal MRI using 21 

machine learning, Jurgen et al.21 studied several CMR traits, and Backman, et al. 16 and 22 

Karczewski et al.17 included brain MRI traits in their UK Biobank (UKB) WES studies of a 23 

wide range of phenotypes. Therefore, analyzing more and refined imaging traits, spanning 24 

multiple organs, in larger sample sizes will yield deeper insights into the genetic effects of 25 

rare variants across the whole body and shared genetic regulation across organs10.  26 

 27 

Here we conducted ExWAS for 596 MRI traits derived from the brain, heart, liver, kidney, 28 

and lung (Table S1) of over 50,000 participants from the UKB study. We used an internal 29 

discovery-replication design to make the best use of available data resources to identify 30 

novel rare variants and genes associated with human organ structure and function (Fig. 31 

1). We evaluated various functional annotation approaches for missense variants in gene-32 
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level set-based association testing, including conventional methods such as SIFT22, 1 

PolyPhen2 HDIV23, PolyPhen2 HVAR23, LRT24, and MutationTaster25, as well as the deep 2 

learning-based method AlphaMissense26. We compared our results with previous GWAS 3 

on the same set of MRI traits in order to provide shared common and rare variant 4 

evidence for a gene’s involvement in a trait. We also used burden heritability regression 5 

(BHR)27 tests to characterize the genetic architecture for ultra-rare coding variants (minor 6 

allele frequency [MAF] < 1 × 10-4) across functional classes. In summary, our study 7 

identified novel exome-wide associations for multi-organ structure and function, 8 

providing a valuable source of evidence that could be useful in drug discovery and clinical 9 

therapeutics. These findings may also enhance our understanding of the complex 10 

interrelations between the human organs, health, and disease.  11 

 12 

RESULTS 13 

Overview of variant-level associations with multi-organ MRI traits 14 

Based on European individuals from UKB phases 1 to 5 MRI data (released up to late 2023, 15 

average n = 40,038; Fig. 1), we identified 107 rare (MAF < 0.01) variant-level associations 16 

(Table S2) using a conservative P-value threshold of 2.8 × 10-10 (Bonferroni adjusted for 17 

all variant-trait tests with minor allele count [MAC] > 5 as 0.05/178,280,016, Methods) 18 

(Fig. 2A). Only predicted loss-of-function variants (pLoF) and missense variants were 19 

included in our study. There were 75 gene-trait pairs between 24 unique genes and 62 20 

MRI traits, including 3 abdominal MRI traits, 7 CMR traits of the heart and the aorta, 10 21 

brain structural MRI traits (regional brain volumes), as well as 42 brain diffusion MRI traits 22 

(diffusion tensor imaging [DTI] parameters) (Fig. 2B). Additionally, 138 associations (92 23 

unique genes and 107 MRI traits) showed suggestive evidence, surviving a more liberal P-24 

value threshold of 1 × 10-8 (Table S3, Methods). These associations spanned across all 25 

categories of MRI traits (Table S2). As expected, larger effect sizes were linked with lower 26 

MAF, which revealed the process of negative selection17,28,29 (Fig. 2C).  27 

 28 

Due to the lack of independent data sources and the inherent rarity of the variants, 29 

identifying rare variant associations typically requires large sample sizes, and findings are 30 

difficult to fully replicate. To assess the reliability of our findings and maximize the use of 31 

available data, we adopted a procedure that includes internal replication and joint 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317443doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317443
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

analysis30 (Fig. 1 and Methods). First, we limited our discovery dataset to include only 1 

individuals from phases 1 to 3 of MRI release (average n = 30,739). This subset yielded 59 2 

associations that passed the Bonferroni threshold of P < 3.5×10-10 (Bonferroni adjusted 3 

for all variant-level tests with MAC > 5 in this subset, 0.05/142,935,657, Methods) (Table 4 

S4). Among these 59 associations, 56 had mutations in the independent sample from 5 

phases 4 and 5 of the MRI release. Of these, 47 (84% = 47/56) passed the P-value 6 

threshold of 2.9 × 10-2 (Benjamini-Hochberg false discovery rate [FDR] at the 0.05 level), 7 

and all had consistent effect size directions as those in the phases 1 to 3 data. 8 

Furthermore, 84.7% (= 50/59) of these associations had smaller P-values in the combined 9 

phases 1 to 5 sample, and all of them had consistent effect directions. Variants with 10 

decreased P-values in the joint analysis implied similar effects of the two sub-cohorts, and 11 

we found that the 50 signals that had smaller P-values in the combined sample indeed 12 

included all the 47 signals that were replicated in the independent phases 4 and 5 sub-13 

cohort (Table S4). Overall, this internal replication analysis showed the robustness and 14 

validity of our data results. At least 84% of the 107 variant-level associations identified in 15 

the UKB phases 1 to 5 sample could potentially be replicated at the 5% FDR level, should 16 

a replication dataset become available. In the following two sections, we highlighted 17 

some interesting findings across different organs. The complete list of all these 107 18 

variant-level associations is presented in Table S2. 19 

 20 

Variant-level tests identified novel associations for hepatic and spleen MRI traits 21 

To our knowledge, associations between rare variants and abdominal MRI-derived traits 22 

were only studied in Hass et al.14, where the focus was restricted to liver fat and only 23 

18,103 subjects were included. Another study20, with a similar focus on hepatic fat trait, 24 

used CT imaging data from 9,594 individuals to study the exome-wide associations. Thus, 25 

the roles of rare variants in a wider range of abdominal MRI traits were largely unexplored. 26 

In our variant-level analysis, we identified associations between spleen volume and two 27 

missense variants in TNFRSF13B (rs72553883, effectorg = 0.025 L, effect = 0.37 s.d. units, 28 

95% CI = [0.29, 0.45], P = 5.6 × 10-19, and rs34557412, effectorg = 0.028 L, effect = 0.42 s.d. 29 

units, 95% CI = [0.34, 0.49], P = 2.0 × 10-28), while the latter one was the top hit among all 30 

variant-level associations. TNFRSF13B is a well-known risk gene of common variable 31 

immunodeficiency and mutations in TNFRSF13B typically occurred in patients who 32 
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 7 

developed splenomegaly31-33. In addition, the missense variant rs72553883 was 1 

associated with a series of blood-related traits including platelet, myeloid white cell, and 2 

lymphoid white cell indices in a previous GWAS34 using genotyping array data while 3 

similar associations between rare variants in TNFRSF13B and multiple blood biomarkers 4 

were also observed in Karczewski et al.17 using exome data (Fig. 2D). Consistent with these 5 

results on spleen abnormalities derived from immunodeficiency and the central role of 6 

the spleen in blood filter and blood cell turnover, our finding points out a direct 7 

association between spleen volume and missense mutations in TNFRSF13B. Another 8 

missense variant in the manganese transporter SLC30A10 (rs188273166, effectorg = 63.72 9 

milliseconds35,36 [ms], effect = 1.18 s.d. units, 95% CI = [0.94, 1.42], P = 2.1 × 10-22) was 10 

associated with higher corrected T1 liver iron. SLC30A10 is known to be involved in 11 

maintaining the manganese level37. This association aligned with recent GWAS that 12 

reported the role of rs188273166 in hypermagnesemia symptoms and a SLC30A10-13 

targeted study found its positive effect on corrected T1 liver iron38,39.  Interestingly, we 14 

also identified a missense variant in DDX51 associated with the fat-free muscle volume of 15 

right posterior thigh (rs200735214, effectorg = -0.87 L, effect = -1.09 s.d. units, 95% CI = [-16 

1.42, -0.76], P = 1.5 × 10-10), which constitutes the only signal that passed our stringent P 17 

value threshold for human muscle/fat composition traits. Notably, at a more permissive 18 

P-value threshold at 1 × 10-8 as our suggestive evidence, we observed that rs200735214 19 

in DDX51 was also associated with the fat-free muscle volume for total thigh (effectorg = -20 

2.26 L, effect = -0.90 s.d. units, 95% CI = [-1.19, -0.60], P = 1.95 × 10-9) among other signals 21 

for human muscle/fat composition traits such as PLIN4 and posterior thigh muscle fat 22 

infiltration (effectorg = -0.95%, effect = -0.40 s.d. units, 95% CI = [-0.53, -0.27], P = 1.2 × 10-23 
9 for the left; effectorg = -0.91%, effect = -0.38 s.d. units, 95% CI = [-0.51, -0.26], P = 4.2 × 24 

10-9 for the right). DDX51, a member of the DEAD-box helicase family, plays a crucial role 25 

in ribosomal RNA processing and is essential for ribosome biogenesi40,41. Although no 26 

direct link between DDX51 and muscle function has been reported previously, the strong 27 

association identified in our exome data highlights its potential involvement in muscle 28 

composition traits. Meanwhile, PLIN4 encodes a protein known as Perilipin 4, which 29 

belongs to the perilipin family of proteins that coat lipid droplets and involve in regulating 30 

lipid metabolism42. Perilipins are essential for the proper storage and release of lipids 31 
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 8 

within cells. In particular, PLIN4 has been shown to be highly expressed in skeletal muscle 1 

and is found at periphery of skeletal muscle fibers42, consistent with our findings. 2 

 3 

Variant-level tests identified novel associations for brain and heart MRI traits 4 

We highlight some rare variants associations with regional brain volumes, brain DTI 5 

parameters, and CMR traits of the heart and aorta. A missense variant in ADRA1A was 6 

associated with the volume of the left ventral diencephalon (rs771722367, effectorg = 7 

683.56 mm3, effect = 1.28 s.d. units, 95% CI = [0.90, 1.67], P = 6.5 × 10-11), though the P 8 

value for this variant and right ventral diencephalon was P = 3.6 × 10-8, which did not pass 9 

our liberal threshold at 1 × 10-8. ADRA1A was consistently reported to be associated with 10 

schizophrenia43,44 while enlarged brain regional volume of the ventral diencephalon area 11 

in patients with schizophrenia was previously observed45. The ventral diencephalon area 12 

was also associated with a missense variant in PKD1 (rs1181041827, effectorg = 923.88 13 

mm3, effect = 1.73 s.d. units, 95% CI = [1.21, 2.24], P = 5.2 × 10-11 for right ventral 14 

diencephalon; effectorg = 945.24 mm3, effect = 1.77 s.d. units, 95% CI = [1.26, 2.29], P = 15 

1.4 × 10-11 for left ventral diencephalon). For DTI parameters, two missense variants 16 

(rs2652098 and rs143368552) in Versican (VCAN) contributed the largest number of 17 

associations (63 in total, effect range = [-0.48, 0.42] s.d. units, P < 2.8 × 10-10). Figure 2E 18 

visualizes the associations between these two missense variants and 12 mean diffusivity 19 

traits. Common variants in VCAN have been extensively associated with white matter 20 

traits in previous GWAS2,5,8,46-48. VCAN plays a pivotal role in various neural processes, 21 

which may influence the pathophysiology of neurological disorders such as multiple 22 

sclerosis49-51. Another missense variant rs201680145 in NOTCH3 was also associated with 23 

multiple DTI parameters (effect range = [-1.50, 1.70] s.d. units, P < 2.5 × 10-10). Previous 24 

studies have revealed the role of NOTCH3 in white matter hyperintensities and several 25 

neurodegenerative diseases52-54.  26 

 27 

We found associations between a missense variant rs189569984 in RBM20 and three 28 

CMR traits, including left ventricular end-systolic volume (LVESV), right ventricular end-29 

systolic volume (RVESV) (effectorg = -3.77 mL, effect = -0.20 s.d. units, 95% CI = [-0.25, -30 

0.15], P = 9.1 × 10-16 for LVESV; effectorg = -3.37 mL, effect = -0.16 s.d. units, 95% CI = [-31 

0.21, -0.11], P = 2.1 × 10-11 for RVESV), and left ventricular ejection fraction (LVEF) 32 
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(effectorg = 1.49 %, effect = 0.24 s.d. units, 95% CI = [0.18, 0.30], P = 6.0 × 10-14). Mutations 1 

in RBM20 were previously known to be related to cardiovascular diseases including heart 2 

failure and dilated cardiomyopathy55-57, and were associated with LVEF in a previous 3 

GWAS on CMR traits9. Our rare variant analysis prioritized RBM20 and provided additional 4 

evidence for its role in regulating heart structure and function. Furthermore, we found 5 

that ascending aorta maximum/minimum areas were associated with a missense variant 6 

in ANO1 (rs201870990, effectorg = 41.95 mm2, effect = 0.22 s.d. units, 95% CI = [0.15, 0.29], 7 

P = 7.6 × 10-11for maximum; effectorg = 42.05 mm2, effect = 0.23 s.d. units, 95% CI = [0.16, 8 

0.29], P = 1.4 × 10-11 for minimum). ANO1 was among the loci identified by a recent 9 

GWAS58 on ascending aorta diameter (see Figure 1 in their study58) but was not pointed 10 

out or discussed explicitly. Indeed, ANO1 was also reported to be effective in preventing 11 

cardiac fibrosis and may be a potential target for therapy59,60. However, future research 12 

might elucidate its role in aortic development and/or geometric remodeling. In summary, 13 

our analysis of rare variants directly prioritized and implied a small set of genes related to 14 

human organs. Due to the rarity of these variants and their lack of linkage disequilibrium 15 

(LD) with common variants, they could not be effectively studied in previous GWAS that 16 

focused on common variants. 17 

 18 

Gene-based burden tests identified complementary signals  19 

Gene-based burden tests enable us to study the collective effects of rare variants within 20 

a gene, thus boosting the power. However, the involved burden models pose challenges 21 

to the adjustment for multiple testing since they have unknown correlated structure. Thus, 22 

we prioritized a P-value threshold at 1 × 10-9 based on two empirical null distribution61,62 23 

(Methods). Using the same dataset as in variant-level tests, we identified 224 significant 24 

associations in gene-based tests (P < 1 × 10-9, Methods; Table S5 for all the significant 25 

results). As different burden models or MAF cutoffs may implicate the same gene-trait 26 

associations (Methods), we further summarize the nonredundant results of 67 unique 27 

gene-trait pairs61 (involving 26 genes and 57 MRI traits) in Table 1 (a more comprehensive 28 

version is provided in Table S6). For suggestive evidence, we additionally put all the 29 

associations that passed a more relaxed P-value threshold at 1 × 10-8 in Table S7. 30 

Manhattan plot for all the gene-level associations were presented in Figure 3A, across all 31 

MRI phenotype categories. Consistent with observations in previous ExWAS17,62,we 32 
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 10 

identified 21 additional genes, highlighting the power of gene-based burden tests in rare 1 

variant association studies. In particular, we found 3 genes and 18 gene-trait associations 2 

for brain functional MRI (fMRI) traits, which did not have any signals in variant-level tests. 3 

To evaluate the reportability of our findings, we wanted to follow a similar procedure in 4 

variant-level tests to perform an internal replication. However, many rare mutations, 5 

particularly those with a MAF of less than 0.01%, accounted for a large proportion of our 6 

discoveries but were not observed in the smaller independent dataset from phases 4 to 7 

5 (average n = 8,989). Therefore, we only examined whether the associations in the 8 

combined phases 1 to 5 sample had smaller P-values than those in the phases 1 to 3 data 9 

(Methods). When we restricted the discovery sample to individuals in phases 1 to 3, there 10 

were 96 significant associations for 25 unique gene-trait pairs (P < 1 × 10-9, Table S8). 11 

Within these 96 associations, 79.2% (76/96, 19 gene-trait pairs) had smaller P-values in 12 

the combined phases 1 to 5 sample, all of which had concordant directions of effects 13 

(Table S8). We highlighted these 19 gene-trait pairs in Table 1 and discussed some of the 14 

67 gene-trait pairs in the following two sections. 15 

 16 

Genes associated with abdominal, brain, and heart MRI traits in burden tests 17 

As shown in Table 1, we identified 5 genes for abdominal MRI traits, 7 for CMR traits, 7 18 

for regional brain volumes, 8 for brain DTI parameters, and 3 for brain fMRI traits. Figure 19 

3B highlights the genes with large effect sizes. Below we highlight several interesting 20 

findings for each trait category. 21 

 22 

We found that abdominal MRI signals were sparse and robust, with all 5 signals from the 23 

combined phases 1 to 5 sample also present in the phases 1 to 3 data. These signals were 24 

the top-ranking signals among all imaging categories. The highest hit among all the gene-25 

level signals was the association between spleen volume and TNFRSF13B when 26 

aggregating the effects of pLoF and Alpha damaging (Methods) missense variants 27 

(effectorg = 0.027 L, effect = 0.38 s.d. units, 95% CI = [0.29, 0.48], P = 1.7 × 10-55). In addition 28 

to TNFRSF13B, we observed that SH2B3 was also associated with spleen volume (effectorg 29 

= 0.025 L, effect = 0.40 s.d. units, 95% CI = [0.35, 0.45], P = 1.7 × 10-15), where spleen 30 

abnormalities (e.g. splenomegaly) and associated blood traits have been previously 31 

reported63-66. For muscle measurements, we found a novel association between fat-free 32 
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muscle volume of the posterior thigh and TANC1 (effectorg = -1.06 L, effect = -1.32 s.d. 1 

units, 95% CI = [-1.74, -0.90], P = 8.5 × 10-10). TANC1 had genetic overlaps with the 2 

identified loci in previous GWAS on heel bone mineral density67 and its role in muscle 3 

development and rhabdomyosarcoma has been discussed in previous studies68,69.  4 

 5 

As shown in Figure 4A, TTN was associated with 8 CMR traits, including LVESV (effectorg = 6 

7.34 mL, effect = 0.40 s.d. units, 95% CI = [0.32, 0.47], P = 1.2 × 10-25), LVEF (effectorg = -7 

3.48 %, effect = -0.56 s.d. units, 95% CI = [-0.66, -0.47], P = 2.1 × 10-32), as well as global 8 

and regional peak circumferential strain measurements (effect range = [0.32, 0.60] s.d. 9 

units, P range = [1.2 × 10-21, 2.4 × 10-11]). These results make sense as TTN is a well-known 10 

gene associated with cardiac structure9 and cardiovascular diseases such as heart failure70, 11 

dilated cardiomyopathy71,72, atrial fibrillation73, supraventricular tachycardia, and mitral 12 

valve disease21.  In addition to the previously known exome-wide association between 13 

TTN and LVESV21, our findings suggest a broader influence of this gene on cardiac 14 

structure and function, using a larger sample size and an expanded set of CMR traits.  15 

 16 

We would like to highlight our exome-wide associations with CMR traits of aorta. Notably, 17 

three genes (ANO1, COL21A1, GEM) were associated with both maximum and minimum 18 

area of ascending aorta, while PLCE1 was associated with maximum and minimum area 19 

of descending aorta (Fig. 4B). In particular, both COL21A1 and GEM lower the size of the 20 

ascending aorta (effectorg range = [-61.16, -54.95] mm2, P range = [1.7 × 10-13, 6.4 × 10-13] 21 

for COL21A1 and effectorg range = [-87.68, -87.06] mm2, P range = [1.3 × 10-12, 1.06 × 10-22 
11] for GEM, respectively). Rare variants in COL21A1 and GEM were reported to be 23 

associated with higher pulse blood pressure in a previous study for blood pressure74. A 24 

smaller aorta leads to a wider pulse pressure because it increases aortic characteristic 25 

impedance, which is highly dependent on aortic diameter. Our results on these aorta 26 

area-lowering genes further provide the evidence for the underlying mechanisms of 27 

previous observations. Moreover, GEM has a role in regulating cardiac activities75 and is 28 

related to heart failure75,76. Another study77 pointed out that such effects of GEM could 29 

potentially be used as a gene therapy target in treating ventricular arrhythmias and heart 30 

failure. Our novel discovery indicated that GEM's regulatory effects may also impact the 31 

structural integrity of the ascending aorta, thus improving our understanding of the role 32 
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of GEM in cardiovascular health. In contrast, missense variants in ANO1 have positive 1 

effect. The role of ANO1 has been discussed in our variant-level analysis and we 2 

recaptured these associations again by aggregating the missense variants in ANO1 using 3 

burden test (effectorg range = [32.43, 32.79] mm2, P range = [1.7 × 10-13, 6.4 × 10-13]), 4 

suggesting the similar effects and aligned directions across a group of missense variants 5 

within ANO1. In addition, TAGLN was also associated with descending aorta minimum 6 

area (effectorg = 62.28 mm2, effect = 0.67 s.d. units, 95% CI = [0.46, 0.88], P = 4.91 × 10-11) 7 

while its association with descending aorta maximum area was observed at a more liberal 8 

P value threshold at 1 × 10-8 (Table S7). GOLM1 was found to be associated with 9 

descending aorta distensibility (effectorg = 2.85mmHg, effect = 2.5 s.d. units, 95% CI = [1.77, 10 

3.24], P = 2.93 × 10-11). A recent study demonstrated that GOLM1 may present a potential 11 

therapeutic target for treat sepsis-induced cardiac dysfunction in animal models78. 12 

GOLM1 was also related to Alzheimer's disease and the implied cognitive deficits79. 13 

However, its role in aortic wall remodeling requires further study. Using GTEx data 14 

resources80, we found that four (ANO1, COL21A1, GEM, TAGLN) out of five genes (ANO1, 15 

COL21A1, GEM, TAGLN, PLCE1) associated with ascending/descending aorta areas had 16 

moderate to high expression and overexpressed in aorta while PLCE1 had high expression 17 

in artery tissues in general (Methods), which further supports their roles in regulating the 18 

structure of aorta.  19 

 20 

For brain MRI traits, we highlight in Figures 3C and 3D the strongest association between 21 

PTEN and total brain volume with extraordinary effect size when aggregating pLoF and 22 

missense variants (effectorg = 386703.40 mm3, effect = 2.77 s.d. units, 95% CI = [2.22, 3.32], 23 

P = 5.8 × 10-23). The distribution of total brain volume in cm3 for PTEN mutation carriers 24 

versus non-carriers is provided in Figure 3C. Notably, as illustrated in Figure 3D, different 25 

burden masks would yield associations with various strengths, and we observed that the 26 

signal became stronger if we aggregate ultrarare (MAF < 1 × 10-4) pLoF variants and 27 

damaging missense variants in PTEN, which may not be observed and testable in the 28 

previous ExWAS16,17 with a sample size smaller than ours. In a recent ExWAS81, PTEN was 29 

associated with autism spectrum disorder. Indeed, PTEN is a well-known gene that has 30 

been consistently linked to autism spectrum disorder82-85, brain development86-88, and 31 

brain clinical phenotypes including brain overgrowth89-91, with an enlarged brain volume 32 
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representing an associated phenotype in these conditions. To our knowledge, no previous 1 

GWAS or ExWAS has linked PTEN to any brain MRI measurements, thus our analysis 2 

provided direct evidence connecting rare variants in PTEN with total brain volume. 3 

Another gene OMA1 was observed to be associated with 7 regional brain volume traits 4 

including superior frontal gyrus, lateral orbitofrontal cortex, and precentral gyrus for both 5 

sides of the brain and right superior parietal lobule (effectorg range = [-524.83, -171.02] 6 

mm3 units, P range = [1.77 × 10-14, 6.35 × 10-10]). Notably, PTEN and OMA1 regulate the 7 

PTEN-induced kinase 1 (PINK1) and thus may be useful in preventing epileptogenesis92 8 

while a protective role of OMA1 in neurodegeneration93-95 was previously reported. The 9 

remarkably strong association PTEN demonstrate that even within a general healthy 10 

cohort (as opposed to disease-focused or case-control studies), we can identify biological 11 

links between genes associated with neurodevelopmental disorders using MRI data.  12 

 13 

For DTI parameters, in contrast to variant-level analysis where missense variants in VCAN 14 

accounted for the most associations, our gene-based burden tests revealed a more 15 

diverse range of effects on white matter, with 8 distinct genes accounting for 10 gene-16 

trait associations. For brain fMRI traits, PLCE1, GLUL, and KCNA5 were identified to be 17 

associated with 18 phenotypes, where PLCE1 contributed to 16 of them. We found that 18 

many gene-trait pairs would not have been identified if singleton burden models or the 19 

recent deep learning-based AlphaMissense26 burden models were not included. We will 20 

provide more detailed discussions about these interesting associations in the following 21 

sections. 22 

 23 

Overall, gene-based burden tests examined the aggregated effects of rare variations 24 

within genes and advanced our understanding of the underlying genetic dispositions 25 

across the abdomen, heart, and brain organs. Our novel findings prioritized a set of rare 26 

genes previously unknown to be associated with human organs. We further discussed 27 

examples of genetic overlaps between these MRI signals and other health-related 28 

phenotypes, which may help understand complex diseases by providing exome-wide 29 

insights into the genetic mechanisms underlying multiple human organs including 30 

abdominal, cardiac, and neurological pathologies. 31 

 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317443doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317443
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Pleiotropic effects of PLCE1 and COL21A1 on brain and heart MRI traits 1 

In our gene-based burden tests, PLCE1 was associated with the largest number of 2 

phenotypes including 16 brain fMRI traits (including 5 traits from parcellation-based 3 

approach96 and 11 traits from whole brain spatial independent component analysis 4 

[ICA]97-99) and 2 CMR traits (descending aorta maximum/minimum areas) (Fig. 4B). In 5 

addition, COL21A1 was associated with both brain cerebrospinal fluid (CSF) volume and 6 

ascending aorta maximum/minimum areas (Fig. 4B). We found that a recent GWAS100 7 

discovered the associations of descending and ascending aorta areas separately with 8 

PLCE1 and COL21A1 while PLCE1 was also found in previous GWAS3,5,101 for brain fMRI. 9 

PLCE1 encodes a phospholipase (PLCε) that catalyzes the hydrolysis of 10 

phosphatidylinositol-4,5-bisphosphate to generate inositol 1,4,5-triphosphate and 11 

diacylglycerol. They are common second messengers regulating multiple cellular 12 

processes, including cell activation, growth, differentiation, and gene 13 

expression102. Interestingly, prior mechanistic study identified a causal role for PLCε on 14 

the development of thoracic dilation103 and dissection104. Similarly, COL21A1 encodes the 15 

alpha-1 chain of collagen 21, a known extracellular matrix component in the arterial wall, 16 

secreted by vascular smooth muscle cells. While the previous GWAS100 suggested distinct 17 

genetic bases between the ascending and descending aorta and linked aortic traits to 18 

brain small vessel disease, it did not establish direct associations of these genes with other 19 

brain MRI traits. Our results provide exome-wide evidence highlighting the associations 20 

of PLCE1 and COL21A1 with both brain and heart MRI traits. Additionally, a previous study 21 

suggested that the observed GWAS effects of PLCE1 on fMRI traits may be blood-22 

derived101. Our exome-wide evidence supporting PLCE1's role in both aortic and fMRI 23 

traits aligns with this hypothesis. 24 

 25 

The connection between the heart and brain has increasingly garnered attention10,105. 26 

Moreover, the role of hemodynamic role of the aorta involved the cushioning of pressure 27 

and flow pulpability caused by the intermittent ventricular ejection, and an impaired 28 

cushioning function for changes in aortic stiffness and/or diameter has been identified as 29 

a key mechanism for target organ damage, including the brain and the heart106. The 30 

associations we identified, involving rare coding mutations in the same genes (PLCE1 and 31 

COL21A1) linked to heart, aortic and brain structure and function, suggest that similar 32 
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biological mechanisms may underlie the shared pathways of these organs that influence 1 

both cardiac and neurological health. 2 

 3 

Novel associations uniquely identified by singletons and AlphaMissense  4 

Singleton variants are those observed only once in the study cohort. AlphaMissense26 is a 5 

recent deep learning-based method that offers a novel approach to annotating damaging 6 

missense variants. Singleton burden model captured the rarest category in our 7 

association tests and may be of special interest16,107, and the incorporation of 8 

AlphaMissense offered novel genetic findings in our study. Therefore, we would like to 9 

highlight the contributions of these two groups of burden models in this section. In our 10 

gene-based burden tests, 10 gene-trait pairs would not be detected without the singleton 11 

burden models or including AlphaMissense as part of our annotation resources. Among 12 

these signals, 8 of them even did not have any counterparts that passed the relaxed P < 1 13 

× 10-8 threshold (Table S9).  14 

 15 

Singleton damaging missense variants in glutamate-ammonia ligase GLUL, which encodes 16 

the glutamine synthetase protein, were associated with functional connectivity of the 17 

somatomotor and secondary visual networks (effect = 2.48 s.d. units, 95% CI = [1.68, 3.27], 18 

P = 8.9 × 10-10). GLUL knockout mice were reported to be neuronally affected in multiple 19 

regions including somatosensory and visual cortices108. Our singleton analysis provides 20 

consistent evidence in human genetics. In addition, a recent study suggested that visual-21 

somatosensory integration may be a new biomarker for preclinical Alzheimer’s disease109. 22 

Together, rare mutations in GLUL may play a potential role in human neurodegenerative 23 

diseases110-113. Another gene, KCNA5 related to potassium voltage-gated channel, was 24 

associated with functional activity in the subcortical-cerebellum network when we 25 

combined the rare pLoF variants and Alpha damaging missense variants (effect = 0.59 s.d. 26 

units, 95% CI = [0.41, 0.76], P = 2.9 × 10-11). Notably, voltage-gated potassium channels 27 

are essential for neurons and cardiac activities and previous GWAS have discovered the 28 

common variants mapped to KCNA5 associated with cortical surface7 and thickness114. In 29 

addition, a previous study on the rat cerebellum model revealed strong KCNA5 30 

immunoreactivities in the cerebellar nuclei115. Consistent with these findings, we 31 

provided additional evidence for KCNA5’s role in brain function. Moreover, some studies 32 
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also found close relationships between KCNA5 and heart diseases including atrial 1 

fibrillation116 and pulmonary arterial hypertension117. Indeed, KCNA5 is an approved drug 2 

target for the treatment of cardiac arrhythmias. Inspired by this additional context, we 3 

investigated whether KCNA5 was associated with any CMR traits. Interestingly, we found 4 

that when aggregating the singleton pLoF and damaging missense variants, KCNA5 was 5 

associated with a regional peak circumferential strain measurement (effectorg = 5.11%, 6 

effect = 1.08 s.d. units, 95% CI = [0.63, 1.54], P = 3.2 × 10-6, Table S1) at a P-value threshold 7 

of 1.74 × 10-5 (0.05/2,870, Bonferroni adjusted for 82 CMR phenotypes across all the 7 8 

variant function classes and 5 MAF classes). These discussions further suggested that 9 

multi-organ imaging genetic studies would bring about insights to the complex interplay 10 

across the brain-heart system. In summary, our results underscore the efficacy of our 11 

gene-based burden test approach and highlight the importance of using multiple MAF 12 

cutoffs and innovative annotation tools.  13 

 14 

Comparison with previous ExWAS for brain MRI and CMR traits 15 

In this section, we discuss the links between our gene-based rare variant signals and 16 

existing ExWAS results on MRI traits. To our knowledge, there were no rare variant 17 

associations reported for brain fMRI or abdominal MRI traits. The studies most similar to 18 

ours are those by Backman et al.16, which included regional brain volumes and DTI 19 

parameters among a broad range of phenotypes, and Jurgen et al.21, which focused on 20 

CMR traits, while Pirruccello et al.118 declared no findings of rare variant associations for 21 

aorta traits. Both studies used data from the UKB cohort but with smaller sample sizes 22 

compared to our current study. Importantly, we analyzed different brain MRI and DTI 23 

parameters, extracted from raw images using our own pipeline, compared to those 24 

investigated by Backman et al.16. Additionally, we incorporated a broader set of CMR 25 

traits, including strain and thickness metrics, expanding upon the traits analyzed by 26 

Jurgen et al.21. 27 

 28 

For regional brain volumes and DTI parameters (corresponding to STR and dMRI traits in 29 

Backman et al.16), 5 genes (AMPD3, HTRA1, MYCBP2, RBL1, SCUBE2) whose associations 30 

passed our stringent P-value threshold (P < 1 × 10-9) were also significantly associated 31 

with their brain MRI traits. For example, associations between AMPD3 and mean MD of 32 
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splenium of corpus callosum passed the stringent P value threshold both in our study and 1 

in Backman et al.16. SCUBE2 was significantly associated with the regional volume of the 2 

left cerebellum exterior in our analysis, while its association with the volume of the 3 

cerebellum cortex in the left hemisphere was reported in their result as suggestive 4 

evidence. MYCBP2 was associated with the external capsule in both our analysis and 5 

Backman et al.16. Additionally, several associations between PLEKHG3 and multiple dMRI 6 

traits were identified in Backman et al.16 and two gene-trait pairs within these 7 

associations passed our relaxed threshold (P < 1 × 10-8). For CMR traits, we replicated the 8 

only exome-wide significant association between TTN and LVEF in Jurgen et al.21, while 9 

their suggestive association between TTN and LVESV also passed our stringent threshold. 10 

In addition, we found 7 novel associations between TTN and 7 peak circumferential strain 11 

metrics. We summarized the overlapping associations in these previous ExWAS studies in 12 

Table S10.  13 

 14 

Concordant evidence with GWAS signals 15 

Associations with rare coding variants could prioritize genes among the numerous loci 16 

identified in GWAS for polygenic complex traits by providing concordant evidence16,21. In 17 

this section, we leveraged the previous GWAS summary statistics1-3,10,119 of all the same 18 

596 imaging traits to compare the identified signals between common variants and rare 19 

coding variants (Methods). As expected, we observed convergent evidence for all 20 

categories of MRI traits. Briefly, more than half of the 174 rare coding signals (53.4% = 21 

93/174, that is, 64/107 variant-trait associations and 29/67 gene-trait pairs) were within 22 

the 1Mb range of the independent GWAS signals, which is consistent with the observation 23 

in a previous large-scale UKB phenotype screening16. Based on our results, we found that 24 

variant-level associations with regional brain volumes and CMR traits were not within the 25 

neighborhood of GWAS signals, while all categories of MRI traits had at least one rare 26 

coding association within the 1Mb of GWAS signal for signals from gene-level tests. 27 

 28 

We zoomed into these shared signals between GWAS and ExWAS to provide more 29 

detailed insights. The association between SH2B3 and spleen volume identified in our 30 

gene-level burden test was further supported by an independent GWAS signal rs2239194, 31 

which is an expression quantitative trait locus (eQTL) in spleen tissue80. For DTI 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317443doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317443
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

parameters, two missense variants (rs2652098 and rs143368552) in VCAN contributed 1 

the most to the variant-level associations and all these associations were within 1Mb of 2 

the GWAS signals. However, similar to findings from a previous GWAS study48, we did not 3 

identify any brain tissue-related eQTLs. Associations between AMPD3 and DTI parameters 4 

of splenium of corpus callosum were also accompanied by signals from GWAS. These 5 

common variants are eQTLs of multiple brain tissues including cerebellum and spinal cord 6 

where brain white matter also presents. For fMRI traits, all the associations between 7 

PLCE1 and 18 MRI traits (16 brain fMRI traits and 2 CMR traits) were consistent with 8 

previous GWAS results, though there were not eQTLs in brain cortex tissues. On the other 9 

hand, we found that the only signal for brain volumes that fell into the GWAS loci was the 10 

association between COL21A1 and CSF volume. The corresponding common variants 11 

rs3857615 and rs9475654 were eQTLs in cerebellum and cerebellum hemisphere.   12 

 13 

In addition, we identified gene-trait associations that were not reported in our previous 14 

GWAS of the same MRI traits but appeared in other studies (e.g. RBM20 and LVEF in 15 

Pirruccello et al.9). We also observed that some rare coding associations in our study were 16 

linked to GWAS loci of related traits within the same phenotype cluster. For example, 17 

though both ExWAS and GWAS revealed the associations between TTN and multiple 18 

regional peak circumferential strain measurements, the phenotype for the signals did not 19 

exactly match. In summary, rare variant associations with MRI traits not only identified 20 

novel signals but also prioritized genes among thousands of GWAS loci. These associations 21 

provide new insights and context for understanding the genetic basis of structure and 22 

function in the human brain and body. We provided these exome-wide signals that 23 

showed convergent evidence with previous GWAS signals in Tables S11-S12. 24 

 25 

Multi-organ imaging genetics and drug targets 26 

We used the Therapeutic Target Database (TTD)120 to query potential drug target genes 27 

(Methods). Among the 26 unique genes identified by gene-based burden tests, 6 genes 28 

were approved drug targets (KCNA5 and ANO1) or in clinical trials (TTK, GEM, LPAR3, and 29 

TNFRSF13B). The identified genes in gene-based burden tests were significantly enriched 30 

for potential drug targets (6 out of 26, compared with 1,735 out of 17,448 genes, OR = 31 

2.7, P = 0.0391, Table S13). Moreover, when including a broader set of potential drug 32 
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genes that were documented in TTD to be reported in the literature, the enrichment 1 

became stronger (13 out of 26, compared with 3,468 out of 17,448 genes, OR = 4.0, P = 2 

5.737 × 10-4, Table S13). Consistent with the procedure in a previous study62 and 3 

observations in other ExWAS16,62,121, our results suggest that rare coding variants 4 

identified in imaging genetics may facilitate the discovery of promising drug target 5 

genes122,123. Given the complicated nature of human organ interplay and the 6 

corresponding biological pathways involved, we would emphasize that such enrichment 7 

should be interpreted carefully as they might not directly point to the corresponding 8 

diseases and related traits for existing drugs. However, these associations with human 9 

organs could provide novel drug targets if they are supported by further evidence, and in 10 

turn these MRI traits themselves might be useful to validate the new drugs if the 11 

underlying mechanisms are well established124. Moreover, As endophenotypes for 12 

complex diseases, MRI traits can offer additional information on known drug targets, such 13 

as potential off-targets and/or side effects122,125, and also aid in drug repurposing (e.g. 14 

ANO1 and cardiac disease as discussed in the previous section59,60). 15 

 16 

Burden heritability and genetic correlation  17 

To investigate the rare coding genetic architecture for multi-organ MRI traits, we applied 18 

burden heritability regression (BHR)27 to estimate the heritability for pLoF and damaging 19 

missense variants (i.e. “int1 missense variants”, Methods), while the heritability for 20 

synonymous variants is also calculated and it serves as negative control. Designed for rare 21 

variants with MAF < 1 × 10-3, BHR stratifies variants based on functional annotation and 22 

MAF to allow for different variant classes to have different mean effect sizes. Given our 23 

relatively small sample size (average n = 40,038), we restricted our analysis to the ultra-24 

rare MAF bin (MAF < 1 × 10-4) which contained most of the coding variants in our analysis 25 

(Table S14). As expected, ultra-rare pLoF variants consistently demonstrated higher 26 

heritability than damaging missense variants across all MRI categories (Fig. 5A). Tables 27 

S15-S16 show the complete list of burden heritability for ultra-rare pLoF variants and 28 

damaging missense variants. In contrast, there is no evidence that synonymous variants 29 

have significant heritability, showing that the estimates from our results for rare variants 30 

are well calibrated (Table S17). Furthermore, the highest average heritability of ultra-rare 31 

pLoF variants were observed in the DTI parameters category. For ultra-rare pLoF variants, 32 
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the trait had the highest heritability was the caudal anterior cingulate (h² = 0.012, SE = 1 

0.0035) among regional brain volumes, the mean axial diffusivity of the body of the corpus 2 

callosum (h² = 0.020, SE = 0.0048) among DTI parameters, functional connectivity 3 

between the second visual and auditory networks (h² = 0.020, SE = 0.0047) among brain 4 

fMRI traits, regional peak circumferential strain (h² = 0.016, SE = 0.0053) among CMR 5 

traits, and pancreas iron (h² = 0.019, SE = 0.0053) among abdominal MRI traits. We note 6 

that these burden h² estimates are relatively large, which is similar to the high common 7 

variant heritability for many imaging traits.  This in general supports an endophenotype 8 

model where genes have more direct connections with imaging phenotypes than 9 

downstream health outcomes. 10 

 11 

We further explored the burden genetic correlation pattern for ultra-rare pLoF variants 12 

between MRI traits (MAF < 1 × 10-4) and 186 complex traits and diseases (MAF < 1 × 10-5) 13 

downloaded from Genebass17 (Table S18). We focused on 67 heritable MRI traits that 14 

passed the Bonferroni adjusted threshold at P < 8.4 × 10-5 (= 0.05/596). Consequently, we 15 

estimated 12,462 (67 x 186) pairs of burden genetic correlations. We found 3 pairs that 16 

passed the MRI-multiple testing threshold at P < 7.5 × 10-4 (0.05/67) and 591 pairs passed 17 

a nominal P-value threshold at P < 0.05. Although no pairs survived the most stringent P-18 

value threshold adjusted for both the imaging traits and Genebass traits at P < 4.0 × 10-6 19 

(0.05/12,462), we observed that there were interesting pairs in the top-ranking subset for 20 

continuous traits from Genebass (Table S19). The results for binary traits can be found in 21 

Table S20. Figure 5B shows the selected top hits of burden genetic correlation pairs, 22 

including insular volume and reaction time126, regional radial strain and systolic blood 23 

pressure, left atrium maximum volume and triglycerides to high-density lipoprotein 24 

cholesterol ratio, and abdominal fat ratio and birth weight. These burden genetic 25 

correlations between MRI traits and health-related traits may reveal a shared genetic 26 

basis in ultra-rare pLoF variants. While the current MRI sample size was slightly 27 

underpowered, future larger samples may enable a more robust quantification and 28 

confirmation of these genetic links. 29 

 30 

DISCUSSION 31 
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We conducted a large-scale ExWAS for 596 multi-organ imaging traits including brain, 1 

heart, liver, kidney, and lung. By using both WES and MRI data from over 50,000 2 

participants from the UKB study, we uncovered how rare coding variants contribute to 3 

human organ structure and function. The role of rare variants in regulating human organs 4 

was largely understudied. For example, in abdominal organs, a prior ExWAS focused solely 5 

on hepatic fat measurement from CT imaging20, while another GWAS included a broader 6 

set of traits13. However, with a relatively limited sample size of over 10,000, it failed to 7 

identify rare variant associations. For CMR traits, our study incorporated refined 8 

measurements of the left ventricle, right ventricle, ascending/descending aorta, and 9 

left/right atrium. These were not examined in previous ExWAS21 but resulted in novel 10 

discoveries in our analysis. Additionally, our results helped prioritize genes among 11 

previously identified GWAS loci9,10. For brain MRI traits, we analyzed a different set of 12 

regional brain volumes and DTI parameters compared to previous ExWAS16,17. 13 

Additionally, we discovered associations between rare variants and fMRI traits, which had 14 

not been previously reported. 15 

  16 

Variant-level tests and gene-based burden tests provided different sets of associated 17 

genes. Although it has been widely accepted that gene-based tests enhance signal 18 

detection16,17, annotating the deleterious variants is still an active research area. In group-19 

based tests, variants are collapsed into functional-frequency groups, but different 20 

approaches may lead to inconsistent and/or incomplete results127. Therefore, it is helpful 21 

to leverage the annotation information from diverse resources to better empower the 22 

set-based association test. We incorporated AlphaMissense26 as part of our annotations, 23 

resulting in the discovery of an additional set of genes (GOLM1, KCNA5, LPAR3, PIGX, 24 

TAGLN, and WIPF3). AlphaMissense is a novel deep learning model for pathogenic 25 

missense variant prediction and achieved good performance in predicting the unknown 26 

clinical significance of many missense variants.  27 

 28 

Over half of the identified rare variant signals were within 1Mb of GWAS common variants. 29 

These rare variant associations could prioritize the causal genes among many identified 30 

GWAS loci and uncover novel signals. Human organ MRI traits are widely used as 31 

endophenotypes for diseases and health-related traits; our rare variant results deepen 32 
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our understanding from two aspects. First, we showed that many of the identified gene-1 

trait pairs were consistent with existing literature on the associated genes and their links 2 

to organ-related diseases or complex traits. This alignment includes findings from 3 

previous GWAS and ExWAS, observed clinical outcomes related to these genes, and 4 

animal models that elucidate the biological mechanisms connecting the gene to the 5 

phenotype. Second, we observed a significant enrichment of potential drug targets 6 

among our rare variant signals. This suggests that rare variant imaging genetics can play 7 

a role in identifying and repurposing drug targets, as well as understanding potential side 8 

effects during drug development. These findings have practical implications for both real-9 

world clinical applications and future scientific research. 10 

 11 

Along with these significant new insights, the present study has a few limitations. A 12 

primary limitation is the relatively modest sample size for identifying rare variant 13 

associations with MRI traits. For example, when the sample size increased from an 14 

average of n = 30,739 in the phases 1 to 3 analysis to an average of n = 40,038 in the 15 

phases 1 to 5 analysis, we observed a substantial increase in identified signals (84 vs. 174, 16 

that is 59 variant-level associations and 25 unique gene-trait pairs in the phases 1 to 3 17 

analysis, and 107 variant-level associations and 67 unique gene-trait pairs in the phases 1 18 

to 5 analysis). It is reasonable to hypothesize that a large number of rare variant 19 

associations have not been discovered for many MRI traits. Compared with recent ExWAS 20 

studies for other phenotypes encompassing nearly or more than 500,000 21 

participants16,17,21,62,128,129, there remains substantial room for improvement in imaging 22 

studies. This is especially important for MRI traits that have a highly polygenic 23 

architecture, such as regional brain volumes, and is also critical for simultaneously 24 

comparing multiple traits. As the UKB imaging project completes data collection from 25 

100,000 subjects130, we anticipate detecting additional signals and obtaining more robust 26 

results. This will not only help identify associated rare coding variants and genes but also 27 

elucidate the genetic architecture, such as burden heritability and burden genetic 28 

correlation, facilitating downstream analyses for rare coding variants.  29 

 30 

Another limitation is the lack of diversity in imaging ExWAS data resources. First, no 31 

independent non-UKB database currently exists that combines both MRI traits and WES 32 
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data in a sample size comparable to the UKB study. As discussed above, rare variants 1 

typically require a large sample size for detection and replication. Although our study 2 

leveraged the largest available dataset and had enhanced statistical power, we were 3 

unable to perform independent non-UKB replications because many rare variants may 4 

not be observed in smaller samples. Consequently, we used an internal validation 5 

procedure to assess the robustness of our findings. Nonetheless, future independent 6 

studies with more diverse data resources are essential to replicate the signals we 7 

identified. Second, our analysis primarily focused on individuals of European ancestry. It 8 

is critical to extend these studies to underrepresented ancestry groups in genetic research 9 

as data become available. Different ethnicities may exhibit heterogeneous genetic 10 

architectures, and including a diverse range of ancestries could provide a more 11 

comprehensive understanding of genetic influences on organ structure and function. 12 

 13 

In conclusion, we have identified associations between rare coding variants and imaging 14 

traits across human organs. These findings enhance our understanding of the genomic 15 

mechanisms that regulate organ structure and function, potentially contributing to the 16 

identification and prioritization of novel targets for pre-clinical and clinical drug 17 

development. Looking ahead, it is important to increase sample sizes, integrate data from 18 

diverse populations, and expand ExWAS to include a broader spectrum of imaging 19 

phenotypes. We anticipate that future collaborative efforts will further elucidate the 20 

genetic landscape of human organs, advancing our knowledge of human biology and 21 

health. 22 

 23 

METHODS 24 

Methods are available in the Methods section. 25 
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 9 

METHODS 10 

Ethics 11 

This study made use of the data from UK Biobank (UKB) involving approximately 500,000 12 

participants aged from 40 to 69 when recruited between 2006 and 2010 13 

(https://www.ukbiobank.ac.uk/). The UKB study received the ethics approval from the 14 

North West Multi-centre Research Ethics Committee (reference number: 11/NW/0382) 15 

with informed consent obtained by all the participants. The present study was under UKB 16 

application number 76139. 17 

 18 

Multi-organ imaging phenotypes 19 

The information of imaging phenotypes can be found in previous studies1-4,10. Briefly, we 20 

studied 596 imaging traits encompassing brain MRI traits1-4, heart CMR traits10, and 21 

abdominal MRI traits. Three major modalities of brain MRI were included. First, we 22 

included 101 regional brain volume traits1 derived from structural MRI. Second, we used 23 

110 tract-averaged parameters2 from DTI capturing the microstructure of brain white 24 

matter. Third, for fMRI traits, we involved 76 node amplitude traits and six global 25 

functional connectivity traits based on ICA3 as part of resting fMRI traits; we also included 26 

180 (90+90) parcellation-based4,131 resting fMRI traits and task fMRI traits. Regarding CMR 27 

traits, we made use of 82 traits10 including regional and local measurements from cardiac 28 

chambers and the aorta. For abdominal MRI traits, we contained 41 imaging traits based 29 

on MRI data of the liver, kidneys, lungs, pancreas, spleen, and body muscle/fat 30 

composition. A full list of these 596 traits can be found in Tables S1.  31 

 32 
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Internal replication and joint analysis design 1 

Given the limited sample size (average n = 40,038 across imaging traits with non-missing 2 

data) and lack of independent data sources, we prioritized our signals through joint 3 

analysis30 and adopted an internal validation procedure to evaluate the robustness of our 4 

discoveries. Specifically, we first restricted our sample to include only participants from 5 

phases 1 to 3 of MRI release (average n = 30,739) and then excluded any individuals 6 

related to phases 1 to 3 participants in the rest of the sample from phases 4 to 5 of MRI 7 

release (average n = 8,989, relatives of the phases 1 to 3 were removed). The joint sample 8 

included all the individuals from phases 1 to 5 and was used to report significant results. 9 

To investigate the robustness of variant-level associations, we tested the associations on 10 

phases 1 to 3 individuals and phases 4 to 5 individuals separately. Then, focusing on the 11 

significant level and effect sign, we investigated (i) whether signals identified from the 12 

phases 1 to 3 sample could be replicated in the independent phases 4 to 5 sample and (ii) 13 

whether the signals identified from phases 1 to 3 sample had stronger evidence (i.e. 14 

smaller P values and concordant effect directions) in the joint sample. For gene-based 15 

burden tests, we noted that many rare mutations, especially those variants with MAF < 1 16 

× 10-4, accounted for a large proportion of our discoveries but were not observed in the 17 

smaller independent dataset from phases 4 to 5 (average n = 8,989; even within a burden 18 

model with MAF cutoff at 0.01, the lack of those rare variants in the sample from phase 19 

4 to phase 5 would make the burden associations incomparable). Thus, we only 20 

investigated whether the identified associations from phases 1 to 3 dataset had stronger 21 

evidence in the joint sample. Consequently, based on this internal replication procedure, 22 

we were able to expect the level to which our discoveries from the joint analysis could be 23 

replicated.  24 

 25 

Quality control for UK Biobank exome data 26 

We used Plink v.2.0132 to conduct the quality control steps, restricting the sample to 27 

individuals with imaging data (n = 54,365). For exome sequencing data, we included all 28 

the variants that had a MAF below 0.01. Variant-level quality control excluded all the 29 

variants that had missing rate larger than 10% or had Hardy-Weinberg equilibrium P < 1 30 

× 10-15. Sample-level quality control excluded any sample with missing rate over 10%. 31 
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Consequently, no individual was excluded from the quality control process, while 1 

8,127,841 variants remained for the downstream analyses before annotation. 2 

 3 

Functional annotation for protein-coding variants 4 

We used Variant Effect Predictor133 (VEP v.108) for variant annotation. Each variant was 5 

mapped to the most severe consequence across the canonical transcripts. We defined 6 

the loss-of-function variants using the Loss-of-Function Transcript Effect Estimator134 7 

(LOFTEE) plugin, which further collapsed stop-gained, essential splice, and frameshift 8 

variants into high-confidence predicted loss-of-function variants (hcpLoF or pLoF 9 

hereafter) or low-confidence predicted loss-of-function variants (lcpLoF). Missense 10 

variants were prioritized by dbNSFP135,136 (v.4.5a) plugin using five prediction algorithms16: 11 

SIFT22, PolyPhen2 HDIV23, PolyPhen2 HVAR23, LRT24, and MutationTaster25. Missense 12 

variants were defined as “int5 damaging missense variants” if predicted damaging or 13 

possible damaging by the intersection of all the five algorithms and “int1 damaging 14 

missense variants” if predicted damaging or possible damaging by any one of the five 15 

algorithms. Parallelly, we also used AlphaMissense26 to assign the missense variants to be 16 

“Alpha damaging” if predicted as “pathogenic”. Synonymous variants served as empirical 17 

null control to support the study-wise P-value threshold for burden tests. Predicted loss-18 

of-function variants (including both hcpLoF and lcpLoF) and missense variants were 19 

included in our downstream association tests. They were referred to as non-synonymous 20 

variants or coding variants of interest (n = 2,143,707).  21 

 22 

Exome-wide association tests 23 

The covariate adjustment for brain MRI, DTI parameters, brain fMRI, and heart CMR traits 24 

was consistent with our previous GWAS1-3,10,119. In short, we adjusted a set of basic 25 

covariates for all the imaging traits including age (at imaging), age-squared, sex, age-sex 26 

interaction, age-squared-sex interaction, imaging site, and the top 40 genetic PCs (for the 27 

phases 4 to 5 sample replication analysis, we only adjusted for top 10 genetic PCs). For 28 

brain structural MRI traits, we additionally adjusted for total brain volume (for traits other 29 

than itself). For brain fMRI traits, we additionally adjusted for the effects of volumetric 30 

scaling, head motion, head motion-squared, brain position, and brain position-squared. 31 

For heart CMR traits, we additionally adjusted for the effects of standing height and 32 
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weight. For abdominal MRI traits137, we additionally adjusted for the effects of standing 1 

height and body mass index. 2 

 3 

We used REGENIE (v. 3.1.3)138 to conduct the exome-wide association tests. Common 4 

variants from genotyping array data (MAF > 0.01, genotype missing rate < 10%, Hardy-5 

Weinberg equilibrium P > 1 × 10-15, LD pruning with r2 < 0.9) were included in the step 1 6 

of REGENIE to capture genome-wide polygenic effects. Then, the predictors obtained 7 

from step 1 were used in step 2 for both variant-level tests and gene-based burden tests. 8 

For variant-level tests, we tested all the coding variants of interest as defined above. For 9 

gene-based burden tests, we included three general types of burden masks: (i) hcpLoF 10 

variants only, (ii) damaging missense variants only, and (iii) the combinations hcpLoF, 11 

lcpLoF, and damaging missense variants. For damaging missense variants, we further 12 

defined three categories, that is “int5 damaging”, “int1 damaging”, and “Alpha damaging” 13 

missense variants as described above, which resulted in seven finer variant sets for each 14 

gene: (i) hcpLoF variants only, (ii) “Alpha damaging” missense variants only, (iii) “int5 15 

damaging” missense variants only, (iv) “int1 damaging” missense variants only, (v) hcpLoF 16 

variants and “Alpha damaging” missense variants, (vi) hcpLoF variants and “int5 damaging” 17 

missense variants, and (vii) hcpLoF variants, lcpLoF variants, and “int1 missense” variants. 18 

Additionally, for each gene set, we considered four levels of variants based on the 19 

alternative allele frequency (REGENIE used alternative allele frequency for separation, but 20 

we would keep the notation MAF as they were mostly concordant in our analysis): 21 

singletons only, MAF ≤ 1 × 10-4, MAF ≤ 1 × 10-3, and MAF ≤ 1 × 10-2. We noted that some 22 

sets may not be testable due to lack of qualified variants (for example, considering a gene 23 

that only had variants with MAF > 1 × 10-3) while some sets would produce repetitive 24 

results (for example, considering a gene that only had variants with MAF ≤ 1 × 10-4). To 25 

account for these issues, we adopted an empirical null based P-value threshold for 26 

multiple testing adjustment as described below. 27 

 28 

Study-wise significance level for association tests 29 

For variant-level associations, we applied the Bonferroni correction at 0.05 level, which 30 

yields a conservative P-value cutoff at 2.8 × 10-10 (= 0.05/178,280,016, that is 0.05 31 

adjusted for all the variant-level tests for coding variants of interest, see Table S21). 32 
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Moreover, we also provided the results for the variant-level associations that passed the 1 

rare variant genome-wide significance threshold at 1 × 10-8 as suggestive evidence139,140. 2 

The P-value cutoff for phases 1 to 3 sample was 3.5 × 10-10 (= 0.05/142,935,657, Table 3 

S21). 4 

 5 

For gene-based burden tests, Bonferroni correction for all the tests conducted may be 6 

too strict and inappropriate here since distinct burden models and MAF cutoffs were 7 

highly correlated and may produce repetitive results. Moreover, the dependence 8 

structure made it unclear whether the Benjamini and Hochberg procedure could provide 9 

valid false discovery rate control. Alternatively, we used resampling-based methods to 10 

derive the empirical distributions, which suggested setting 1 × 10-9 as our conservative P-11 

value threshold for burden tests. Specifically, we investigated the empirical null 12 

distributions of P-values from both permutation test61,62 and synonymous burden 13 

test62,141 separately. We conducted the permutation for the imaging traits once for every 14 

phenotype while preserving the genetic structure and the burden models61,62. At the tail 15 

of 243,691,511 P-values derived from the permutation-based null test, we only observed 16 

5 results that had P-values smaller than 1 × 10-9 (Table S22). Therefore, based on this 17 

permutation-derived threshold at 1 × 10-9, the expected false discoveries would be 5 out 18 

of 224 significant associations (3 out of 67 significant gene-trait pairs) across all burden 19 

models and imaging phenotypes.  20 

 21 

Furthermore, we found that under this permutation-based P-value cutoff, only 22 

synonymous variants in NOSTRIN and HIGD1B were observed to be associated with the 23 

mean diffusivity of the cingulum (cingulate gyrus) tract in brain white matter and the 24 

volume of left rostral middle frontal region, respectively, at the tail of the distribution of 25 

40,545,911 P-values from synonymous burden tests (Table S23). These two genes were 26 

previously reported to be associated with white matter142,143 and other brain-related 27 

traits144,145, although the biological significance of the roles of synonymous variants 28 

remains unclear. Nevertheless, the very few significant associations further supported the 29 

validity of our choice of this P-value cutoff through a complementary perspective as 30 

synonymous variants generally would not contribute to the gene-trait associations62,141. 31 

We observed similar patterns of the tail distributions of P-values from permutation test 32 
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and synonymous burden test from the phases 1 to 3 sample (Tables S24-S25). Thus, the 1 

P-value cutoff for burden tests of this sample (used in our internal replication) was set to 2 

be 1 × 10-9. We also provided a more liberal P-value cutoff at 1 × 10-8 as suggestive 3 

evidence (approximately empirical false discovery proportion less than 0.1, Tables S22-4 

S23) for gene-based burden test.  5 

 6 

Cross-reference with previous GWAS  7 

For the comparison with GWAS signals, we leveraged the summary statistics derived from 8 

previous studies1-4,10 on the same study cohort. The P-value cutoff for GWAS signals was 9 

set to be the Bonferroni adjustment for all the traits (P < 5 × 10-8 / trait numbers for each 10 

category) as described previously. Moreover, we focused on reported independent 11 

variants146 for GWAS signals and examined whether our exome-wide signals fell within 12 

the 1Mb range of such independent GWAS signals to prioritize the effector genes among 13 

thousands of identified GWAS loci. The genetic build for previous GWAS was GRCH37, so 14 

we did liftover147 for our exome-wide results back from GRCH38 to GRCH37 and made 15 

comparisons based on the same genetic coordinates.  16 

 17 

Imaging genetics and drug detection 18 

We downloaded Therapeutic Target Database (TTD, last updated by January 10th, 19 

2024)120 and evaluated all the entries documented in TTD that were claimed to be 20 

approved drug targets, in clinical trials, or supported by literature. We performed 21 

enrichment tests to see whether the identified genes in our gene-based burden tests 22 

were enriched in TTD drug target genes. We conducted Fisher’s exact tests for two classes 23 

of drug target genes in TTD. Specifically, we first included all drug targets that are either 24 

approved drug targets or in clinical trials (documented as ‘Successful’ or ‘Clinical trial’ in 25 

TTD), and then additionally included drug targets that were supported by literature 26 

(documented as ‘Literature-reported’ in TTD).  27 

 28 

Ultra-rare burden heritability and genetic correlation with health-related traits  29 

We used the recently proposed BHR27 method to quantify the burden heritability and the 30 

burden genetic correlation for rare variants. BHR required one to divide the rare variants 31 

into multiple subgroups based on MAF cutoff and annotation outcome. Following the 32 
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practical guide and previous examples, we investigated the genetic architecture of ultra-1 

rare variants (MAF < 1 × 10-4) in our sample across 596 imaging traits. We used “univariate” 2 

mode and ran BHR to estimate the burden heritability for ultra-rare pLoF variants and 3 

“int1 damaging” missense variants. Moreover, we downloaded 186 health-related traits 4 

or diseases from Genebass17 to estimate the burden genetic correlation with imaging 5 

traits in terms of the ultra-rare pLoF variants. Among the 596 imaging traits examined, 6 

those that showed significant heritability after multiple testing adjustment (P = 8.4 × 10-5 7 

= 0.05/596, that is Bonferroni adjusted for 596 imaging traits) were included in burden 8 

correlation analysis. Then, we ran “bivariate” mode of BHR to calculate the burden 9 

genetic correlation for the selected imaging traits and downloaded phenotypes. 10 

 11 

Code availability  12 

We made use of publicly available software and tools. The code used in this study will be 13 

deposited in Zenodo upon publication. 14 

 15 

Data availability  16 

The individual-level data used in this study can be obtained from UK Biobank 17 

(https://www.ukbiobank.ac.uk/). Other datasets in this paper include: Genebass 18 

(https://app.genebass.org/), GWAS summary statistics for imaging traits in BIG-KP 19 

(https://bigkp.org/), dbNSFP v.4.5a (https://sites.google.com/site/jpopgen/dbNSFP), the 20 

Therapeutic Target Database (https://idrblab.net/ttd/), and the GTEx dataset v8 21 

(https://gtexportal.org/home/). The full ExWAS summary statistics generated in this 22 

study will be deposited in Zenodo upon publication.  23 

 24 

Figure legends  25 

Fig. 1 Data overview and study design. 26 

(A) An overview of the data included in our study. For imaging phenotypes, we made use 27 

of a broad range of multi-organ imaging phenotype data including brain imaging traits 28 

such as regional brain volume from structural MRI, diffusion tensor imaging (DTI) 29 

parameters from diffusion MRI, and functional connectivity and activity traits from resting 30 

and task fMRI; CMR traits such as measurements of the aorta (ascending/descending 31 

aorta) and heart chambers (left ventricle, right ventricle, left atrium, and right atrium); 32 
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abdominal MRI traits such as abdominal organ traits (liver, kidney, lung, spleen, and 1 

pancreas) and abdominal composition measurements of fat and muscle. For genetic data, 2 

we included whole exome sequencing data and focused on rare coding variants (minor 3 

allele frequency [MAF] < 0.01). Only European individuals with imaging traits were 4 

included in the present study (n = 54,365). (B) An overview of our study design. We 5 

adopted an internal discovery-replication procedure and finalized the summary statistics 6 

based on the joint sample (phases 1 to 5 sample). Specifically, we conducted association 7 

tests on phases 1 to 3 sample, phases 4 to 5 sample, and phases 1 to 5 sample respectively. 8 

We examined (i) whether the detected signals from phases 1 to 3 sample had concordant 9 

directions and remained significant in phases 4 to 5 sample; (ii) whether the detected 10 

signals from phases 1 to 3 sample had concordant directions and obtained stronger 11 

evidence (smaller P-values) in the joint sample. Based on this validated procedure, the 12 

significant results and other downstream analyses used the summary statistics generated 13 

from this joint sample. 14 

 15 

Fig. 2 Results of variant-level association tests. 16 

(A) Manhattan plot for variant-level association tests across all 596 imaging phenotypes. 17 

Only coding variants of interest were included in the variant-level association tests and 18 

associations with P < 1 × 10-3 were plotted. The dashed lines indicate the variant-level 19 

significant P-value threshold at 2.8 × 10-10 as well as the suggestive P-value threshold at 1 20 

× 10-8. The x-axis shows all the categories of our imaging phenotypes, while we further 21 

separated the abdominal MRI traits into abdominal organs and body/fat composition, and 22 

separated CMR traits into heart chambers and aorta areas based on the specific traits. 23 

Significant coding-variant-level associations (P < 2.8 × 10-10) were labeled to the 24 

corresponding genes. For DTI parameters, the unlabeled signals all belong to VCAN gene.  25 

(B) Summary count for the number of signals, unique variants (unique genes in the 26 

parentheses), and unique traits within each imaging category that has significant variant-27 

level associations. (C) The scatter plot for all the variant-level significant results (colored 28 

by imaging categories) and suggestive results (in grey color). The x-axis shows the minor 29 

allele frequency of each association and the y-axis is the absolute value of the 30 

corresponding genetic effect size in s.d. units. (D) Graphical illustration of associations 31 
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between two missense variants (rs72553883 and rs34557412) in TNFRSF13B and spleen 1 

volume. The rug plot at the first row demonstrates the locations of these two missense 2 

variants. The rug plot at the second row indicates the locations of rare variants in the 3 

‘plof_alpha’ gene burden model, since gene-based burden test also revealed the 4 

association between TNFRSF13B and spleen volume. The summary statistics (P-values) of 5 

exome-wide associations between TNFRSF13B and blood traits based on burden tests 6 

were downloaded from Genebass17. (E) Visualization of the associations between two 7 

missense variants (rs2652098 and rs143368552) in VCAN and 12 mean diffusivity traits 8 

(β1 is the effect size in s.d. of rs2652098 and β2 is the effect size in s.d. of rs143368552).  9 

 10 

Fig. 3 Results of gene-level burden tests. 11 

(A) Manhattan plot for gene-level burden tests across all 596 imaging phenotypes. For 12 

significant gene-trait pairs appearing in multiple burden models, we plotted the 13 

association with the smallest P-value. The dashed lines indicate the gene-level significant 14 

P-value threshold at 1 × 10-9 as well as the suggestive P-value threshold at 1 × 10-8. The y-15 

axis is capped at 1 × 10-30 and only gene-trait pairs with P < 1 × 10-3 were included. The 16 

color legend and x-axis are same as the Manhattan plot for variant-level associations in 17 

Figure 2A. Significant genes were labeled. (B) Effect sizes for all non-redundant significant 18 

gene-trait pairs (n = 67, corresponding to Table 1) within each imaging category. The 19 

dashed line indicates an effect size of zero. We labelled all the genes that had the largest 20 

positive and negative effects within each imaging category and genes that had an 21 

absolute effect size greater than 1.5. (C) Distribution of total brain volume (in cm3) of 22 

mutation carriers versus non-carriers of PTEN. To illustrate, we select the burden model 23 

with the smallest P-value, that is “plof_int5”, which means the aggregation of pLoF 24 

variants and missense variants with a minor allele frequency (MAF) cutoff at 1 × 10-4. (D) 25 

The effect size estimates and the corresponding 95% confidence intervals across different 26 

burden models of PTEN. The color indicates distinct MAF cutoffs. The y-axis includes all 27 

the burden models (Methods). Only burden models with minor allele count > 5 (after 28 

aggregation) were tested (Methods) and plotted. 29 

 30 

Fig. 4 Heart and aorta-related associations and heart-brain connections. 31 
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(A) Graphical illustration of 8 CMR traits of left ventricle (LV) associated with TTN. LVESV, 1 

left ventricular end-systolic volume; LVEF, left ventricular ejection fraction; and Ecc, peak 2 

circumferential strain, including both global (“Global”) and regional traits (such as 3 

“AHA_9”). (B) Five genes (ANO1, COL21A1, GEM, PLCE1, and TAGLN) associated with 4 

ascending aorta and descending aorta areas. PLCE1 was also associated with brain fMRI 5 

traits. Three ICA-based functional activity traits (Net25_Node3, Net25_Node5, and 6 

Net25_Node9) associated with PLCE1 are illustrated, with their major brain regions and 7 

networks labeled. The color represents the weight profile of the ICA node. In addition, 8 

COL21A1  was associated with cerebrospinal fluid volume.  9 

 10 

Fig. 5 Burden heritability and genetic correlation. 11 

(A) The distribution of burden heritability point estimates for ultra-rare (minor allele 12 

frequency < 1 × 10-4) pLoF variants and damaging missense variants (i.e. the int1 damaging 13 

missense variants) across 591 multi-organ imaging traits that had a sample size larger 14 

than 10,000 (5 abdominal imaging traits were excluded due to insufficient sample size). 15 

(B) Burden genetic correlations of ultra-rare (minor allele frequency < 1 × 10-4) pLoF 16 

variants for selected imaging phenotypes and other complex traits. Only top hits are 17 

presented here. Specifically, we first selected seven trait pairs from pairs that had ten 18 

smallest P-values among all the trait pairs and additionally included three pairs that had 19 

smallest or second smallest P-values for regional brain volumes and abdominal MRI traits, 20 

which resulted in nine imaging traits across all MRI categories and seven Genebass traits. 21 

Filled circles indicate the selected top hits (P < 0.0032) while filled triangles indicate other 22 

pairs that passed a nominal significance threshold at P < 0.05. “Phenotype_ID” was used 23 

to define the selected imaging traits. Specifically, abdominal fat ratio from abdominal MRI 24 

traits, left atrium maximum volume (LAV_max), regional radial strain (Err_AHA_13) and 25 

peak circumferential strain (Err_AHA_4) traits from CMR, left and right insular volumes, 26 

functional activity trait from resting fMRI (ICA-based, Net100_Node55) traits,  Visual2-27 

Auditory network functional activity trait from task fMRI (parcellation-based), and 28 

Somatomotor-Dorsal-Attention network functional activity trait from resting fMRI 29 

(parcellation-based) traits were shown here (bottom-to-top order). Table S1 includes 30 

more details of these phenotypes. 31 
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 1 

Table 1. Significant gene-trait pairs for exome-wide gene-based burden test.  2 

Here we present non-redundant results for gene-trait pairs that passed the stringent 3 

threshold at P < 1 × 10-9. As a gene-trait pair may appear in multiple burden models and 4 

MAF cutoffs, only the association with the smallest P-value is included. Column 5 

“Phenotype_ID” uniquely defines a phenotype while column “Phenotype_info” provides 6 

additional information of the specific phenotype if applicable. Specifically, for abdominal 7 

MRI traits, the UKB data category is included in “Phenotype_info”; for CMR traits and DTI 8 

parameters, the full name is included in “Phenotype_info”; for all the fMRI traits 9 

(including ICA-based and parcellation-based ones), the network name is included in 10 

“Phenotype_info”. In the column “Organ/Category”, we further separate non-brain traits 11 

(i.e. abdominal MRI and CMR traits) to the corresponding organs. More details about the 12 

phenotype information can be found in Table S1, and a more comprehensive version of 13 

this table can be found in Table S6.  14 
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