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ABSTRACT 

Echocardiography is a mainstay of cardiovascular care offering non-invasive, low-cost, 

increasingly portable technology to characterize cardiac structure and function1. Artificial 

intelligence (AI) has shown promise in automating aspects of medical image interpretation2,3, but 

its applications in echocardiography have been limited to single views and isolated pathologies4–

7. To bridge this gap, we present PanEcho, a view-agnostic, multi-task deep learning model 

capable of simultaneously performing 39 diagnostic inference tasks from multi-view 

echocardiography. PanEcho was trained on >1 million echocardiographic videos with broad 

external validation across an internal temporally distinct and two external geographically distinct 

sets. It achieved a median area under the receiver operating characteristic curve (AUC) of 0.91 

across 18 diverse classification tasks and normalized mean absolute error (MAE) of 0.13 across 

21 measurement tasks spanning chamber size and function, vascular dimensions, and valvular 

assessment. PanEcho accurately estimates left ventricular (LV) ejection fraction (MAE: 4.4% 

internal; 5.5% external) and detects moderate or greater LV dilation (AUC: 0.95 internal; 0.98 

external) and systolic dysfunction (AUC: 0.98 internal; 0.94 external), severe aortic stenosis 

(AUC: 0.99), among others. PanEcho is a uniquely view-agnostic, multi-task, open-source 

model that enables state-of-the-art echocardiographic interpretation across complete and limited 

studies, serving as an efficient echocardiographic foundation model.  
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INTRODUCTION 

Echocardiography is one of the pillars of modern cardiovascular diagnostics thanks to its low 

cost, broad accessibility, and ability to provide in-depth phenotyping of cardiac, valvular, and 

vascular structure and function1. More than 7.5 million echocardiographic studies are performed 

every year in the United States alone, and increasing referrals for echocardiography are 

contributing to rising healthcare expenditures across most nations8,9. Accurate reporting of 

echocardiography requires time, skilled acquisition, and expert readers, and is frequently noted 

to be subject to inter-rater variability10,11. Artificial intelligence (AI) algorithms have shown 

promise in automating various aspects of this process, from detecting valvular abnormalities7,12–

14 to quantifying key measurements such as the left ventricular (LV) ejection fraction (EF)4,15–19, 

among others20–25. However, existing solutions typically rely on curated single-view inputs and 

are limited to single tasks4–7,14,22,24–26. This process is discordant with echocardiographic 

interpretation in real-world practice, in which multiple views and imaging modes, such as color 

Doppler imaging, are integrated to form a comprehensive evaluation, spanning functional and 

structural metrics of all major chambers, valves, and vessels. Versatile AI systems that handle 

this multi-view, multi-task workflow would enable efficient, reader-independent phenotyping of 

echocardiographic studies but are currently lacking. 

To bridge this gap and provide a scalable solution for fully automated echocardiographic 

interpretation, we present PanEcho, an end-to-end, view-agnostic deep learning model capable 

of simultaneously performing 39 key echocardiographic reporting tasks. Our model was trained 

on over one million standard 2D B-mode and color Doppler echocardiogram videos from all 

views to perform a diverse mixture of 18 classification and 21 continuous regression tasks, 

spanning the full spectrum of structural and functional myocardial and valvular parameters. The 
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model demonstrated excellent predictive performance across hospital systems and under both 

complete and abbreviated imaging protocols, enabling flexible inference competitive with 

existing single-view methods dedicated to individual tasks. Further, through its unique multi-

view training, PanEcho enables interpretable predictions by correctly identifying the 

echocardiographic views and imaging modes most relevant for each task. Finally, PanEcho 

exhibits robust transfer learning capabilities, outperforming other methods in both predictive 

performance and training efficiency when fine-tuned for downstream quantification tasks, such 

as EF estimation in both adult and out-of-domain pediatric populations. Given the increasing 

accessibility of portable ultrasound technology in point-of-care settings27,28, PanEcho has the 

potential to enable complete AI-assisted echocardiography screening even with abbreviated 

imaging protocols and variable acquisition quality. Our method is the first multi-view and multi-

task AI model for echocardiography, and we publicly release the model weights and source code 

to accelerate research on AI-enabled echocardiographic interpretation. 

 

RESULTS 

Multi-task deep learning model development 

PanEcho is a view-agnostic, multi-task deep learning model for comprehensive automated 

interpretation of multi-view transthoracic echocardiography (Fig. 1). Our model can 

simultaneously perform 39 core echocardiographic reporting tasks and consists of (i) a two-

dimensional (2D) image encoder, (ii) a temporal frame Transformer, and (iii) task-specific output 

heads. First, the 2D image encoder, a convolutional neural network (CNN), learns embeddings of 

individual echocardiographic video frames. Second, the frame-wise embeddings become inputs 

to a Transformer, which models temporal patterns across the frames within a video and outputs a 
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pooled video-level representation. Third, this video embedding is used as input to task-specific 

output heads to simultaneously perform a wide variety of classification and regression tasks. 

Finally, predictions are compared with the ground truth to compute task-specific losses, which 

are aggregated into a multi-task objective that the model learns to minimize. PanEcho is trained 

to perform 21 regression tasks (e.g., EF estimation) and 18 classification tasks (e.g., detecting 

valvular stenosis) from individual echocardiographic videos, with view-specific information 

aggregated to form study-level predictions that integrate multi-view information for each task.  

 This work leveraged 1.23 million echocardiographic videos comprising multiple views 

from 33,927 transthoracic echocardiography studies of 26,067 unique patients across five 

hospitals and a network of outpatient clinics affiliated with the Yale-New Haven Health System 

(YNHHS) during 2016-2022 as a part of routine clinical care. Using our previously published 

pipeline7,  echocardiographic videos were de-identified before being processed by a pretrained 

view classifier15 to determine the echocardiographic view and whether color Doppler imaging 

was used. PanEcho was trained on a random partition of 1.03 million YNHHS echocardiograms 

acquired from January 2016 to June 2022 and internally evaluated on a temporally held-out test 

set of data from July to December 2022, with no patient overlap across the two sets. The 

Methods and Extended Data Table 1 contain detailed descriptions of the data processing and 

YNHHS cohort, respectively.  

 

Automated echocardiography interpretation performance 

On a temporally distinct test set of 5,130 echocardiographic studies from YNHHS, PanEcho 

achieved a median area under the receiver operating characteristic curve (AUC) of 0.91 (mean ± 

standard deviation [sd]: 0.90 ± 0.06) across all 18 classification tasks (Fig. 2a, Extended Data 
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Table 2). The model accurately assessed ventricular structure and function, with temporally 

valid AUCs of 0.95 for moderate or greater increased LV size, 0.98 for moderate or greater LV 

systolic dysfunction, 0.93 for moderate or greater LV diastolic dysfunction, 0.91 for moderate or 

greater LV hypertrophy, 0.88 for any LV wall motion abnormalities, as well as moderate or 

greater increased right ventricle (RV) size and RV systolic dysfunction with AUCs of 0.87 and 

0.93, respectively. PanEcho also achieved excellent performance on valvular disease diagnosis, 

reaching an AUC of 0.99 for severe aortic stenosis and 0.96 for any mitral stenosis, in addition to 

0.93 AUC for moderate or greater aortic regurgitation, 0.96 AUC for moderate or greater mitral 

regurgitation, and 0.89 AUC for moderate or greater tricuspid regurgitation. Additional 

phenotypes, such as pericardial effusion, and Doppler-derived parameters, such as LV outflow 

tract (LVOT) obstruction, were classified with AUCs of 0.91 and 0.94, respectively. 

Beyond categorical classification, PanEcho estimated continuous echocardiographic 

parameters with a median normalized mean absolute error (MAE) of 0.13 (mean ± sd: 0.14 ± 

0.05) across all 21 regression tasks in the YNHHS test set (Fig. 2b, Extended Data Table 3). 

The model accurately quantified LV dimensions and function, with MAE ranging from 4.4% for 

estimating LVEF to 1.3 mm for LV intraventricular septum thickness (IVSd), 1.2 mm for LV 

posterior wall thickness (LVPWd), and 3.8 mm for LV internal diameter at diastole (LVIDd). 

Similarly, for the RV, PanEcho estimated RVIDd with 4.0 mm MAE, tricuspid annular plane 

excursion velocity (TAPSE) with 3.4 m/s MAE, and RV systolic excursion velocity (RV S') with 

1.9 cm/s MAE. Atrial dimensions such as LA internal diameter at systole (LAIDs), LA volume, 

and RA transverse dimension were also estimated with 4.0 mm, 9.4 cm3, and 4.7 mm MAE, 

respectively. Finally, PanEcho quantified Doppler imaging-derived measurements such as aortic 
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peak velocity with 0.31 m/s MAE, tricuspid peak gradient with 5.6 mmHg MAE, and E/e' ratio 

with 1.97 MAE. 

To illustrate the versatility of PanEcho across imaging protocols, we evaluated its 

performance in a simulated abbreviated acquisition – increasingly performed at the point of care 

and on handheld devices29 – where the model only had access to a single video from each of the 

following key views per study: parasternal long axis (PLAX), mid-chamber parasternal short 

axis (PSAX), apical 4-chamber (A4C), apical 5-chamber (A5C), and apical 2-chamber (A2C). 

PanEcho maintained strong predictive performance in this simplified setting, reaching a median 

0.85 AUC (mean ± sd: 0.87 ± 0.06) across all classification tasks and 0.14 normalized MAE 

(mean ± sd: 0.15 ± 0.06) across regression tasks. Detailed results on the YNHHS test set under 

an abbreviated imaging protocol are depicted in Extended Data Fig. 1. 

 

External validation of PanEcho 

To demonstrate our model’s generalizability across geographically distinct cohorts and 

robustness to varying input views, we evaluated PanEcho on a variety of tasks in two large, 

external echocardiography datasets (Fig. 3). First, PanEcho maintained strong external 

performance in assessing LV size and structure in EchoNet-LVH,6 a dataset of 12,000 PLAX 

echocardiograms performed at Stanford Health Care. Our model reached an AUC of 0.98 for 

moderate or greater increased LV size detection and estimated LVID at systole with 3.6 mm 

MAE and LVID at diastole with 3.8 mm MAE. Regarding LV structure, our model classified 

moderate or greater increased LV wall thickness with 0.89 AUC and estimated both IVSd and 

LVPWd with 1.3 mm MAE, consistent with internal validation results. Next, PanEcho 

accurately evaluated LV function in EchoNet-Dynamic,30 a dataset of over 10,000 A4C 
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echocardiograms from Stanford University Hospital. Here, PanEcho classified moderate or 

severe LV systolic dysfunction with 0.94 AUC and estimated LVEF with 5.5% MAE. Since both 

external datasets consisted of single-view echocardiography, all study-level predictions were 

derived from a single echocardiogram video, unlike during internal evaluation. Full EchoNet-

LVH and EchoNet-Dynamic results can be found in Extended Data Table 4 and Extended 

Data Table 5, respectively. 

 

Analysis of task-specific view relevance 

Since PanEcho is view-agnostic, its performance when using individual echocardiographic 

views or imaging modes (color Doppler vs. 2D B-mode) can serve as a proxy for that view’s 

relevance to a given task. To enhance model interpretability, we described the echocardiographic 

views PanEcho learned to be most relevant for each task. We found that its task-specific view 

relevance scores corresponded to guideline-recommended best practices on characterizing 

cardiac and valvular structure and function1 (Fig. 4). For instance, in line with standard 

echocardiographic interpretation, the PLAX view was most informative for LV dimension 

measurements (IVSd, LVPWd, LVIDs, and LVIDd) as well as aortic valve and aortic root 

characterization (severe AS classification and aortic root dimension estimation). Similarly, A4C 

was most informative for estimating LV EF and classifying LV dysfunction, also ranking as one 

of the top two views for detecting abnormal LV wall thickness and motion. While RV inflow 

ranked lower than standard apical or parasternal views – focusing on the left ventricle – for most 

tasks, this view was deemed highly relevant for estimating RV systolic pressure. Similarly, the 

subcostal view ranked among the least informative for many tasks but proved informative for 

detecting elevated RA pressure and moderately informative for detecting increased RA size and 
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estimating RA transverse dimension. Finally, color Doppler videos were the most informative for 

all valvular regurgitation tasks and highly relevant for abnormalities like valvular stenosis, which 

often involves assessment with color Doppler imaging. Full task-specific view relevance scores 

are depicted in Extended Data Fig. 2. 

 

Transfer learning capabilities of PanEcho 

While we have shown that PanEcho generalizes “out-of-the-box” across geography and time, we 

also assess its ability to efficiently transfer knowledge to new echocardiography datasets and 

tasks via transfer learning. On in-distribution and out-of-distribution regression tasks, PanEcho 

pretraining outperformed other transfer learning and initialization methods in both predictive 

performance and training efficiency – this included a randomly initialized model, an image-

based transfer learning model (ImageNet31 pretraining), a video-based transfer learning model 

(Kinetics-40032 pretraining), and a domain-specific transfer learning model (EchoCLIP5 

pretraining on echocardiographic videos and cardiology reports). Using the official 

training/validation/test split of EchoNet-Dynamic, a PanEcho-pretrained model estimated LV EF 

with 4.7% MAE after just 2 epochs of fine-tuning, outperforming and converging more rapidly 

than an identical ImageNet-pretrained model (5.4% MAE; 9 epochs) and randomly initialized 

model (5.6% MAE; 15 epochs). PanEcho pretraining also outperformed a model with a 

spatiotemporal 3D CNN pretrained on the large-scale Kinetics-40032 video dataset (5.6% MAE; 

5 epochs) and a 2D image encoder pretrained on over one million A4C echocardiograms via 

EchoCLIP5 (5.4% MAE; 17 epochs). Detailed EchoNet-Dynamic transfer learning results can be 

found in Extended Data Table 6. 
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 Demonstrating its out-of-distribution transfer abilities, PanEcho pretraining also 

outperformed other initialization strategies on the novel task of pediatric EF estimation from 

multi-view echocardiography in EchoNet-Pediatric,17 a dataset of over 7,000 A4C and PSAX 

echocardiograms. Using the official 10-fold cross-validation splits of EchoNet-Pediatric, a 

PanEcho-pretrained model reached 3.9% MAE on held-out data in 5.5 ± 1.9 epochs (mean ± sd 

over the 10 folds), again outperforming an identical randomly initialized model (4.9% MAE; 9.6 

± 3.1 epochs) and ImageNet-pretrained model (4.5% MAE; 10.6 ± 3.4 epochs). The PanEcho-

pretrained backbone also outperformed a domain-specific EchoCLIP-pretrained backbone (5.2% 

MAE; 12.7 ± 6.0 epochs) as well as a standard 3D transfer learning approach (4.8% MAE; 13.7 

± 5.6 epochs) in terms of both performance and convergence time. See Extended Data Table 7 

for detailed EchoNet-Pediatric transfer learning results. 

 

DISCUSSION 

We present PanEcho, a view-agnostic deep learning model for automated echocardiography 

interpretation developed on over one million videos spanning a broad range of views, 

acquisitions, and patient phenotypes. PanEcho advances the current state-of-the-art in AI-

enabled echocardiography, enabling flexible estimation of nearly all key parameters of cardiac 

function and structure from any combination of available views. The method and related 

algorithm leverage a computationally efficient backbone and a multi-view, multi-task training 

scheme, allowing their prospective and retrospective deployment across both complete and 

limited echocardiographic studies. Critically, our model reproduces known patterns in 

echocardiography reporting by learning to recognize the importance of specific views and 

modalities for each task. Finally, PanEcho exhibits several key properties of a foundation model, 
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learning powerful representations of echocardiographic videos that efficiently transfer to 

downstream and even out-of-distribution tasks and populations. The model weights and source 

code are publicly released in the hope that they will support research teams and investigators in 

leveraging the power of multi-view and multi-task AI models in echocardiography.  

 PanEcho was developed to address a critical gap in the field of AI-assisted 

echocardiography driven by a predominance of single-view and single-task models. This reflects 

a broader need for flexible approaches that can accommodate heterogeneous protocols and 

acquisitions while enabling inference for the broadest set of clinical labels. While prior work has 

primarily been limited to single-view echocardiography and specialized single-task 

models4,6,7,16,22,24,25, PanEcho is unique in its multi-task modeling of all variables forming the 

core of standard echocardiography reporting. Unlike prior approaches that require acquisition of 

a particular echocardiographic view or sequence6,15,16,18,33, PanEcho provides inference from any 

set of available echocardiograms. Here we show that across the complete set of imaging acquired 

as part of a standard echocardiographic study, our approach provides study-level estimates that 

reach performance on par with state-of-the-art specialized models for individual labels. Perhaps 

more importantly, PanEcho enables accurate diagnostic inference through abbreviated five-video 

protocols, which can play a critical role in simplified, automated, rapid screening 

echocardiograms. 

 To understand the value of PanEcho, our contribution should be evaluated in the context 

of recent efforts toward AI-enabled echocardiography analysis. Several prior studies exhibit 

robust performance across multiple echocardiographic labels, but leverage single-view 

echocardiography to develop independent models specialized for each task6,15,16. The unique 

multi-task nature of PanEcho immediately scales to clinical deployment by simultaneously 
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inferring all key clinical labels; meanwhile, single-task models would pose significant practical 

challenges, especially in memory-constrained environments such as on-device deployment in a 

point-of-care ultrasound setting. Recent approaches like EchoCLIP5 offer a new perspective 

toward automated echocardiography analysis by leveraging self-supervised learning (SSL) to 

build a multimodal foundation model, with multi-faceted zero-shot image retrieval and 

interpretation capabilities by incorporating natural language. Despite the promise of SSL for 

efficient echocardiographic representation learning5,26, the computational overhead of the task 

has so far limited its use to a single echocardiographic view, without optimized performance for 

any specific clinical labels. In contrast, PanEcho’s large-scale multi-view, multi-task learning 

training makes it a standalone approach for comprehensive echocardiographic interpretation 

from any set of echocardiograms, while maintaining foundation model properties such as 

efficient knowledge transfer. Its shared image encoder was trained on over 50 million 

echocardiogram frames from different views and modalities, learning rich features that are 

simultaneously informative for disparate reporting tasks. This scale and diversity of multi-view 

inputs and multi-task outputs is perhaps the key ingredient to learning transferable 

echocardiographic features, outperforming alternative approaches in both in- and out-of-

distribution transfer learning applications. 

Overall, PanEcho represents both a clinical and methodological advance. With millions 

of echocardiographic studies performed in the United States alone each year, and increasing 

availability of portable ultrasound systems enabling greater accessibility, there is a growing need 

for systems that enable screening and phenotyping of the full spectrum of key echocardiographic 

labels, from detecting ventricular and atrial chamber remodeling to valvular abnormalities and 

their severity. These systems can be deployed as adjuncts to abbreviated protocols (e.g., 
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acquiring one video from each key view followed by AI-enabled interpretation), but also can 

leverage the greater breadth of acquisitions found in standard, protocoled studies where they 

reach clinical-level accuracy for all major labels that form a modern echocardiographic report. 

This versatility suggests a key value of PanEcho as an efficient pre-reading step to maximize 

efficiency in the echocardiography lab, potentially accelerating standard clinical workflows 

while offering an additional layer of support to expert readers. Furthermore, in areas where 

expert readers might not be readily available, simplified PanEcho-supported protocols may be 

used to rule out significant structural abnormalities that may necessitate urgent referral.  

Certain limitations merit consideration. First, our model is trained on individual 

echocardiograms and averages predictions from all videos acquired during a study, applying 

equal weight to each video. Since we know that view relevance is task-dependent, there is an 

opportunity to enhance PanEcho by allowing the model to adaptively learn which views and 

specific videos in a study are most influential for a given task. Second, unlike other 

approaches4,17–19,33, our method does not incorporate a segmentation step for echocardiographic 

measurements yet achieves comparable downstream estimation performance. This decision was 

made to ease multi-task learning of relatively similar classification and regression tasks and to 

learn representations less likely to be affected by noise or variations in acquisition quality than 

those from pixel-wise segmentation models. Finally, prospective validation of PanEcho in a real-

world clinical workflow would provide further insights into its clinical applicability. Upon 

clinical deployment, our learned task-dependent view relevance scores could provide uncertainty 

quantification and prioritize the prediction of high-confidence labels given the views acquired in 

a given study. 
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In summary, PanEcho represents a first-of-its-kind deep learning system for flexible 

interpretation of a broad range of echocardiographic parameters from protocols incorporating 

any combination of echocardiographic views. Evidenced by its strong multi-task performance in 

internal and external cohorts and powerful transfer learning capabilities to new downstream 

tasks, PanEcho addresses the key need for scalable and efficient echocardiography interpretation 

while also serving as a foundational model to facilitate the transition from single-view to multi-

view analysis. This work represents a meaningful advance toward fully automated 

echocardiographic assessment, and the public release of PanEcho model weights and source 

code should accelerate research on deep learning for echocardiography and computer-aided 

diagnosis more broadly. 

 

METHODS 

Data source 

A transthoracic echocardiogram study consists of dozens of ultrasound videos acquired using 

multiple imaging modes (2D B-mode, color Doppler, pulsed-wave Doppler, etc.) from a variety 

of canonical views, achieved by placing the transducer in a specific location and orientation 

against the patient’s ribcage. While most prior work on automated echocardiography 

interpretation uses still frames13,16 videos from a single echocardiographic view5–7,14,34 or 

imaging mode,22,24,25 this study leverages both 2D B-mode and color Doppler videos from all 

major views. Data for internal model development and evaluation was derived from transthoracic 

echocardiography studies performed at Yale-New Haven Health System (YNHHS) hospitals 

from 2016-2022 during routine clinical care. This study was approved by the Yale University 
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Institutional Review Board (IRB), and the need for informed consent was waived since this 

research represents secondary analysis of existing data. 

 

Echocardiography data preprocessing 

Similar to our previously published echocardiography processing pipeline7, pixel data from 

three-dimensional echocardiographic videos was extracted from the raw Digital Imaging and 

Communications in Medicine (DICOM) files, deidentified by masking out peripheral pixels 

containing protected health information, and saved to Audio Video Interleave (AVI) format at 

full resolution for rapid loading. All valid videos were processed by a pretrained view classifier15 

to determine both the echocardiographic view and imaging mode by randomly selecting ten 

frames and averaging predicted view probabilities over the ten frames. While the view classifier 

could discriminate 23 fine-grained view variations, we considered the following key views: 

apical 2-, 3-, 4-, and 5-chamber (A2C, A3C, etc.), parasternal long axis (PLAX), parasternal 

short axis (PSAX), right ventricle (RV) inflow, subcostal, and suprasternal. 

 To detect color Doppler, we performed a three-step process of identifying videos that 

were (i) classified as “Other” by the view classifier, (ii) classified as color Doppler by a custom 

color Doppler detection model, and (iii) contained a nontrivial amount of red pixels. For step (ii), 

we developed a dedicated color Doppler detection model on a manually curated dataset of 

echocardiogram frames derived from studies not present in the YNHHS dataset used for 

PanEcho development. Specifically, we manually labeled the presence of color Doppler in all 

videos from five studies and included videos from another five studies that were known to not 

contain color Doppler as determined by the view classifier. This dataset of 11,240 labeled frames 

was then randomly split intro training (80%) and validation (20%) sets at the study level. An 
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ImageNet-pretrained ConvNeXt-T35 convolutional neural network (CNN) was trained to classify 

the presence of color Doppler using a batch size of 128, the Adam optimizer36 with a learning 

rate of 0.0001, and a weighted binary cross-entropy loss for ten epochs. All frames were 

downsampled to 256 x 256 resolution, center cropped to 224 x 224, and normalized with 

ImageNet channel-wise means and standard deviations. The model achieved 100% accuracy on 

the validation set and was then applied to all videos classified as “Other” by the view classifier. 

Similar to view classification, ten randomly selected frames from each video were passed to the 

color Doppler detection model, and predictions were averaged over the ten frames; videos not 

classified as color Doppler were excluded from the cohort. 

As a final quality check, for step (iii), the candidate color Doppler videos underwent 

color detection to assert the presence of the hue of red typically present in color Doppler 

echocardiography to indicate blood flow toward the ultrasound probe. Frames in each video were 

converted to the HSV color space, and individual pixels were determined to be red if their HSV 

values fell between (-10, 150, 150) and (10, 255, 255). Videos were deemed to contain a 

nontrivial number of red pixels if the total fraction of unique pixels that were red at any point in 

the video exceeded 1%; all other videos were discarded. Beyond filtering out videos that were 

neither color Doppler nor 2D B-mode, we did not perform any further quality control to 

encourage robustness to variations in acquisition quality (e.g., low-contrast or off-axis images), 

ultrasound machine settings, etc. encountered in real-world clinical practice. 

 After color Doppler detection, we limited our dataset to contain at most four unique 

studies per patient – randomly selecting four studies to keep for patients examined at least five 

times – to prevent overrepresentation of specific patients and outcomes. Next, the resulting 

cohort was split into development and internal test sets, with studies performed from July to 
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December 2022 set aside as a temporally distinct test set. The remaining studies from January 

2016 to June 2022 were to be used for model development after removing studies from all 

patients present in the test set to prevent data leakage. The development set was randomly 

partitioned into training (92.5%) and validation (7.5%) sets at the patient level for model 

training. Finally, all videos underwent more thorough deidentification by masking out pixels 

beyond the central image content – namely, we retained pixels from within the convex hull of the 

largest contour in each frame using opencv (https://opencv.org/). Videos were then cropped to 

the central image content in a temporally consistent manner and downsampled to 256 x 256 

resolution with bicubic interpolation. The final YNHHS cohort consisted of 1,230,490 TTE 

videos from 33,927 videos of 26,067 unique patients (Extended Data Table 1). 

 

Echocardiographic reporting labels 

For each study in the YNHHS cohort, we extracted labels for a total of 39 reporting tasks, 

representing a wide variety of categorical classification (e.g., disease diagnosis) and continuous 

regression tasks (e.g., echocardiographic parameter estimation). This included 18 classification 

tasks encapsulating size, structure, and function of all four heart chambers, valvular disease, etc. 

and 21 regression tasks quantifying key dimensions of each chamber, blood flow velocities, etc. 

All labels were directly extracted from the local electronic echocardiography reporting system 

(Lumedx®, Oakland, CA) and reflected the final measurements and reporting confirmed by a 

certified echocardiographer in line with the guidelines of the American Society of 

Echocardiography1. To minimize the effect of extreme outliers on regression tasks, we applied 

winsorization to all continuous variables, limiting the lowest and highest values to the 0.5 and 

99.5 percentile values, respectively. Additionally, given the relatively low prevalence of severe 
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phenotypes across certain categorical labels in classification tasks, we pooled moderate and 

severe phenotypes into shared severity groups for selected tasks. See Extended Data Table 8 for 

a comprehensive list and description of all tasks used in this study. 

 

PanEcho model development 

As depicted in Fig. 1, our model consists of a 2D image encoder, a temporal Transformer, and 

task-specific output heads. We adopted a decoupled “2+1D” approach to modeling 

echocardiogram videos – with separate modules to learn spatial and temporal features – 

primarily for downstream flexibility; for instance, our 2D image backbone can be readily adapted 

for any echocardiographic task, while a 3D backbone would be more difficult to retrofit to a 2D 

image-only task such as segmentation. PanEcho takes an echocardiogram video clip as input and 

outputs predictions for all 39 echocardiographic reporting tasks described above. Each video 

frame is first processed by the 2D image encoder, an ImageNet31-pretrained ConvNeXt-T35 

CNN, which produces a learned feature vector, or representation, of each frame. These frame-

wise representations are then interpreted as an ordered sequence – like words in a sentence in 

natural language processing – and modeled using self-attention37 to learn time-varying 

associations over the frames. Frame order is embedded via sinusoidal positional encoding, which 

is then elementwise added to the frame-wise feature vectors and fed to a Transformer encoder 

consisting of four layers, each with eight self-attention heads. Mean pooling is then used to 

aggregate frame-wise feature vectors into a single video-level representation, which is used as 

input to the task-specific output heads. Each output head consists of a Dropout38 layer with 

probability 0.25 and a fully-connected layer. Both regression and binary classification tasks used 

one output neuron, the latter followed by a sigmoid activation. Multi-class classification tasks 
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with 𝑘 classes used 𝑘 output neurons with softmax activation, and multi-label classification tasks 

(in our case, only Increased LV Wall Thickness) were modeled with separate binary 

classification heads for each class. See Extended Data Table 8 for a description of how each 

task was modeled. PanEcho was trained to minimize the mean of all valid task-specific losses – 

cross-entropy for classification tasks and mean squared error for regression tasks. To control for 

varying units and scales of regression tasks, we first divided each regression loss by the mean 

observed value of that measurement in the training set before loss aggregation. 

PanEcho was implemented and trained in PyTorch39 with distributed training across eight 

NVIDIA A100 graphics processing units (GPUs) with automatic mixed precision to maximize 

throughput. During training, the model received as input a randomly sampled video clip of 16 

consecutive frames from an echocardiogram, following prior work7. To increase robustness to 

variations in acquisition and increase effective sample size, the following augmentations were 

performed to all video frames in a temporally consistent manner: random crop to 224 x 224 

resolution, random horizontal flip with probability 0.5, random rotation within (-15°, 15°), then 

followed by ImageNet normalization. The model was trained with a batch size of 16 per GPU, 

the Adam optimizer36, and minimized the multi-task loss described above with learning rate 

0.0001. The learning rate was reduced by a factor of 0.5 if the validation metric (mean 

classification AUC and regression 𝑅! across all tasks) did not improve for three consecutive 

epochs; though MAE was the primary evaluation metric for regression tasks, this validation 

metric was chosen because AUC and 𝑅! are both increasing and bounded to [0, 1]. The model 

was trained for a maximum of 30 epochs with early stopping if validation metric did not improve 

for 10 consecutive epochs. At test time, four 16-frame clips are randomly sampled from each 

video and task-wise predictions are averaged over all clips to produce video-level predictions. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317431doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317431
http://creativecommons.org/licenses/by-nc/4.0/


 19 

Since PanEcho is view-agnostic and labels are determined at the study level, predictions from all 

videos acquired during the same study (regardless of imaging mode or view) were averaged to 

form a single study-level prediction for each task. 

 

Multi-task performance evaluation 

Since task labels are unique to each echocardiographic study, evaluation was performed at the 

study level using all available videos and tasks. For internal YNHHS evaluation, this meant that 

multi-view aggregation could be leveraged for inference on all 39 tasks. Evaluation on external 

cohorts, however, was limited to the use of one or two echocardiographic views for a certain 

subset of labels present in the given dataset. Classification tasks were evaluated primarily by area 

under the receiver operating characteristic curve (AUC) and average precision (AP), and 

regression tasks were evaluated by mean absolute error (MAE) and 𝑅!. For multi-class 

classification tasks, we present AUC results on the most severe class in the main text primarily to 

simplify presentation; further, there is likely significant uncertainty in intermediate designations 

such as “mild-moderate”, and our prior work on severe aortic stenosis detection7,14 has 

demonstrated that models trained for severe disease detection naturally produce probabilities that 

stratify the spectrum of severity. For regression tasks, we report task-wise MAE in the main text 

as well as the normalized MAE – MAE divided by the mean of ground truth measurements – 

averaged over all regression tasks to summarize overall performance while accounting for the 

vastly different units and scales across tasks. We computed 95% confidence intervals for all 

metrics with 1,000 bootstrap samples of the given test set at the study level using the percentile 

method. 
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External validation cohorts 

To ensure generalizability to new patient cohorts, PanEcho was validated externally on two large 

echocardiography datasets from other hospital systems, EchoNet-LVH6 and EchoNet-Dynamic30, 

on a total of 10 tasks assessing LV size, structure, and function. EchoNet-LVH consists of 

12,000 PLAX echocardiograms performed at Stanford Health Care from 2008-2020, including 

echocardiographic measurements of LV intraventruclar septum thickness at diastole (IVSd), LV 

posterior wall thickness at diastole (LVPWd), LV internal diameter at systole (LVIDs), and 

LVID at diastole (LVIDd). Since categorical labels for increased LV size and wall thickness 

were not explicitly provided, we determined increased LV size labels via “Moderate or greater” 

= LVIDd ≥ 6.4 cm, “Normal” = LVIDd ≤ 5.2 cm, and “Mild” otherwise, as well as increased LV 

wall thickness labels via “Moderate or greater” = IVSd ≥ 1.3 cm & LVPWd ≥ 1.3 cm, “Any” = 

IVSd ≥ 1.1 cm & LVPWd ≥ 1.1 cm, and “None” otherwise. EchoNet-Dynamic consists of 

10,030 A4C echocardiograms acquired at Stanford University Hospital from 2016-2018 with 

labels for LV EF, end-diastolic volume, and end-systolic volume. Much like EchoNet-LVH, 

since only continuous measurements were provided, we determined LV systolic dysfunction 

labels as follows: “None-Hyperdynamic” = LV EF ≥ 54%, “Moderate or greater” = LV EF ≤ 

40%, and “Mild” otherwise. 

While categorical cutoffs for these conditions are sex-dependent, these conservative 

thresholds were chosen since patient sex was not provided in EchoNet-LVH nor EchoNet-

Dynamic. For both datasets, external validation was performed using all available labels for each 

task. Unlike the YNHHS dataset, both external datasets contain a single echocardiogram video 

from a single view per study, so multi-view integration and analysis could not be performed. 
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Task-specific view relevance 

Different echocardiographic views are used to visualize distinct aspects of the cardiovascular 

anatomy and function; this means that while key views like PLAX and A4C might be useful for 

many tasks, they may be completely irrelevant to others. Additionally, while the standard 

imaging mode of 2D B-mode ultrasound is most used, color Doppler imaging – which quantifies 

blood flow, often with a red-blue color overlay – is the gold standard for echocardiographic 

interpretation tasks like valvular regurgitation diagnosis. Since PanEcho is view-agnostic, having 

been trained on both 2D B-mode and color Doppler videos from all major views, we were able to 

use its predictive ability on individual view types as a proxy for task-dependent relevance. 

Specifically, we defined a normalized view relevance score 

𝑅",$ = )

%!,#

max!	(%!,#)
, 𝑡	is	a	classification	task

%!,#
min!	(%!,#)

, 𝑡	is	a	regression	task				
, 

where 𝑅",$ is the relevance of view 𝑣 for task 𝑡, and 𝑚",$ is the performance metric on task 𝑡 

when only using view 𝑣 (AUC for classification tasks and MAE for regression tasks). This 

produces a task-normalized score where, for a given task, 1 represents the most informative 

view, and each score can be interpreted as the “fractional importance relative to the best view.” 

This analysis was performed on the YNHHS test set and metrics were computed after selecting a 

maximum of three videos per view in a given study with the most confident predicted view 

probability by the view classifier; this was done to control for the variable prevalence of views – 

without this, the most common views would be overrepresented within each study and unfairly 

benefit from a greater ensembling effect after video-level aggregation. For tasks typically 

performed with or aided by some form of Doppler imaging, we performed this analysis again 
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after including color Doppler videos (from any echocardiographic view) as an additional “view” 

to assess the task-dependent value of color Doppler imaging.  

 

Transfer learning experiments 

Beyond evaluating “out-of-the-box” generalizability of PanEcho to new patient populations, we 

also investigated its transfer learning capabilities when fine-tuned on new echocardiography data 

and tasks. We hypothesized that PanEcho’s large-scale multi-task and multi-view training would 

make it an ideal candidate for efficient transfer learning to downstream echocardiographic 

interpretation tasks. To evaluate transfer learning ability, we fine-tune the 2+1D PanEcho model 

architecture for downstream LV EF estimation in new patient cohorts while varying the 

initialization of the 2D image encoder, assessing both predictive performance on test data and 

training efficiency (defined as the number of epochs before convergence, as determined by early 

stopping). Specifically, we consider a 2+1D PanEcho architecture with a YNHHS-pretrained 

ConvNeXt-T, a randomly initialized ConvNeXt-T, and an ImageNet-pretrained ConvNeXt-T 

image encoder. While this represents a controlled experiment in which the only variable is the 

initialization of the 2D image encoder, we also consider (i) an “in-domain” 2+1D transfer 

learning approach leveraging a ConvNeXt-B backbone pretrained on one million A4C 

echocardiograms from EchoCLIP5 and (ii) a 3D transfer learning approach leveraging a 

3DResNet-1840 pretrained on the large-scale Kinetics-40032 video dataset; for the latter model, 

the spatiotemporal 3D CNN removes the need for the temporal Transformer of the PanEcho 

architecture. 

 Transfer learning experiments were performed on EchoNet-Dynamic and EchoNet-

Pediatric17 for single-view EF and multi-view pediatric EF estimation, respectively. EchoNet-
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Dynamic fine-tuning was conducted using the official training/validation/test splits leveraging all 

available cases with LV EF labels. Results are reported on the official test set leveraging a single 

A4C echocardiogram per study. EchoNet-Pediatric consists of 3,176 A4C and 4,424 parasternal 

short axis (PSAX) echocardiograms collected from patients at Lucile Packard Children’s 

Hospital from 2014-2021. Using the official 10-fold cross-validation splits of EchoNet-Pediatric, 

10 models were fine-tuned by treating the first consecutive 8 folds as a training set, the next fold 

as a validation set, and the next fold as a held-out test set. Since EchoNet-Pedatric is a multi-

view dataset, EF estimates were averaged over A4C and PSAX views acquired in the same 

study, whenever available, at test time. Results are reported by aggregating all held-out test fold 

predictions, and training time is summarized by mean and standard deviation number of epochs 

to convergence across the 10 cross-validation experiments. All transfer learning models were 

trained with the same procedure as PanEcho except that only the EF output head and loss were 

used, loss was used as the validation metric, no augmentation was used, and no learning rate 

reduction was used to simplify training. 

 

DATA AVAILABILITY 

The YNHHS data used in this study is not available for public sharing due to the restrictions in 

our IRB agreement. However, deidentified test data may be made available to researchers under 

a data use agreement upon publication in a peer-reviewed journal. The external datasets 

EchoNet-LVH, EchoNet-Dynamic, and EchoNet-Pediatric can be accessed through the Stanford 

AIMI Shared Datasets repository at the following links, respectively: 

https://stanfordaimi.azurewebsites.net/datasets/5b7fcc28-579c-4285-8b72-e4238eac7bd1, 
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https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a, and 

https://stanfordaimi.azurewebsites.net/datasets/a84b6be6-0d33-41f9-8996-86e5df53b005. 

 

CODE AVAILABILITY 

The code repository for this study will be made available at https://github.com/CarDS-

Yale/PanEcho. 

 

ACKNOWLEDGMENTS 

National Heart, Lung, And Blood Institute of the National Institutes of Health (under award 

numbers R01HL167858 and K23HL153775 to R.K., and F32HL170592 to E.K.O.), National 

Institute on Aging of the National Institutes of Health (under award number R01AG089981 to 

R.K.), and the Doris Duke Charitable Foundation (under award number 2022060 to R.K.).  

 

COMPETING INTERESTS 

R.K. is an Associate Editor of JAMA and receives research support, through Yale, from the 

Blavatnik Foundation, Bristol-Myers Squibb, Novo Nordisk, and BridgeBio. He is a coinventor 

of U.S. Provisional Patent Applications 63/177,117, 63/428,569, 63/346,610, 63/484,426, 

63/508,315, 63/580,137, 63/606,203, 63/562,335, and a co-founder of Ensight-AI, Inc and 

Evidence2Health, LLC. E.K.O. is a co-founder of Evidence2Health LLC, a co-inventor in patent 

applications (18/813,882, 17/720,068, 63/619,241, 63/177,117, 63/580,137, 63/606,203, 

63/562,335, US11948230B2), and has served as consultant for Caristo Diagnostics Ltd and 

Ensight-AI Inc, outside the submitted work. All other authors declare no competing interests. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317431doi: medRxiv preprint 

https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a
https://stanfordaimi.azurewebsites.net/datasets/a84b6be6-0d33-41f9-8996-86e5df53b005
https://github.com/CarDS-Yale/PanEcho
https://github.com/CarDS-Yale/PanEcho
https://doi.org/10.1101/2024.11.16.24317431
http://creativecommons.org/licenses/by-nc/4.0/


 25 

AUTHOR CONTRIBUTIONS 

Conceptualization: G.H., E.K.O, and R.K.; Data Curation: G.H., E.K.O, and R.K.; Methodology: 

G.H and E.K.O.; Data Analysis: G.H. and E.K.O.; Writing, Review, and Editing: G.H., E.K.O., 

Z.W., R.K.; Supervision: Z.W. and R.K.  

 

REFERENCES 

1. Mitchell, C. et al. Guidelines for performing a comprehensive transthoracic 

echocardiographic examination in adults: Recommendations from the American society 

of echocardiography. J. Am. Soc. Echocardiogr. 32, 1–64 (2019). 

2. Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 

28, 31–38 (2022). 

3. Esteva, A. et al. Deep learning-enabled medical computer vision. NPJ Digit Med 4, 5 

(2021). 

4. Ouyang, D. et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 

580, 252–256 (2020). 

5. Christensen, M., Vukadinovic, M., Yuan, N. & Ouyang, D. Vision–language foundation 

model for echocardiogram interpretation. Nat. Med. 30, 1481–1488 (2024). 

6. Duffy, G. et al. High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy 

With Cardiovascular Deep Learning. JAMA Cardiol 7, 386–395 (2022). 

7. Holste, G. et al. Severe aortic stenosis detection by deep learning applied to 

echocardiography. Eur. Heart J. (2023) doi:10.1093/eurheartj/ehad456. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317431doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317431
http://creativecommons.org/licenses/by-nc/4.0/


 26 

8. Wei, C., Milligan, M., Lam, M., Heidenreich, P. A. & Sandhu, A. Variation in cost of 

echocardiography within and across United States hospitals. J. Am. Soc. Echocardiogr. 

36, 569-577.e4 (2023). 

9. Virnig, B. A., Shippee, N. D., O’Donnell, B., Zeglin, J. & Parashuram, S. Trends in the 

Use of Echocardiography, 2007 to 2011. (Agency for Healthcare Research and Quality 

(US), 2014). 

10. Pillai, B., Salerno, M., Schnittger, I., Cheng, S. & Ouyang, D. Precision of 

echocardiographic measurements. J. Am. Soc. Echocardiogr. 37, 562–563 (2024). 

11. He, B. et al. Blinded, randomized trial of sonographer versus AI cardiac function 

assessment. Nature 616, 520–524 (2023). 

12. Krishna, H. et al. Fully Automated Artificial Intelligence Assessment of Aortic Stenosis 

by Echocardiography. J. Am. Soc. Echocardiogr. 36, 769–777 (2023). 

13. Huang, Z., Long, G., Wessler, B. & Hughes, M. C. A New Semi-supervised Learning 

Benchmark for Classifying View and Diagnosing Aortic Stenosis from Echocardiograms. 

in Proceedings of the 6th Machine Learning for Healthcare Conference (eds. Jung, K., 

Yeung, S., Sendak, M., Sjoding, M. & Ranganath, R.) vol. 149 614–647 (PMLR, 06--07 

Aug 2021). 

14. Oikonomou, E. K. et al. A Multimodality Video-Based AI Biomarker For Aortic Stenosis 

Development And Progression. JAMA Card 9, 534–544 (2024). 

15. Zhang, J. et al. Fully Automated Echocardiogram Interpretation in Clinical Practice. 

Circulation 138, 1623–1635 (2018). 

16. Ghorbani, A. et al. Deep learning interpretation of echocardiograms. NPJ Digit Med 3, 10 

(2020). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317431doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317431
http://creativecommons.org/licenses/by-nc/4.0/


 27 

17. Reddy, C. D., Lopez, L., Ouyang, D., Zou, J. Y. & He, B. Video-Based Deep Learning 

for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients. J. 

Am. Soc. Echocardiogr. 36, 482–489 (2023). 

18. Tromp, J. et al. A formal validation of a deep learning-based automated workflow for the 

interpretation of the echocardiogram. Nat. Commun. 13, 6776 (2022). 

19. Zeng, Y. et al. MAEF-Net: Multi-attention efficient feature fusion network for left 

ventricular segmentation and quantitative analysis in two-dimensional echocardiography. 

Ultrasonics 127, 106855 (2023). 

20. Khera, R. et al. Transforming Cardiovascular Care With Artificial Intelligence: From 

Discovery to Practice: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 84, 97–114 

(2024). 

21. Goto, S. et al. Artificial intelligence-enabled fully automated detection of cardiac 

amyloidosis using electrocardiograms and echocardiograms. Nat. Commun. 12, 2726 

(2021). 

22. Long, A. et al. Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral 

Regurgitation (DELINEATE-MR). Circulation (2024) 

doi:10.1161/CIRCULATIONAHA.124.068996. 

23. Ferreira, D. L., Salaymang, Z. & Arnaout, R. Label-free segmentation from cardiac 

ultrasound using self-supervised learning. arXiv [eess.IV] (2022). 

24. Vrudhula, A., Duffy, G., Vukadinovic, M., Liang, D. & Cheng, S. High Throughput Deep 

Learning Detection of Mitral Regurgitation. medRxiv (2024). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317431doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317431
http://creativecommons.org/licenses/by-nc/4.0/


 28 

25. Vrudhula, A. et al. Deep Learning Phenotyping of Tricuspid Regurgitation for 

Automated High Throughput Assessment of Transthoracic Echocardiography. medRxiv 

(2024) doi:10.1101/2024.06.22.24309332. 

26. Holste, G., Oikonomou, E. K., Mortazavi, B. J., Wang, Z. & Khera, R. Efficient deep 

learning-based automated diagnosis from echocardiography with contrastive self-

supervised learning. Commun. Med. 4, 133 (2024). 

27. Díaz-Gómez José L., Mayo Paul H. & Koenig Seth J. Point-of-Care Ultrasonography. N. 

Engl. J. Med. 385, 1593–1602 (2021). 

28. Ginsburg, A. S., Liddy, Z., Khazaneh, P. T., May, S. & Pervaiz, F. A survey of barriers 

and facilitators to ultrasound use in low- and middle-income countries. Sci. Rep. 13, 1–11 

(2023). 

29. Narang, A. et al. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire 

Echocardiograms for Limited Diagnostic Use. JAMA Cardiol 6, 624–632 (2021). 

30. Ouyang, D. et al. EchoNet-dynamic: A large new cardiac motion video data resource for 

medical machine learning. NeurIPS ML4H (2019). 

31. Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE 

Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009). 

32. Kay, W. et al. The Kinetics Human Action Video Dataset. arXiv [cs.CV] (2017). 

33. Tromp, J. et al. Automated interpretation of systolic and diastolic function on the 

echocardiogram: a multicohort study. Lancet Digit Health 4, e46–e54 (2022). 

34. Hughes, J. W. et al. Deep learning evaluation of biomarkers from echocardiogram 

videos. EBioMedicine 73, 103613 (2021). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317431doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317431
http://creativecommons.org/licenses/by-nc/4.0/


 29 

35. Liu, Z. et al. A ConvNet for the 2020s. Proc. IEEE Comput. Soc. Conf. Comput. Vis. 

Pattern Recognit. 11966–11976 (2022). 

36. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] 

(2014). 

37. Vaswani, A. et al. Attention is All you Need. Adv. Neural Inf. Process. Syst. 5998–6008 

(2017). 

38. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A 

Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 15, 

1929–1958 (2014). 

39. Paszke, Gross, Massa & Lerer. Pytorch: An imperative style, high-performance deep 

learning library. Adv. Neural Inf. Process. Syst. (2019). 

40. Tran, D. et al. A Closer Look at Spatiotemporal Convolutions for Action Recognition. in 

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (IEEE, 2018). 

doi:10.1109/cvpr.2018.00675. 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317431doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317431
http://creativecommons.org/licenses/by-nc/4.0/


 30 

 
Fig. 1 | Overview of PanEcho. (a) Schematic of PanEcho, a view-agnostic, multi-task deep 
learning model that automatically performs 39 transthoracic echocardiography interpretation 
tasks from echocardiogram videos. PanEcho consists of an image encoder to embed individual 
video frames, a temporal Transformer to learn temporal associations over frames in a video, and 
task-specific output heads to perform a wide variety of classification and regression tasks. The 
model was trained end-to-end on over one million echocardiograms from YNHHS hospitals with 
a multi-task learning objective. (b) Since PanEcho is view-agnostic, multi-view 
echocardiography can be leveraged to integrate information across views. At test time, 
predictions are aggregated across echocardiograms acquired during the same study to generate 
study-level predictions for each task. For all 39 tasks, PanEcho was validated internally on 
temporally held-out data from YNHHS hospitals. For tasks with publicly available labels, 
PanEcho was also externally validated on EchoNet-LVH and EchoNet-Dynamic, two large-scale 
single-view echocardiography datasets for assessing LV structure and function. 
AUC = area under the receiver operating characteric curve; IVSd = intraventricular septum thickness at 
diastole; LV = left ventricle; LVIDd = left ventricular internal diameter at diastole; LVPWd = left ventricular 
posterior wall thickness at diastole; MAE = mean absolute error; YNHHS = Yale-New Haven Health System.  
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Fig. 2 | Multi-task performance evaluation. Multi-task evaluation of PanEcho on the internal 
YNHHS test set, consisting of temporally held-out echocardiograms acquired from June-
December 2022. Error bars and values in parentheses represent bootstrapped 95% confidence 
intervals. (a) For classification tasks, AUC values are presented. The grey dashed line represents 
the performance of random guessing. * = moderate or greater; ^ = severe. (b) For regression 
tasks, normalized MAE (using the mean of ground truth measurements) is visually presented to 
account for varying scales and units. Raw MAE is also presented in text beside each task. 
AUC = area under the receiver operating characteristic curve; AV = aortic valve; ED = end-diastolic; ES = 
end-systolic; IVSd = intraventricular septum thickness at diastole; LA = left atrium; LV = left ventricle; LAIDs 
= left atrial internal diameter at systole; LVIDd = left ventricular internal diameter at diastole; LVIDs = left 
ventricular internal diameter at systole; LVOT = left ventricular outflow tract; LVPWd = left ventricular 
posterior wall thickness at diastole; MAE = mean absolute error; PG = pressure gradient; RA = right atrium; 
RV = right ventricle; RVIDd = right ventricular internal diameter at diastole; RV S' = right ventricular systolic 
excursion velocity; TV = tricuspid valve; YNHHS = Yale-New Haven Health System.  
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Fig. 3 | External performance evaluation. Multi-task evaluation of PanEcho on two external 
echocardiography datasets, EchoNet-LVH (blue) and EchoNet-Dynamic (orange). Error bars and 
values in parentheses represent bootstrapped 95% confidence intervals. (a) For classification 
tasks, receiver operating characteristic curves are presented. The grey dashed line represents the 
performance of random guessing. * = moderate or greater. (b) For regression tasks, normalized 
MAE (using the mean of ground truth measurements) is visually presented to account for varying 
scales and units. Raw MAE is also presented beside each task.  
AUC = area under the receiver operating characteristic curve; ED = end-diastolic; ES = end-systolic; IVSd = 
intraventricular septum thickness at diastole; LV = left ventricle; LVIDd = left ventricular internal diameter at 
diastole; LVIDs = left ventricular internal diameter at systole; LVPWd = left ventricular posterior wall 
thickness at diastole; MAE = mean absolute error. 
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Fig. 4 | Task-specific view relevance. Radar plots depicting the relative importance of each 
echocardiographic view for a given aspect of cardiovascular diagnosis. For each task, a 
normalized view relevance score is computed, where 1 indicates the most relevant view; 
presented view relevance scores are then averaged over all tasks falling under a given category in 
each subplot. Analysis is performed on the internal YNHHS test set using up to three videos 
from a given echocardiographic view per study. 
A2C = apical 2-chamber; A3C = apical 3-chamber; A4C = apical 4-chamber; A5C = apical 5-chamber 
PLAX = parasternal long axis; PSAX = parasternal short axis; RV = right ventricle; YNHHS = Yale-New 
Haven Health System. 
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