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Abstract

Alzheimer’s disease encompasses multiple biological scales, spanning molecular factors,
cells, tissues, and behavioral manifestations. The interplay among these scales in
shaping the clinical phenotype is not yet fully comprehended. In particular, there is
great interest in understanding the heterogeneity of the clinical aspects of AD in order
to improve treatment and prevention, by targeting those aspects most susceptible to the
disease. Here we employed a systems biology approach to address this issue, utilizing
multilayer network analysis and deep phenotyping. This integrative analysis
incorporated genomics, cerebrospinal fluid biomarkers, tau and amyloid beta (Aβ) PET
imaging, brain MRI data, risk factors, and clinical information (cognitive tests scores,
Clinical Dementia Rating and clinical diagnosis) obtained through the ADNI
collaboration. Multilayer networks were built based on mutual information between the
elements of each layer and between layers. Boolean simulations allowed us to identify
paths that transmit dynamic information across layers. The most prominent path that
significantly predicted the average cognitive phenotype included the PET radiotracer
fluorodeoxyglucose (FDG) in the posterior cingulate. Combinations of different
symptomatic variables, mainly related to mental health (depression, mood swings,
drowsiness) and vascular features (hypertension, cardiovascular history), were also part
of the paths explaining the average phenotype. Our results show that integrating the
flow of information across biological scales reveals relevant paths for AD, which can be
subsequently explored as potential biomarkers or therapeutic targets.

Author summary

Complex diseases such as Alzheimer’s Disease (AD) involve a diverse array of biological
processes. In our investigation, we undertook a systems biology approach to AD using
network analysis and deep phenotyping within a prospective cohort of patients,
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incorporating clinical, imaging, genetics, and omics assessments. The gene, molecular
and imaging paths explained variation in central nervous system damage, and in metrics
of disease severity. The elucidation of multilayer paths in this context provides insights
into the diverse phenotypes of the disease and holds the potential to improve
understanding of its pathogenesis.

Introduction 1

Alzheimer’s Disease (AD) is a progressive, degenerative brain disease characterized by 2

loss of function and death of nerve cells. The disease is defined by the presence of 3

amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain [1]. Abnormal 4

deposits of these two proteins have been seen to form aggregates and inclusions, 5

de-structuring the brain architecture. AD is the most common form of dementia, 6

accounting for 60-80% of all cases. Accurate diagnosis is possible in vivo using 7

biomarkers [2–4]. Although early molecular markers exist, even in plasma [5], there 8

remains a strong interest in understanding heterogeneity at all levels in the clinical 9

manifestations of AD, both for treatment and prevention, to identify those individuals 10

at highest risk for the disease. To that end, a multimodal approach integrating different 11

omics data types (genomics, proteomics and metabolomics) and imaging, appears 12

especially useful [6]. Here we follow this approach using multilayer network analysis to 13

represent the flow of events underlying the phenotype of AD, including gene expression, 14

tissue damage, and clinical symptoms. The goal is to identify multimodal paths 15

associated with specific features of AD that will help explain the observed clinical 16

heterogeneity of the disease, and identify candidate paths for personalized interventions. 17

Modern complex network theory has shown to be a very useful tool for 18

comprehending the intricate architecture of biological processes. It is not sufficient to 19

identify and classify the system’s constituent parts to fully comprehend complex 20

biological systems; understanding the interactions between those elements is also 21

necessary [7, 8]. However, it can be challenging to evaluate the interaction patterns and 22

functional architecture of biological systems due to the nontrivial nature of those 23

interactions, the limited statistical power of clinical data, and the inherent nonlinearities 24

in the dynamics of individual elements. 25

In spite of those difficulties, some studies have already shown the usefulness of 26

multilayer networks to help improve our understanding of disease pathogenesis. 27

Multilayer networks have been used, for instance, to directly link the genomic layer with 28

the phenotypes in different types of cancer [9]. In a different approach, a topological 29

analysis of a bipartite network linking drugs and proteins showed an overabundance of 30

drugs targeting the same proteins, suggesting more functional drugs for more diverse 31

targets [10]. Multilayer network analysis has also been applied to a cohort of multiple 32

sclerosis patients, enabling the identification of genetic, protein, and cellular paths 33

explaining variation in central nervous system damage and disease severity metrics, and 34

highlighting their potential as biomarkers [11]. Specifically in Alzheimer’s disease, a 35

multidimensional network framework enabled detection of the disease with 90% 36

accuracy, revealing unique insights into disease heterogeneity through identification of 37

similar subtypes with diverse biomarker profiles [12]. 38

In order to better understand the relationship between endotype and phenotype, our 39

strategy focuses on connecting the microscopic and macroscopic dimensions of AD. Our 40

approach enables us to integrate all available biological scales through a multilayer 41

network that allows a multi-domain analysis of a wide variety of AD features. This form 42

of analysis is useful for identifying how the disease phenotype is manifested at different 43

levels, so that new treatment horizons may be explored and approached. Our project is 44

hypothesis-based, aiming at using real-world data to evaluate our hypothesis and 45
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uncover a plausible explanation. 46

Our approach is divided in the following steps. First, we construct networks for each 47

of the biological layers individually, using mutual information as the criterion to connect 48

elements of each layer. Next we identify the connections between layers in order to 49

obtain a multilayer network. An unbiased analysis of the network connectivity reveals a 50

modular structure that supports the hypothesis that a hierarchy exists among the 51

different biological layers. Finally, we identify paths and key drivers for AD phenotype 52

expression. To that end, we use dynamical Boolean simulations to calculate the shortest 53

paths of information transmission that lead to the phenotype layer. The variables most 54

commonly present in those paths can be considered predictors of the phenotype, 55

shedding light on how the different scales interact to produce this complex disease, and 56

potentially enabling its diagnosis. 57

Materials and methods 58

Patients 59

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort was used in 60

order to create the network [13]. Specifically, we used data on patients between the ages 61

of 55 and 90 for over a decade at 57 sites in the US and Canada. The cohort included 62

1776 participants, of which 888 were defined clinically as MCI patients, 348 were AD 63

patients, and 540 were healthy controls. The features used to implement the multilayer 64

network included: MRI, PET scans, CSF/plasma proteomics, genetic information, risk 65

factors, cognitive tests and diagnosis assessment. 66

Genetic layer 67

This layer contains genetic information such as APOE and TOMM40 alleles [14], 68

Polygenic Hazard Score (PHS) and Cumulative Incidence Rate (CIR). The genetic 69

network, as well as the rest of the individual networks, can be seen in Fig 6, where 70

nodes represent variables and the edges represent the mutual information between pairs 71

of variables. 72

The dataset contains three variables in particular that refer to the APOE gene: the 73

individual copies APOE A1 and APOE A2, for which the number refers to the type of 74

allele that forms it, and APOE, that represents the amount of E4 alleles present in the 75

individual, which can be 0, 1 or 2. For example, if a subject has APOE A1 = 2 (has 76

allele E2) and APOE A2 = 4 (has allele E4), then APOE = 1 (one E4 allele), 77

indicating the individual is heterozygous for the E4 allele. 78

The polygenic hazard score is a quantity based on a combination of more than 30 79

genetic variants created for the quantification of AD dementia age of onset. Several 80

SNPs were examined for their association with AD, then a stepwise Cox proportional 81

hazard model was applied to choose the SNPs that improved the model. Finally, the 82

vector product between the genotype for the SNPs and the AD-incidence rates provides 83

quantitative estimates of the annualized (cumulative) incidence rate [15]. For this 84

reason, we decided to also add the Cumulative Incidence Rate (CIR) to the genetic 85

layer, even though it could be considered a risk factor, because it is closely related to 86

PHS. Importantly, PHS was associated with in vivo biomarkers of AD pathology such 87

as reduced CSF Aβ42 and elevated CSF total tau across the AD spectrum (in older 88

healthy controls and dementia individuals) [16]. 89
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Molecular layer 90

For both Aβ and tau, CSF as well as plasma samples where used in order to extract the 91

subjects’ measures. For Aβ, two types of measures where used: Aβ42 and the ratio 92

Aβ40/Aβ42. As for tau, both tau and phosphorylated tau are measured. Other 93

molecular measures are amyloid precursor protein (APP); β-secretase, an enzyme that 94

participates in the APP to Aβ42 pathway, and even though it is part of the genetic 95

information of the cells, telomere length (TL) is also considered a molecular biomarker, 96

since it does not really act as a gene but a protection of the genetic material, thus a 97

protection of the cells functions and regulations. There is also a variable that represents 98

the ratio between TL and the Single Copy Gene ratio (QPCR), another measure for TL. 99

PET layer 100

Acquisition and standardized preprocessing steps of MRI and PET data in ADNI have 101

been reported previously and are described in detail on the ADNI website [17]. Only 102

the variables that have the largest relevance in the development of the disease are 103

considered. Braak stages were used for tau [18], and the Landau signature was used for 104

FDG, which included the following regions: right and left angular gyrus, bilateral 105

posterior cingulate, and right and left inferior temporal gyrus [19]. Finally, regions used 106

for Aβ were: anterior cingulate cortex, isthmus cingulate cortex, posterior cingulate 107

cortex, inferior frontal gyrus (pars opercularis, pars triangularis, and pars orbitalis), 108

lateral orbitofrontal cortex, medial orbitofrontal cortex, middle frontal gyrus (caudal 109

and rostral middle frontal), superior frontal gyrus, frontal pole, inferior temporal gyrus, 110

middle temporal gyrus, superior temporal gyrus (superior temporal and transverse 111

temporal), fusiform gyrus, entorhinal cortex, parahippocampal gyrus, lingual gyrus, 112

lateral occipital gyrus, temporal pole, insula, inferior parietal gyrus, supramarginal 113

gyrus, precuneus, superior parietal gyrus, precentral gyrus, postcentral gyrus, 114

paracentral gyrus and cuneus [17]. 115

MRI layer 116

Cortical thicknesses from two signature AD regions were taken into account. First, 117

Dickerson’s signature, which refers to brain regions known to be highly atrophied due to 118

AD, making them susceptible to thinning in subjects who might be in very early stages. 119

Therefore, tracking the thickness of these regions years before symptoms appear could 120

help in early detection and intervention. It encompasses all parietal as well as frontal 121

regions and the supramarginal [20]. The second one, Jack signature, involves the 122

entorhinal, inferior temporal, middle temporal, inferior parietal, fusiform and precuneus 123

areas [21]. Cortical volume, thickness average, and standard deviation were used for all 124

those regions, and also total brain gray and white matter volume as well as CSF volumes. 125

Lastly, we also collected data from tensor based morphometry and atrophy measures. 126

Phenotype layer 127

This is considered to be the top layer of our multilayer model. On the one hand, we 128

have all the cognitive tests scores: Alzheimer Disease Assessment Scale (ADAS) [22], 129

Mini-Mental State Examination (MMSE) [23], Montreal Cognitive Assessment (MOCA), 130

the composite executive function score, composite language, memory and visuospatial 131

scores. On the other hand, there are also two diagnosis variables, which indicate the 132

level of dementia of the subject: the Clinical Dementia Rating (CDR) and the clinical 133

diagnosis [24]. It defines the group the subject belongs to: healthy controls, Mild 134

Cognitive Impairment (MCI) patients or AD patients. 135
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Risk Factors layer 136

This layer contains a variety of different aspects such as comorbidities, clinical history, 137

demographics, depression, and more. The information in the majority of these variables 138

is either binary (with a value of 0 or 1 representing if there is an absence or existence of 139

a given risk factor, respectively), or categorical, like gender (PTGENDER), 140

handedness (PTHAND) and marital status (PTMARRY ). Additionally, we also have 141

some quantitative measures such as birth year (PTDOBY Y ), years of education 142

(PTEDUCAT ), and features given by scores, such as the total modified Hachinski 143

score, which represents a sum of all modified Hachinski comorbidities. Hachinski scores 144

are a clinical tool to differentiate types of dementia. In particular, modified Hachinski 145

scores differentiate Alzheimer’s type dementia and other dementias [25]. 146

Data processing 147

The omics, imaging and clinical datasets were utilized to construct the multilayer 148

network, with each dataset corresponding to a layer within the network. The datasets 149

were scrutinized to address missing values and to determine which patients had data 150

available for each layer. Notably, no imputation techniques were employed in this study. 151

The patients were stratified into three groups: healthy, mild and severe, based on the 152

clinical diagnosis variable. 153

Multilayer network construction 154

Following the workflow proposed in [11], the first step in building the multilayer 155

network was to construct individual networks from each of the six datasets by 156

computing mutual information between nodes within each layer (mutual information 157

was preferred over linear measures of correlation to account for the nonlinear nature of 158

many biological processes). The networks within each layer were constructed separately, 159

to highlight their inherent differences and to make use of the maximum number of 160

available subjects for each dataset because not all subjects have data for all the layers. 161

Once the individual networks were constructed, features between layers were connected 162

using mutual information too, based on the information shown in Fig 8. However, not 163

all layers were interconnected due to a predetermined hierarchy applied to the system. 164

This resulted in a six-layer interconnected network, with each layer comprising features 165

derived from the original six datasets. The network construction process is illustrated in 166

Fig 5. Furthermore, a secondary network was then created by incorporating all six 167

datasets, employing linear correlation (Pearson coefficient) to establish the edge’s 168

directionality. This latter network was then used in the path analysis. 169

Calculation of correlation for edges 170

Mutual information is a nonlinear measure of the dependence between numerical 171

variables [26]. It is not limited to variables in real numbers or to linear relationships, so 172

the mutual information is more general than Pearson’s correlation coefficient [27]. 173

For discrete variables, mutual information is calculated using the binning method, 174

which consists in partitioning the supports of X and Y into bins of finite size [28]: 175

I(X;Y ) ≈
∑
ij

p(i, j) log

(
p(i, j)

px(i)py(j)

)
(1)

If nx(i) is the number of points from X that fall into the bin i (analogously for ny(j)), 176

n(i, j) is the number of points that fall in the intersection, and N is the total number of 177
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points (sample size), then: 178

px(i) ≈
nx(i)

N
py(j) ≈

ny(j)

N
p(i, j) ≈ n(i, j)

N
(2)

which leads to (1). 179

On the other hand, the multilayer network used for the path analysis was 180

constructed using Pearson correlation coefficient, that provides a measure of the 181

strength and direction of linear relationships and it is a value between -1 and 1. Both 182

measures were computed using the scikit-learn library in Python [29]. 183

Permutation test 184

We performed permutation tests to establish the statistical significance of the mutual 185

information and the Pearson coefficient quantifiers. To that end, we randomized the 186

data and calculated the statistics of interest for this new dataset for 1000 realizations, 187

leading to a null distribution of the quantifier. A significance level of α = 0.05 was 188

chosen, meaning that the true statistics must be larger (in the case of a one-tailed test) 189

or larger or smaller (in the case of a two-tailed test) than 95% of the randomized 190

measures to reject the null hypothesis. 191

Connectivity 192

The density or connectance of a network is the fraction of observed edges to the 193

maximum possible number of edges (without self-edges), which is 194(
n
2

)
= 1

2 |V |(|V | − 1) [30]. |V | is the order or number of nodes of a network and |E| is 195

the size or number of edges of a network. 196

d =
2|E|

|V | · (|V | − 1)
(3)

For a weighted network we use an adaptation of the previous expression, changing the 197

numerator to the sum of the edge weights. 198

d =
2
∑

v∈V,u∈V,u ̸=v weight(u, v)

|V | · (|V | − 1)
(4)

A subtype of multilayer network is the bipartite network: networks in which there 199

are two types of nodes, belonging to two distinct subnetworks Gi and Gj , in such a way 200

that edges can only connect nodes of different types. For this type of network, the 201

density has the following definition: 202

dbip =
|edge weights between Gi and Gj |

|Vi| · |Vj |
(5)

Note that in this case the maximum number of possible connections (denominator) is 203

|Vi| · |Vj | because each node i from Gi can be connected to all nodes j from Gj . 204

Path identification 205

Average shortest path length 206

We used Dijkstra’s algorithm to solve the single-source shortest paths problem in our 207

weighted graphs. This algorithm computes a minimal spanning tree, a tree-like 208

structure that connects the source node (the initial node, in which the path starts) to 209

every other node in the graph following the shortest path to each one. 210
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This method can be used to measure a statistic of interest for characterising a 211

network. In particular, the average shortest path length is given by the formula (6): 212

α =

∑
v,u∈V d(v, u)

|V |(|V | − 1)
(6)

where V is the set of nodes, |V | is the total number of nodes and d(v, u) is the length of 213

the shortest path between v and u. In the case of networks in which the weight 214

associated with the connections is not the distance that separates the nodes, but how 215

strong the connection between them is, we take the distance as the inverse of this 216

weight. Then, for a weighted network, the average shortest path length gives 217

information on how strong the connections between nodes are. 218

Boolean modeling 219

As described before [11], the method of path identification involved constructing a 220

combined six-layer network using Pearson correlation. Inspired by [31], Boolean 221

simulations were then employed to analyze the flow of information across the network, 222

with a particular focus on how perturbations affect nodes in different layers, especially 223

those related to the phenotype. The aim was to identify variations in paths that initiate 224

immune responses in individuals with AD. 225

Each element in the network, belonging to one of the six layers, is assumed to be 226

either active or inactive. The Boolean simulation starts in a random state, where each 227

element has a 50% chance of being active or inactive. At each iteration, the activation 228

status of the elements is updated based on the sum of their neighbors’ states (Fig 1). 229

The connections between the elements are either activating (positive) or inhibitory 230

(negative). To determine whether a node will be active or inactive in the next iteration, 231

each neighbour contributes a score based on the weight and sign of the corresponding 232

Pearson correlation. The total sum of the weights of the neighbours determines the 233

node’s activation status in the subsequent iteration. 234

Fig 1. Boolean dynamics. Boolean dynamics are implemented on the networks,
wherein the activation state of nodes undergoes changes determined by the cumulative
sum of edge weights from their direct neighbors, taking into account the signs of
connections as indicated by the Pearson coefficient: if the total sum is positive, the
node becomes active, otherwise it becomes inactive. In this example, node A starts out
inactive. Node B is active and is linked to node A by an edge with a negative
contribution of 0.3. On the other hand, node C, which is also active, contributes to the
activation of A positively with a weight of 0.5. In total, the contribution is 0.2, so node
A is activated. In the next step, A is active and contributes positively to the activation
of C, so C remains active. However, the contribution to node B is negative, so it
becomes inactive.

The simulation was conducted for 100 steps by updating the states of the elements 235

in each iteration. One node was selected as the input and manually switched between 236
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active and inactive states in a defined period (i.e., 10 iterations active, then 10 237

iterations inactive) to analyze how perturbations propagate through the network and 238

impact a given phenotype (output). To account for the stochastic nature of biological 239

systems and prevent the simulation from settling into a fixed state, noise was 240

introduced by assigning a probability for each element to change its state at each 241

iteration. Fig 2 illustrates the effect of noise on the system. A noise level of 5% was 242

chosen as it highlights differences in the cross-correlation of signals between nodes. In 243

the absence of any noise, many nodes remain inactive or active for most of the 244

simulation, resulting in high cross-correlations between nodes and masking the subtle 245

variations in connection strength. 246
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Fig 2. Impact of noise on the cross-correlation coefficient of signals between nodes in a combined network. In
the absence of noise (0%), the majority of cross-correlation values approached 1, making it challenging to rank node pairs
based on connection strength. However, with 5% noise, the cross-correlation values exhibited greater variation, enabling easier
identification of paths between a selected source and target.

Following the simulations, a temporal cross-correlation function was computed 247

between all pairs of nodes using the same measure of similarity as in [31]. The highest 248

cross-correlation, potentially occurring at a non-zero lag time, was identified, and its 249

reciprocal was assigned as a weight to the edges within the existing network. The high 250

correlation values corresponded to low weights, and if there was no edge in the original 251

network, no edge was added to the new network. The target phenotype was chosen, and 252

the most efficient paths between it and the fixed source were identified based on the 253

lowest path score, which was defined as the total sum of the weights (inverse maximum 254

cross-correlations) of the edges connecting the source and target (Fig 3). The path score 255

prioritized paths with both a minimal number of steps and high cross-correlations 256

between nodes within the path. Dijkstra’s algorithm was employed to pinpoint paths 257

with the lowest path scores. Simulations were carried out for every conceivable pair of 258

inputs and outputs to investigate the flow of information throughout the entire network, 259

offering insights into the underlying pathology in AD. 260

To test the consistency of the results, we performed negative controls of the paths by 261

permuting the six-layer network constructed with the Pearson correlation, as illustrated 262

in Fig 4. This process involved swapping edges between node pairs in the network, and 263

it was repeated 100 times. Importantly, an edge swap was only performed if it did not 264

result in two edges connecting the same node pair. This approach maintained the 265

original network’s degree distribution. Additionally, the weights associated with each 266

edge were permuted. The code to perform the permutation of the edges has been 267

modified from the code published on [32]. Each edge in the original network underwent 268

this edge swapping technique 10 times. Once the permutations were completed, the top 269

paths for each network were identified using the same method as before. 270
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Fig 3. Calculation of the path score. The cross-correlation coefficient is computed
by assessing the signals for each connected node pair. A path score is then determined
for all possible paths, defined as the sum of the reciprocals of the cross-correlation
coefficients between consecutive node pairs along a specific path.

Results 271

A cross-sectional study was performed by integrating data from the ADNI cohort 272

(https://adni.loni.usc.edu/) at different scales: MRI, PET scans (including Aβ, tau and 273

FDG PET), CSF/plasma proteomics, genetic information, risk factors and cognitive 274

tests and diagnosis assessment conforming the phenotype (Fig 6). The results center 275

around the identification of paths connecting these biological layers. The following 276

paragraphs outline how these paths were discovered, and which sources are more 277

strongly linked to the phenotype. The initial step provides descriptive details about the 278

data, followed by the construction of the networks. Subsequently, Boolean simulations 279

are executed, and ultimately, the most significant paths and nodes are chosen. 280

Comprehensive phenotypic profiling: multi-omics, imaging, and 281

clinical data in AD patients 282

The subjects for the study were classified, using exclusively clinical criteria, as healthy 283

controls (n=622), subjects with MCI (n=807), or subjects with mild AD (n=533). As 284

shown in table 1, the mean age of the 3 groups was equivalent at approximately 74 285

years. There were an approximately equal number of men and women in the normal 286

control, but there were more men than women in the MCI and AD groups. More than 287

half of the patients in the AD group were APOE4 carriers, while the controls were less 288

than 30%. Data corresponding to the concentration of cerebrospinal fluid biomarkers 289

Aβ42, tau and p-tau were collected from the University of Pennsylvania Alzheimer’s 290

Disease Clinical Core dataset.

Table 1. Characteristics of the ADNI cohort

Groups Controls (n=622) MCI (n=807) AD (n=533)
Age 74± 7 74± 8 75± 8
Female, % 54.5 39.1 43.6
Age at disease onset – – 76± 8
APOE ϵ4 carriers, % 29.4 48.0 64.8
Aβ42, pg/ml 203± 50 174± 53 143± 41
tau, pg/ml 65± 31 86± 52 122± 60
p-tau, pg/ml 32± 18 38± 21 50± 29

291
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Fig 4. Network permutation for negative controls. In this example, in the first
permutation, the edges (b,c) and (d,e) were exchanged with the edges (b,d) and (c,e).
For the second permutation, the edges (a,e), (b,c) were swapped with the edges (a,c)
and (b,e). In the third permutation, the top network’s edge swap was applied first,
followed by the middle network’s edge swap: (a,b), (b,c) and (d,e) were exchanged for
(a,c), (b,d) and (b,e). Three possibilities were considered when determining if the paths
from the original network appeared in the permuted networks. In the first permutation,
the path existed in the permuted network and was also identified as a top path. In the
second permutation, the original path existed in the permuted network but was not
identified as a top path. Finally, in the third permutation, the original path did not
exist in the permuted network at all.

Multilayer networks in AD 292

In order to create networks for each of the six layers, connections between pairs of 293

elements within each layer were established using mutual information, as explained 294

in [11]. Node pairs within the same layer were connected to one another with a weight 295

equal to the normalized mutual information between them. A threshold was 296

implemented to examine whether the correlation for a given pair was strong enough to 297

establish an edge. Specifically, a node pair’s actual mutual information value was 298

compared to a surrogate distribution of mutual information values derived from random 299

permutations of the data to determine the threshold. 300

The individual genetic, molecular and phenotype networks have few variables, due to 301
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prior selection performed to retain only those features thought to have an appreciable 302

effect on the diagnosis of AD (Fig 6). Genetic and phenotypic networks are less 303

connected than the molecular network: the connections in the latter have a higher 304

associated weight. In turn, the PET and MRI networks are larger in size due to the 305

numerous brain regions contained in the dataset. The nodes in these networks represent 306

functionally connected regions, reflecting relationships in terms of metabolic processes 307

or neuronal activity. On the other hand, the risk factor network also has a large number 308

of nodes, but the weight of their connections is generally low, which gives us an idea of 309

how little dependence there is between the variables. This is to be expected given the 310

nature of this dataset: risk factors range from the patient’s gender to whether they have 311

respiratory problems, therefore such weak correlations between variables is not 312

surprising. 313

Fig 5. Illustration of the multilayer network construction.

Our approach to the multilayer network hierarchy is originally hypothesis-based, 314

rather than data-based: each individual network forms a layer or level in the structure 315

of this model, representing a different biological scale (Fig 7). The genomics layer sits at 316

the bottom of the hierarchy and is connected with the molecular layer, constituting the 317

microscopic substrate of the disease. The tissue imaging layers (PET and MRI) are the 318

central functional layers, which, connected to each other and forming a bridge between 319

the microscopic (genome and molecules) layer and the clinical output. The risk factor 320

nodes form a loosely connected cloud around the main structure, although some of their 321

connections are strong: this is the case of the year of birth (age) and gender of the 322

patients. This analysis thus produced a network of six connected layers, where each 323

layer contains features (variables) from each of the six original datasets (Fig 7). Here, 324

connections between layers that do not conform to the proposed structure have been 325

eliminated, as the hierarchy that we apply to the system is for representation only. In 326

the rest of the paper we consider the global network without a predefined hierarchy, to 327

avoid possible biases. 328
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Genetic PETMolecular

MRI Risk Factors Phenotype

Fig 6. Individual networks. The data from each layer is taken from the ADNI
cohort and used to create networks, with nodes representing the dataset’s elements
(genetics, molecular, PET, MRI, risk factors, and phenotype) and edges representing the
mutual information between element pairs across all subjects. See high resolution
networks at https://dsb-lab.github.io/networks/

First we proceeded to examine whether the connectivity of the global network 329

reflects the biological organization into layers discussed above. To that end, node pairs 330

were connected to each other irrespective of their layer, without a predefined hierarchy, 331

and the connectance matrix between two layers i and j was calculated as follows: 332

Cij =

{
di, if i = j

dbipij , if i ̸= j
(7)

Here d is the standard connection density within a layer, as defined by (4) in the 333

Materials and Methods section, and dbip is the connection density of the bipartite 334

network where each of two layers is one of the two node sets, as defined by (5). The 335

latter measure is used because in the case of off-diagonal elements (different layers), we 336

are only interested in how connected the nodes of one layer are to those of the other, 337

but not with nodes of their own layer. 338

The resulting connectance matrix is shown in Fig. 8. A significant level of network 339

modularity was discovered by this comparison of connections within and between layers, 340

confirming the existence of an underlying multilayer structure: the connectivity within 341

individual layers is higher than that between different layers. With the exception of risk 342

factors, features within a level tend to be more correlated than between levels. The 343

most prominent example of this is the MRI layer. The nodes in this layer are so closely 344

related to each other because of the similarity between all the variables, representing 345

levels of atrophy in different parts of the brain, as opposed to, for example, the nodes in 346

the molecular layer which mostly represent concentrations of different proteins. 347
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Fig 7. Multilayer network. Following a hierarchy that connects each layer successively, starting with the genomics layer
and working up to the phenotypic (clinical) layer, individual networks are created and linked together using mutual
information once again. See high resolution image at https://dsb-lab.github.io/multilayer net/.

Dynamic network analysis identifies paths associated with 348

phenotype 349

To obtain a functional view of the information flow across layers, we aimed to integrate 350

all six layers into paths that reflect network dynamic interactions. We constructed a 351

single network comprising all layers using linear (Pearson) correlations that distinguish 352

between stimulatory or inhibitory edges, depending on the correlation value being 353

positive or negative, respectively. To identify the causal logic backbone of the network, 354

we conducted logic (Boolean) simulations. These simulations use knowledge of 355

activating and inhibiting relationships between nodes while ignoring the exact 356

functional reactions between the nodes, thus providing a qualitative description of the 357

system [31]. Nodes are either active or inactive, and their states are updated 358

synchronously in each iteration of the simulation, depending on the activation states of 359
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Fig 8. Network densities within and between layers. The connectance matrix
was calculated using the expression in (7).

their direct neighbors and the weights of the corresponding connections. 360

Our next objective was to investigate how dynamic changes in a specific input 361

propagate through the network and ultimately impact a given phenotype. We achieved 362

this by performing Boolean simulations, as described above, where the input node was 363

periodically switched between active and inactive states. The responses of all nodes in 364

the network were then measured by computing the temporal cross-correlation function 365

between their time-varying state and the dynamic input signal. We then identified the 366

paths in the network with the highest overall temporal cross-correlation between their 367

signals, which indicate how information flows from the input to the output. The paths 368

were chosen based on the lowest path score, which was defined as the total sum of the 369

weights (inverse maximum cross-correlations) of the edges connecting the source and 370

target [31]. While these paths may not necessarily reflect physical interactions among 371

nodes, they represent groups of nodes that co-vary statistically more strongly with each 372

other than the rest of the network. 373

For each combination of inputs and outputs, we selected the top ten paths with the 374

highest joint cross-correlation values between their constituent nodes, resulting in a 375

total of 30,000 combinations. Fig 9, 10, 11, 12 and 13 show these paths for the five 376

inputs (genetic, molecular, PET, MRI and risk factors) and outputs (phenotype) pairs 377

for AD patients. Darker color represents more connections among the nodes. 378

To evaluate the specificity of the Boolean simulations, we randomly permutated the 379

network connections as described in the Materials and Methods section, to identify 380

negative control paths that were then compared to those identified in the original 381

networks. We focused on paths that appeared in less than 1% of the permutations. Out 382

of the 30,000 total paths identified from AD patients, 17,877 did not appear at all in 383

100 realizations of the simulations in the permutated paths. The top paths (those that 384

passed the test for negative controls) are shown in Fig 9, 10, 11, 12 and 13 for each 385

input (genetic, molecular, PET, MRI and risk factors) and output (phenotype) pair. All 386

variables with their acronyms are listed in the SI file. The method for path 387

identification and network permutation is illustrated in the Materials and Methods 388
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Fig 9. Path analysis in AD patients from the genetic layer. Depictions of the
multilayer paths identified through Boolean simulations with the genetic layer as the
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color-coded to reflect the node’s degree, indicating the frequency of its appearance in a
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section (see Fig. 4). 389

Path analysis 390

We now discuss the top 10 paths with the highest joint cross-correlation values. In what 391

follows, the information flows along each path from left to right, and the perturbation 392

starts at the first node. In the AD cases, the paths more commonly found are: 393

• APOE A1 (copy 1 of APOE gene) → ANGULL01 FDG (globally normalized 394

CMRgl from left angular gyrus) → AXRASH (rash) → any node of the phenotype 395

layer, when the input is applied to the genetic layer (Fig. 9). 396

• UPKelec TAU (CSF total Tau using the fully automated Roche Elecsys 397

immunoassay) → ANGULL02 FDG → APP (CSF amyloid precursor protein) → 398

ADSP VSP (harmonized composite visuospatial score), ADSP EXF (harmonized 399
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Fig 10. Path analysis in AD patients from the molecular layer. Depictions of
the multilayer paths identified through Boolean simulations with the molecular layer as
the starting point. The top paths, meeting criteria for negative controls, are presented
for each input (molecular) - output (clinical phenotype) pair. Nodes within each layer
are color-coded to reflect the node’s degree, indicating the frequency of its appearance
in a path as a percentage of the total paths. For detailed high-resolution paths, please
refer to https://dsb-lab.github.io/network paths/.

composite executive function score), ADSP MEM (harmonized composite memory 400

score), MMSE (Mini Mental State Examination) and MOCA (Montreal Cognitive 401

Assessment test), when the input is applied to the molecular layer (Fig. 10). 402

• CINGPSTR12 FDG (globally normalized CMRgl from right posterior cingulum 403

cortex) → AXCRYING (crying) - AXDPMOOD (depressive mood) → 404

ADSP EXF, when the input is applied to the PET layer (Fig. 11). 405

• ST44CV (cortical volume of left parahippocampal) → AXDPMOOD - GDS 406

(Geriatric Depression Score) → MOCA, when the input is applied to the MRI 407

layer (Fig. 12). 408

• AXELMOOD (elevated mood) - AXCRYING - AXDPMOOD → ADSP MEM, 409

when the input is applied to the risk factor layer (Fig. 13). 410

When perturbing sources belonging to the genetic layer (reflecting genetic variability 411

contributing to the risk of developing AD), we see that there is no transition through all 412

the intermediate layers of the network: molecular nodes scarcely appear in the paths, 413

and no node from the MRI layer appears (Fig. 9). Perturbations were directly linked to 414

the PET and risk factor layer, whose nodes represent aspects of the patient’s medical 415

history and age, and these to changes in clinical outcomes. Perturbations of the 416

molecular network (representing changes in protein concentration) have a direct 417
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Fig 11. Path analysis in AD patients from the PET layer. Depictions of the
multilayer paths identified through Boolean simulations with the PET layer as the
starting point. The top paths, meeting criteria for negative controls, are presented for
each input (PET) - output (clinical phenotype) pair. Nodes within each layer are
color-coded to reflect the node’s degree, indicating the frequency of its appearance in a
path as a percentage of the total paths. For detailed high-resolution paths, please refer
to https://dsb-lab.github.io/network paths/.

influence on the PET layer, in particular on FDG signal for the angular and cingulum 418

posterior nodes, and are less related to impact MRI nodes, although some of these 419

represent neurodegeneration like FDG PET (Fig 10). For both genetics and molecular 420

nodes, we found little information flow coming from the phenotype layer. 421

The number of paths increases considerably when we have perturbations at the 422

imaging level (representing changes in protein concentration in the case of PET and 423

changes in brain tissue degeneration in the case of MRI) (Figs. 11 and 12) and at the 424

risk factor level (Fig. 13). Moreover, we can see that the influence of these paths on the 425

phenotype is significantly higher. When the origin of the input is at the PET layer, the 426

input nodes have little connectivity with the genetic layer nodes. In fact the PET nodes 427

are mainly related to the risk factor layer and, through it, to the MRI nodes or directly 428

to the phenotype nodes. The case of MRI is analogous: there are not so many 429

connections with the deeper layers (genetic and molecular). The importance of the MRI 430

nodes is more distributed, i.e. they appear with similar frequency in the paths, while we 431

see that the relationship with the PET layer is quite centred on the nodes: CMRgl of the 432

angular gyrus and posterior cingulum cortex. The indirect interaction with risk factors 433

is also notable, highlighting some specific nodes related to symptomatology, which are 434

discussed below. This indirect interaction is also found in the opposite direction, when 435

the source belongs to the risk factor layer. In this case, however, we do not see a strong 436

influence on the genetic layer. This is consistence with expectations: genes can be 437

expected to influence the occurrence of some risk factors, but logically these factors 438

cannot change the genetic information of the person, which is determined from birth. 439

November 14, 2024 17/27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317427doi: medRxiv preprint 

https://dsb-lab.github.io/network_paths/
https://doi.org/10.1101/2024.11.16.24317427
http://creativecommons.org/licenses/by-nc-nd/4.0/


TOMM40_A2

BACE
UGOT_PLASMAPTAU

TL
TS_RATIO_ADJ

TS_RATIO

1

# paths

49
25
8
8
7

CINGPST07_FDG
ANGULR04_FDG

CINGPSTL01_FDG
ANGULL01_FDG
ANGULR03_FDG

116
53
27
27
23

CEREB_TCC
CEREB_TCV

ST32CV
ST31CV
LHIPPO

152
129
127
125
120

AXDPMOOD
AXDIARRH
HMSCORE
AXCRYING
AXENERGY

1401
462
375
293
257

335
328
319
309
305

UW_EF
UW_MEM

MOCA
ADSP_LAN

MMSE

Top nodes

Total # of paths: 3226

10%

0%

43%

0%

8%

0%

4%

0%

2%

0%

Phenotype

Risk Factors

MRI

PET

Molecular

0,03%

0%

Genetic

% of total paths

LH
MEDIAL
ORBITO
FRONTAL
AV45

LH
PRECENTRAL

AV45

TOMM40_A2

RH
INFERIOR
TEMPORAL

AV45

LH
ROSTRAL
ANTERIOR
CINGULATE

AV45

AXDROWSY

LH
CAUDAL
MIDDLE
FRONTAL
AV45

RH
SUPERIOR
TEMPORAL

AV45
RH

PRECUNEUS
AV45

PARIETAL
AV45

SUMMARY
SUVR
WHOLE

CEREBNORM
AV45

RH
POSTERIOR
CINGULATE

AV45

RH
CAUDAL

ANTERIOR
CINGULATE

AV45

LH
PARS

ORBITALIS
AV45

LH
TRANSVERSE
TEMPORAL

AV45

RH
PARS

TRIANGULARIS
AV45

RH
SUPRAMARGINAL

AV45

ST56CV

LH
ISTHMUS
CINGULATE

AV45

ST71SV

LH
ROSTRAL
MIDDLE
FRONTAL
AV45

RH
LATERAL
ORBITO
FRONTAL
AV45

LH
INSULA
AV45

RH
ENTORHINAL

AV45

ST60CV

RH
CAUDAL
MIDDLE
FRONTAL
AV45

ST83CV

RH
LINGUAL
AV45

ST90CV

ST26CV

ST32CV

UGOT
PLASMA
PTAU

LH
LATERAL
ORBITO
FRONTAL
AV45

RH
SUPERIOR
PARIETAL
AV45

CEREBELLUM
GREY

MATTER
AV45

RH
TEMPORAL

POLE
AV45

ST52CV

ST119CV

ST99CV

LH
ENTORHINAL

AV45

ST31CV

ST55CV

MH11HEMA AXVOMIT

ST29SV

AXCONSTP

MH17MALI

MH7DERM

CINGPST07
FDG

ST103CV

ST12SV

HMSOMATC

RH
INFERIOR
PARIETAL
AV45

AXWANDER

HCI_2014
FDG

ST91CV

CINGPSTL02
FDG

LH
PARS

TRIANGULARIS
AV45

AXANKLE

RH
FRONTAL
POLE
AV45

LH
CUNEUS
AV45

LH
TEMPORAL

POLE
AV45

LH
FRONTAL
POLE
AV45

BACE

IPCA

ST59CV

ST118CV

RHIPPO

ST94CV

TEMPORAL
AV45

EUR
AB42/40

TBM_2

AXRASH

ST35CV
ST85CV

TBM_1

ST40CV

ST57CV

ST88SV

LHIPPO

R_HIPPO

ST44CV

ANGULR03
FDG

ST115CVST74CV

ST24CV
ST111CV

ST116CV

LH
LATERAL
OCCIPITAL

AV45

MHPSYCH

PTGENDER

GDS

L_HIPPO

UPKelec
TAU

CEREB
WHITE

TMPINFL10
FDG

HMSCORE

AXDPMOOD

CEREB
GRAY

CINGPSTL01
FDG

AXCOUGH

AXELMOOD

TMPINFL04
FDG

ANGULR04
FDG

ANGULR02
FDG

TMPINFR06
FDG

ANGULR01
FDG

TS_RATIO

AXENERGY

TL

TS
RATIO
ADJ

ANGULL01
FDG

ANGULL02
FDG

AXCRYING

AXDIARRH

CEREB_TCB

ADAS13

ADAS11

ADSP_VSP

ADSP_LAN

AXBREATH

ADSP_MEM

AXPALPIT

ADSP_DX

MEAN
METAROI

PONSVERMIS

FUJI_AB42
EUR_AB42

CDR

PTDOBYY

AXINSOMN

UPplasma
AB42

AXABDOMN AXDRYMTH

MOCA

MH5RESP

MH18SURG

AXDIZZY

UW_MEM

CINGPST09
FDG

AXSWEATN

ADSP_EXF
UW_EF

AXHDACHE

MMSE

CEREB_TCC

CEREB_TCV

Fig 12. Path analysis in AD patients from the MRI layer. Depictions of the
multilayer paths identified through Boolean simulations with the MRI layer as the
starting point. The top paths, meeting criteria for negative controls, are presented for
each input (MRI) - output (clinical phenotype) pair. Nodes within each layer are
color-coded to reflect the node’s degree, indicating the frequency of its appearance in a
path as a percentage of the total paths. For detailed high-resolution paths, please refer
to https://dsb-lab.github.io/network paths/.

In general, our results show that as we move towards the highest-scale layers (the 440

imaging layers and risk factors layer), the paths have very little tendency to return to 441

the genetic and molecular layers, which shows the importance of considering AD as a 442

multiscale disease, with the layers connected with different strengths and where 443

information flows from the genetic and molecular layers, having increasing influence on 444

the phenotype as we move up the layers. 445

Contrary to what might be expected, the concentrations of Aβ and tau do not 446

appear frequently in the paths, thus their influence on the system is very low. It is also 447

important to highlight the presence of the angular gyrus and posterior cingulum cortex 448

FDG nodes from the PET layer in most of the paths, almost independently of the layer 449

to which the source belongs. Also noteworthy is the influence of the patient symptoms, 450

whose variables are found in the risk factor layer. These include: rash, crying, and 451

elevated and depressed mood, among others. 452

The analysis shown above could provide information on the modifiable risk factors 453

that can be used in preventive lifestyle modification trials. In order to detect at which 454

levels these factors have an impact, we have depicted in Fig. 14 the 20 shortest paths 455

that arise when the origin is a risk factor node. The main sources for these paths are 456

drowsiness (AXDROWSY), hypertension (HMHYPERT), crying (AXCRYING), 457

cardiovascular history (MH4CARD) and musculoskeletal pain (AXMUSCLE). It can be 458

seen that only the risk factor layer is involved and is directly related to the target, 459

which is the phenotype layer. In particular, other risk factor nodes related to the 460

sources appear, for example low energy (AXENERGY), related to drowsiness and 461
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Fig 13. Path analysis in AD patients from the risk factors layer. Depictions of
the multilayer paths identified through Boolean simulations with the risk factors layer
as the starting point. The top paths, meeting criteria for negative controls, are
presented for each input (risk factors) - output (clinical phenotype) pair. Nodes within
each layer are color-coded to reflect the node’s degree, indicating the frequency of its
appearance in a path as a percentage of the total paths. For detailed high-resolution
paths, please refer to https://dsb-lab.github.io/network paths/.

muscle pain, or depressive mood (AXDPMOOD), related to crying. No nodes from the 462

genetic, molecular or imaging layers appear in these paths. Vascular health and muscle 463

pain are related to executive and visuospatial function, while variable crying is also 464

related to executive function and memory. 465

Discussion 466

Our study addresses the complexity of AD from a holistic perspective, exploring the 467

connections between the genetic, molecular, and clinical factors that underlie this 468

pathology. Using a systems biology approach, we have integrated genomics, brain 469

imaging, and clinical data to analyse AD. We use multilayer network analysis and deep 470

phenotyping to unravel the complex mechanisms underlying the disease. Our research 471

reveals significant connections between different biological features and the clinical 472

manifestation of the disease. These findings could significantly improve our 473

understanding of AD. 474

Results obtained in other studies support our finding. For instance, there is a clear 475

influence of metabolic changes on the disease in the regions of the angular gyrus and 476

posterior cingulate cortex [33]. The relationship of these areas with the cognitive 477

dysfunction associated with AD is probably related to their involvement in various 478

cognitive processes such as attention, visuospatial processing, and memory. This is 479
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(a) Drowsiness (b) Hypertension (c) Crying

(d) Cardiovascular history (e) Musculoskeletal pain

Fig 14. Selection of the top paths when the source is a risk factor node. The
top 20 shortest paths are presented for each input (risk factors) - output (clinical
phenotype) pair. Nodes in the risk factor layer are shown in yellow and those in the
phenotype layer in blue. The paths for a particular source out of the five chosen are
shown in red: drowsiness, hypertension, crying, cardiovascular history and
musculoskeletal pain. For detailed high-resolution paths, please refer to
https://dsb-lab.github.io/risk paths/.

consistent with the brain hypometabolism observed in Alzheimer’s disease 480

patients [34–37]. [38] explores how restoring glucose metabolism in the hippocampus can 481

improve cognitive function. In addition, neuronal dysfunction in these areas may 482

contribute to the manifestation of emotional symptoms, such as depression and mood 483

swings [39,40]. Cardiovascular history has also been associated with an increased risk of 484

cognitive decline and dementia [41], including Alzheimer’s disease and FDG 485

hypometabolism in AD-sensitive regions [42,43]. Several observational studies have 486

shown the potential beneficial role of antihypertensive treatment in preventing cognitive 487

decline. However, these associations are complex and not fully elucidated [44]. 488

Interestingly, Aβ and tau levels in the CSF are not very relevant in our paths: they 489

do not show much direct association with cognition, probably because their effect is 490

reflected much more in PET and MRI nodes and these are the ones that affect 491

phenotype the most, making the effect of molecular nodes very diffuse, as other studies 492

have pointed out [45]. However, given that APP levels in CSF represent the origin of 493

some of the identified paths, it is interesting to focus prevention on reducing their 494

proliferation. Therapies specifically aimed at modulating the activity of those elements 495

have proved futile, probably because they are carried out when cognitive symptoms are 496

already present and their effect cannot be reversed [46]. On the other hand, our data 497

suggests that early detection of these biomarkers could allow preventive or therapeutic 498

interventions aimed at modifying disease progression before clinical symptoms appear. 499

Moreover, since our paths show that psychosocial symptoms such as mood and 500
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depression can influence cognitive function and disease progression, we can expect 501

psychosocial interventions to improve the quality of life of Alzheimer’s patients by 502

addressing these issues. Given that AD involves multiple biological and clinical 503

pathways, multimodal therapeutic approaches can be developed that simultaneously 504

address several aspects of the disease [47]. 505

In the past, network techniques have shown to be very successful in offering useful 506

insights into the complicated molecular basis of illnesses, transcending the usual 507

viewpoints centered on single genes and pathways. Within the traditional network 508

framework, molecules are interconnected based on their biological interactions, and by 509

studying the structure and dynamics of these interaction networks, it becomes possible 510

to uncover disease modules and nonlinear pathways [48]. Weighted gene co-expression 511

networks have been used, for instance, to identify groups of genes (modules) involved in 512

various activated pathways leading to hypertension [49] or to breast cancer and AD [50]. 513

Recently, these approaches have evolved to encompass multiple biological layers: in [51] 514

protein-protein interactions related to essential hypertension were studied through 515

network analyses, also in [52] diverse biological processes such as membrane potential 516

dynamics and signaling were studied within insulin-secreting cells. Approaches based on 517

multilayer networks have also produced notable results in the study of cancer [53–58] 518

and multiple sclerosis [11]. Moreover, new lines of research have been opened up by the 519

use of network-based models, for example by suggesting a possible connection between 520

age-related macular degeneration (nAMD) and neurodegenerative disorders such as AD, 521

schizophrenia and Parkinson’s disease [59]. Here we have applied a multilayer network 522

analysis to represent the flow of events that underlies the phenotype of a complex 523

disease such as AD. 524

Our multilayer network analysis enabled an examination of the interplay between 525

various biological scales in Alzheimer’s disease, revealing paths that connect six scales 526

(genomics, molecular, PET, MRI, risk factors, and phenotype) through statistical 527

associations. The analysis provides evidence for information flow across different scales, 528

with the imaging levels (PET and MRI) emerging as particularly informative. The 529

layers interconnect with diverse strengths, and information is modulated as it 530

propagates across them [60,61]. 531

Prior research has sought to establish a direct connection between the genomic layer 532

and phenotypes in various complex diseases, including AD [62,63]. However, genotypes, 533

Aβ and tau deposition, and brain metabolism alone have a limited ability to predict the 534

phenotype [64,65]. Our findings incorporate omics, imaging, and phenotype data, 535

underscore the significance of conceptualizing AD as a multiscale condition. 536

Additionally, the identified paths may serve as potential targets for future personalized 537

medicine treatments in AD. 538

The data obtained from the ADNI cohort proved to be rich, covering a broad 539

spectrum of scales. However, certain limitations were encountered during the extraction 540

and analysis of variables. While the cohort’s overall sample size was sufficient for 541

detecting significant correlations, some specific layers, such as the genomics one, had 542

smaller sample sizes. This limitation has an impact on both the construction of 543

networks and the identification of paths. Additionally, the analysis had to adopt a 544

cross-sectional approach due to inadequate follow-up in many participants. The 545

inclusion of longitudinal data across all six layers would significantly enhance the value 546

of future studies. 547

Conclusion 548

In summary, this study examined the functional connections among various scales of 549

biological data of a complex disease with a complex genetic basis, namely AD. The 550
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approach to understanding complex biological systems through network science is a very 551

active interdisciplinary research field that is gaining more attention nowadays. 552

Multilayer networks offer several advantages in comparison to traditional network 553

approaches because of their enormous potential to explore the organisation and 554

connections of the different biological layers in both health and disease, making it a 555

promising tool for future efforts in this area of research. This approach could be applied 556

to other neurodegenerative diseases and autoimmune disorders. 557
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42. Cortes-Canteli M, Gispert JD, Salvadó G, Toribio-Fernandez R, Tristão-Pereira
C, Falcon C, et al. Subclinical Atherosclerosis and Brain Metabolism in
Middle-Aged Individuals. Journal of the American College of Cardiology.
2021;77(7):888–898. doi:10.1016/j.jacc.2020.12.027.

43. Tristão-Pereira C, Fuster V, Oliva B, Moreno-Arciniegas A, Garcia-Lunar I,
Perez-Herreras C, et al. Longitudinal interplay between subclinical
atherosclerosis, cardiovascular risk factors, and cerebral glucose metabolism in
midlife: results from the PESA prospective cohort study. The Lancet Healthy
Longevity. 2023;4(9):e487–e498. doi:10.1016/S2666-7568(23)00134-4.

November 14, 2024 25/27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317427doi: medRxiv preprint 

https://gist.github.com/gotgenes/2770023
https://doi.org/10.1101/2024.11.16.24317427
http://creativecommons.org/licenses/by-nc-nd/4.0/


44. Sierra C. Hypertension and the Risk of Dementia. Frontiers in Cardiovascular
Medicine. 2020;7. doi:10.3389/fcvm.2020.00005.

45. Wolters EE, Ossenkoppele R, Verfaillie SCJ, Coomans EM, Timmers T, Visser D,
et al. Regional [18F]flortaucipir PET is more closely associated with disease
severity than CSF p-tau in Alzheimer’s disease. European Journal of Nuclear
Medicine and Molecular Imaging. 2020;47(12):2866–2878.
doi:10.1007/s00259-020-04758-2.

46. Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, et al. Biomarkers
used in Alzheimer’s disease diagnosis, treatment, and prevention. Ageing
Research Reviews. 2022;74:101544. doi:https://doi.org/10.1016/j.arr.2021.101544.

47. Johnson ECB, Carter EK, Dammer EB, Duong DM, Gerasimov ES, Liu Y, et al.
Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong
proteomic disease-related changes not observed at the RNA level. Nature
Neuroscience. 2022;25(2):213–225. doi:10.1038/s41593-021-00999-y.

48. Gustafsson M, Nestor CE, Zhang H, Barabási AL, Baranzini S, Brunak S, et al.
Modules, networks and systems medicine for understanding disease and aiding
diagnosis. Genome Medicine. 2014;6(10):82. doi:10.1186/s13073-014-0082-6.

49. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, et al.
Identification of inflammatory gene modules based on variations of human
endothelial cell responses to oxidized lipids. Proceedings of the National Academy
of Sciences. 2006;103(34):12741–12746. doi:10.1073/pnas.0605457103.

50. Jha M, Roy S, Kalita JK. Prioritizing disease biomarkers using functional module
based network analysis: A multilayer consensus driven scheme. Computers in
Biology and Medicine. 2020;126:104023. doi:10.1016/j.compbiomed.2020.104023.

51. Ran J, Li H, Fu J, Liu L, Xing Y, Li X, et al. Construction and analysis of the
protein-protein interaction network related to essential hypertension. BMC
Systems Biology. 2013;7(1):32. doi:10.1186/1752-0509-7-32.
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