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Abstract  

Background: Atrial fibrillation (AF) ablation is an effective treatment for reducing episodes and 

improving quality of life in patients with AF. However, in some patients there are only modest 

long-term AF-free rates after AF ablation. There is a need to address the limited benefits some 

patients experience by developing predictive algorithms to improve AF ablation outcomes. 

Objective: The authors aim to utilize machine learning models on claims data to explore if 

innovative coding models may lead to better patient outcomes than use of traditional stroke risk 

score prediction.  

Methods: The Merative MarketScan® Research Medicare data was used to examine claims for 

AF ablation. To predict 1-year AF-free outcomes after AF ablation, logistic regression and 

XGBoost models were used. Model predictions were compared with established risk scores 

CHADS2 and CHA2DS2-VASC. These models were also assessed on subgroups of patients with 

paroxysmal AF, persistent AF, and both AF and atrial flutter from 2015 onwards. 

Results: The sample included 14,521 patients with claims for AF ablation. XGBoost achieves an 

area under the receiver operating characteristic curve (AUC) of 0.525, 0.521, and 0.527 for the 

entire AF ablation population, female, and male, respectively. Machine learning models perform 

the best for the paroxysmal AF subgroup using ICD codes, demographic information, and 

comorbidity indexes, achieving an AUC of 0.546.  

Conclusion: Machine learning models outperform CHADS2 and CHA2DS2-VASC in all AF 

ablation patient groups (whole population, female, and male). Using patient data for those who 

had their AF ablation on or after 2015, machine learning models perform best in all subgroups 
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and the population, indicating that including ICD codes in machine learning models may 

improve performance.  

Keywords: logistic regression, XGBoost, CHADS2, CHA2DS2-VASC, atrial fibrillation, atrial 

fibrillation ablation 

 

Abbreviations 

Abbreviation Definition 
AF Atrial fibrillation 
AUC  Area under the curve 
CCI Charlson comorbidity index 
Com Comorbidity Indices 
Demo Demographic characteristic(s) 
ECG Electrocardiogram 
ECI Elixhauser comorbidity index 
EHR Electronic health record(s) 
I Table Inpatient Admission Table 
ICD International Classification of Disease 
ML Machine learning 
O Table Outpatient Services Table 
ROC Receiver operating characteristic 
S Table Inpatient Services Table 
SD Standard Deviation 
US United States 
XGB XGBoost 
XGBoost Extreme Gradient Boosting 
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Introduction 

Affecting over 6 million people in the U.S., atrial fibrillation (AF), the most common cardiac 

arrhythmia, is a major public health concern that will continue to increase with the aging United 

States (US) population.1-4 AF is costly to health care systems and leads to significant health 

consequences of stroke, heart failure, dementia, and decreased quality of life.5 Although there is 

no cure for AF currently, AF ablation is the most effective treatment to restore normal sinus 

rhythm and decrease symptoms in episodes of paroxysmal or persistent AF, thereby reducing AF 

burden and improving quality of life.1-3 AF is associated with increased risk of cardiovascular 

events that may affect treatment outcomes, yet there limited knowledge of personalized risk 

stratification for patients undergoing AF ablation. Existing risk scores, like CHADS2 and 

CHA2DS2-VASc, have traditionally been applied to predict stroke risk and are now also utilized 

in risk assessment following COVID-19, heart surgery, and AF ablation.6-13 

Success rates for AF ablation from the literature vary based on individual clinical variables such 

as type of AF, left atrial size or volume index,1,2,4 yet these variables are frequently difficult to 

access in large electronic health record datasets (EHR). Patients continue to experience episodes 

of AF following an initial AF ablation with long-term AF-free rates after de novo AF ablation 

reported as 50% to 75%.1,2,14 Additionally, the chances of developing any complications after AF 

ablation ranges around 6%, with 0.1% to 0.9% of patients experiencing complications that could 

result in death.15-17 Given the modest success rates of AF ablation, prediction of  outcomes could 

be personalized to more easily identify those who would be most likely to benefit from an AF 

ablation.  
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Machine learning (ML) has emerged as a powerful approach that leverages increased 

computational power with large datasets to help achieve complex decisions to guide clinical 

practice.18 Artificial intelligence and ML have been used in the field of electrophysiology since 

the 1970s for automated ECG interpretation.18,19 More recently, innovations in algorithms, 

development and labeling of large databases, and improvements in hardware and software have 

rapidly increased the role of ML in cardiac electrophysiology and cardiovascular imaging to 

identify predictors of patient outcomes.20 ML has already been used to improve prediction of AF 

ablation outcomes, primarily via electronic health records (EHRs). Nevertheless, health systems 

are not widely interoperable,21 making it both costly and challenging to extend these prognostic 

tools across multiple health systems. Studies utilizing EHR data have often been limited to 

datasets from one to two hospitals, limiting the generalizability of the models and hindering 

broad adoption.22,23 Claims data, on the other hand, is commonly collected, more readily 

available, and usually collected on a large national scale.21 Although EHR data, which can 

include medications, laboratory data, and radiology reports, is more granular than claims data 

and can offer more accurate predictions, claims-based prognostic models can offer better 

scalability across health systems and populations.24  

In this study, we propose to develop ML-based predictive models for outcomes of de novo AF 

ablation procedures using national level claims data in the United States. Our goal is to evaluate 

a ML derived risk prediction model for AF ablation patient outcomes. We hypothesize that the 

ML models will be comparable to or exceed existing AF risk scores with respect to predictive 

power. Existing risk scores including CHADS2 and CHA2DS2-VASc have achieved non-trivial 

improvements in predicting the outcomes of AF procedures, achieving area under the receiver 

operating characteristic curve (AUROC) of 0.785 and 0.830 respectively in a dataset consists of 
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565 patients.25 Thus, in this study, we utilize CHADS2 and CHA2DS2-VASc as a baseline to 

compare with our ML approaches. We will also characterize outcomes by subgroups as well as 

examine differences in AF ablation outcomes by sex.   

Methods  

This research leveraged de-identified claims data sourced from the Merative MarketScan® 

Research Medicare Databases (MarketScan, Inc., Ann Arbor, MI) to investigate AF ablation 

(CPT code '93656') claims spanning January 1, 2013, to December 31, 2020. MarketScan 

contains claims made for individuals with Medicare Supplemental and Medicare Advantage 

plans. 

Inclusion criteria comprised patients across inpatient admission (I), inpatient services (S), and 

outpatient services (O) tables in the database. Medical history and postoperative outcomes were 

scrutinized using claims data from January 1, 2011, to December 31, 2021, with a focus on 

patients possessing valid patient IDs for traceability. The final cohort comprised 14,521 patients 

after excluding those without valid patient IDs. The research was conducted at Emory University, 

Atlanta, GA.  

Patient Population 

We include patients undergoing AF ablation (CPT code '93656') between January 1, 2013, and 

December 31, 2020, using the I, S, and O tables from Medicare claims. Only the I, S, and O 

tables have ICD codes which are the primary factors we used for our predictions. These patients 

were validated to avoid CPT coding errors by verifying the co-presence of AF (ICD-9 code of 

‘427.31’ or ICD-10 code of ‘I48.X’) and AF ablation.    
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The decision to include exclusively Medicare patients stems from the MarketScan database 

limitations preventing integration of commercial and Medicare claims, as the unique patient IDs  

differ between the Medicare and commercial claims datasets. Additionally, mean age for first AF 

ablation usually happens around 55-62.2-4 Medicare therefore covers a greater range of aged 

patients in the database. Moreover, the absence of postoperative outcomes for numerous patients 

in the commercial database rendered it unsuitable for this study.  

Definition 

Our study's objective is to forecast the binary outcome—success or failure—of AF ablation prior 

to the procedure based on patient past medical history and demographics. Success entails the 

absence of recurring AF or AF ablation within the 6-month interval from the end of the sixth to 

the end of the twelfth month following the initial AF ablation procedure. Conversely, failure is 

defined by any occurrence of recurring AF or AF ablation during the same 6-month period. The 

patient population is further validated by confirming that they have revisited the clinics within a 

year after ablation to ensure the success population is a true success.  

While the O datasets comprehensively document the operation date for AF ablation, the I and S 

datasets exclusively provide admission and discharge dates. In navigating this constraint, we 

pragmatically designate the admission date from the I and S datasets as a surrogate for the AF 

ablation operation date in our analysis. This procedural adjustment is necessitated by the dataset 

structure, allowing us to maintain temporal coherence in our predictive modeling. 

The study employed subgroup analysis, where we have identified groups with paroxysmal AF, 

persistent AF, and AF patients with flutter. ICD-10 codes clearly distinguish between 

paroxysmal AF, persistent AF, and chronic AF, in comparison to ICD-9 codes that do not make 
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these distinctions. Within the Medicare datasets, all patient records after January 1, 2015, 

adopted ICD-10 codes instead of ICD-9 codes.  To reflect current changes in terminology of 

types of AF, we combined persistent AF and chronic AF in the database as persistent AF. We 

defined paroxysmal AF as patients with ICD-10 code of I48.0, I48.20, and free of persistent AF 

code; persistent AF as patients with I48.1, I48.11, I48.19, I48.2, and I48.21. Patients with atrial 

flutter have any AF code with I48.3 or I48.4 (ICD-10) or 427.32 (ICD-9).  

Data Processing 

Each patient is distinctly identified by a unique patient ID that facilitates cross-referencing across 

datasets, namely the I, S, and O tables, housing medical claims for individual medical visits. Our 

predictive focus necessitates a retrospective analysis, limited to the patient's history preceding 

the date of AF ablation. 

To present a comprehensive historical snapshot, we construct a table encompassing patient ID, 

demographic details (sex, region, age, and industry), the earliest AF ablation date, the failure 

date (if applicable), and an exhaustive list of ICD and CPT codes from past medical visits. This 

retrospective tableau extends back over a 2-year period. 

In adapting to Medicare's transition from ICD-9 to ICD-10 post-2015, we integrated the 

conversion from ICD-10 to ICD-9 codes using the ICD-10 Lookup tool.26 To simplify our 

dataset and maintain a manageable feature set, we retained only the first three digits of the 

converted ICD codes.  

Within the claims data, we calculated two established indices—the Charlson Comorbidity Index 

(CCI) and the Elixhauser Comorbidity Index (ECI)—to capture patients' comorbid 
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conditions.27,28 These indices use a weighted system based on specific conditions to provide a 

score, with higher values indicating more severe comorbidities.  

Modeling 

We used two popular and efficient supervised ML classifiers: Logistic Regression and XGBoost 

(eXtreme Gradient Boosting) (XGB).29 Logistic Regression computes the probability of a binary 

outcome by employing a logistic function (sigmoid curve) to transform the linear combination of 

input features into probabilities. This model is particularly advantageous due to its simplicity and 

interpretability, especially in scenarios where the relationship between input variables and the 

outcome is expected to be linear. On the other hand, XGB represents a more sophisticated 

approach. As an ensemble technique, it constructs multiple decision trees in a sequential manner, 

with each subsequent tree focusing on addressing the errors made by its predecessors. This 

method does not presuppose a linear relationship between input and output variables, offering 

greater flexibility and efficacy in dealing with larger and more intricate datasets. Despite its 

computational intensity, XGB is celebrated for its high efficiency and versatility, making it a 

potent tool in predictive modeling, especially in situations where the complexity of the data 

surpasses the capabilities of simpler models like Logistic Regression.24  

The CHADS2 and CHA2DS2-VASC risk scores have been widely used to predict stroke risk in 

patients with AF.12,13,25 These risk scores more recently have been used to predict outcomes in 

patients with AF, heart failure, coronary artery disease, and postoperative AF undergoing 

cardiovascular surgical procedures.6,11 Still other investigators have reported that the CHADS2 

and CHA2DS2-VASC risk scores were useful predictors of adverse events after AF ablation.7 
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Therefore, we chose to use CHADS2 and CHA2DS2-VASC risk score as our baseline 

comparison.  

Statistical Analysis  

For the continuous variable age, we used a t-test to obtain the p-value. For categorical variables, 

we used Chi-square tests. Continuous variables were reported as the mean ± standard deviation, 

while categorical variables were expressed as percentages. The area under receiver operating 

characteristic curve (AUC) was used to assess the performance of each model. 

For two-point statistics, bootstrap resampling is used to generate a distribution and then perform 

a t-test to obtain the p-values. Specifically, bootstrap resampling is only used to obtain the p-

values in table 2.  

Ethical Considerations 

This study used commercially available data that have been deidentified. As such, the study was 

deemed exempt by Emory University Institutional Review Board. 

Results 

The demographic and clinical profiles of patients with AF are detailed in Tables 1 and 2. Our 

study cohort consists of 14,521 patients, with an average age of 71.5 years (SD = 5.31). A 

successful outcome from AF ablation procedures was observed in 54.01% (n=7,843) of patients. 

Females constitute 39.94% of the study population. Clinically, 24.73% (n=3,591) of the patients 

were diagnosed with concomitant atrial flutter. The precise identification of patients with 

paroxysmal and persistent AF was limited, relative to the total cohort, due to the use of ICD-9 
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instead of ICD-10 prior to 2015. A subset of 6,983 patients was accurately categorized as having 

paroxysmal or persistent AF, demonstrating a slightly reduced AF ablation success rate of 53.34% 

in comparison to the broader patient population. Within this subset, 41.20% (n=2,877) were 

diagnosed with paroxysmal AF, while 58.80% (n=4,106) had persistent AF. The AF ablation 

success rates for paroxysmal and persistent AF were 52.55% and 53.90%, respectively. 

Table 3 shows the comparative performance, as measured by the Area Under the Receiver 

Operating Characteristic Curve (AUC ROC), of the XGB machine learning model and the risk 

scores, which are CHADS2 and CHA2DS2VASc, in predicting the outcomes of AF ablation. 

CHADS2 and CHA2DS2VASc are stroke prevention risk scores, with CHADS2 involving 

congestive heart failure, hypertension, age ≥75, diabetes, stroke (doubled) and CHA2DS2VASc 

involving congestive heart failure, hypertension, age ≥75 (doubled), diabetes, stroke (doubled), 

vascular disease, age 65 to 74 and sex category (female). Notably, both CHADS2 and 

CHA2DS2VASc scores yielded predictions worse than random chance (AUC ROC < 0.5) except 

for CHA2DS2VASc in female group (which ROC = 0.500, equals to the chance of random 

guessing). The XGB model exhibited modest predictive accuracy across the entire study 

population with an AUC ROC of 0.525. This accuracy was slightly improved (0.527) for males 

but marginally decreased (0.521) for females. Nevertheless, the XGB model surpassed the 

predictive capabilities of the CHADS2 and CHA2DS2VASc scores across all patient cohorts. 

Table 4 presents type of atrial arrhythmia subgroup analyses focusing on patients with ICD-10 

codes (patients’ AF ablation dates were on or after January 2015). ICD-10 codes are more 

specific and enables patients to be identified as having paroxysmal AF or persistent AF. In table 

4, we present results for patients with paroxysmal AF, persistent AF, and those who have both 

AF and atrial flutter, utilizing three distinct datasets: 1) comprising converted, simplified 3-digit 
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ICD codes, demographic information, and comorbidity scales (Charlson Comorbidity Index and 

Elixhauser Comorbidity Scale); 2) demographic data and comorbidity scales; and 3) solely 

demographic information. Across all subgroups and the entire ICD-10 population, models 

utilizing the first dataset type demonstrated superior performance, with the highest AUC ROC 

observed in patients with paroxysmal AF (0.546) upon inclusion of ICD codes. For the first type 

of dataset, the AUC ROCs for paroxysmal AF, persistent AF, AF patients with atrial flutter, and 

the entire population were 0.546, 0.526, 0.543, and 0.531, respectively. Within each subgroup, 

the lowest AUC ROC was observed for AF patients with atrial flutter using only demographic 

data (0.518). For paroxysmal AF, the lowest score was also found in using only demographic 

data (0.534). However, for persistent AF and the ICD-10 population, the lowest scores were 

found when using demographics and comorbidity scales, with AUC ROCs of 0.516 and 0.527, 

respectively.  

Discussion 

In this study, we have developed ML learning models that predict outcomes of de novo AF 

ablation procedures. Our XGB model demonstrated improved performance and predictive power 

as compared to CHADS2 and CHA2DS2VASc in all patient and sex subgroups.  However, 

XGB’s predictive ability of outcomes after AF ablation was found to be lower in females than it 

was in males or in the entire population. There was no difference in predictive power when 

comparing CHADS2 to CHA2DS2-VASc risk scores for outcomes after AF ablation except for 

females where CHA2DS2-VASc performs better than CHADS2. Additionally, in comparing 

outcomes in patient subgroups of types of AF (paroxysmal, persistent, or AF with atrial flutter) 

the ICD codes model demonstrated better prediction power than using either only 

demographic/clinical variables or those variables plus comorbidity scales, the Charlson 
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Comorbidity Index (CCI) and the Elixhauser Comorbidity Index (ECI). Use of these machine 

learning models may be useful in clinical practice in patient selection for AF ablation in the 

future. 

Previous clinical models for predicting AF ablation success have reported an AUC ranging from 

0.55 to 0.65, with only three models achieving an AUC of 0.75.8-10 In other studies, CHADS2 

and CHA2DS2-VASc can usually achieve an AUC of 0.785 and 0.830 respectively in predicting 

AF ablation.25 However, in our study, CHADS2 and CHA2DS2-VASc only achieve an AUC of 

0.498-0.5, performing mostly worse than random guessing (AUC = 0.5). This finding highlights 

the difficulty in predicting the success and failure of AF ablation for the dataset used in this 

study. In contrast, our machine learning (ML) models achieved an AUC of 0.521-0.527, 

outperforming both CHADS2 and CHA2DS2-VASc with statistical significance (p-value = 0.000) 

in all patient groups (whole population, female, and male) for this dataset.  

In addition to demonstrating that ML models outperform these risk score predictions, we have 

also conducted an analysis to understand what types of features should be included in the ML 

models. We identified three sets of features and three clinically meaningful subgroups in the 

population (and the whole population). The three sets of features respectively are: 1) comprised 

with ICD codes, demographic information, and comorbidity scales; 2) comprised with 

demographic data and comorbidity scales; and 3) restricted to demographic information; and the 

three clinically meaningful subgroups are: paroxysmal AF, persistent AF, as well as AF patients 

with atrial flutter. These subgroups can only be identified in the ICD-10 space, and thereby we 

also compare these subgroup results with the ICD-10 population. This resulted in 16 unique ML 

models for each combination of feature sets and subgroups. Across all subgroups, ML models 

performed best when including ICD codes as features, indicating that the incorporation of ICD 
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codes improved model performance. Among the three subgroups (paroxysmal AF, persistent AF, 

and patients with atrial flutter), the ML models performed best for paroxysmal AF patients. 

Compared to the whole population, patients with persistent AF have the least success in 

predicting the outcomes, whereas both paroxysmal AF patients and AF patients with atrial flutter 

achieve better prediction results than the ICD-10 population.  

Our findings demonstrate that ML models using ICD codes to estimate AF ablation procedural 

outcomes are robust and valid across all populations. Improvement of outcome predictions for 

AF ablation using ML has the potential for widespread use in research and clinical practice to 

determine optimal patient selection for AF ablation and AF patient management. Advances in 

artificial intelligence and ML technology have an ability to rapidly analyze and synthesize 

innumerable variables to predict outcomes of AF ablation and discover new patterns of clinical 

variables that greatly surpass prior conventional methods of gauging success. These findings will 

be important to consider as healthcare policymakers struggle to allocate limited resources to as 

many patients as possible and search for ways to improve patient outcomes.  ML technologies 

will play increasingly more important roles in medicine with future advances and as we better 

learn how to incorporate ML for improvements in clinical practice and patient outcomes.   

Limitations 

This data used in this study comprised health insurance claims data filed for people holding 

Medicare Advantage or Medicare Supplemental plans. As with all administrative data, some 

human errors may be present. We have addressed these issues by reporting clear descriptions of 

our data source, the inclusion and exclusion criteria, the billing codes used, and any potential 
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confounding factors included in the modeling. We have also verified the patients with AF 

ablation by identifying at least one past occurrence of AF in their past medical history.  
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Supplemental Materials  

The code used for this study is publicly released in the GitHub Repository: 

https://github.com/isSherrrrry/AFA-Claims-CodeRelease 
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Table 1. Baseline Demographic Characteristics of Patients undergoing Atrial Fibrillation 

Demographic Variable 

Overall 

(N=14521) 

AF ablation Success 

(N=7843) 

AF ablation Failure 

(N=6678) p-value 

Age (mean ± standard deviation) 71.5 ± 5.31 71.5 ± 5.27 71.6 ± 5.34 0.628 

Female 5800 (39.94%) 3118 (39.76%) 2682 (40.17%) 0.630 

    

 

Region 

   

0.000 

Northeast 2790 (19.21%) 1544 (19.69%) 1246 (18.66%) 0.122 

North Central 4467 (30.76%) 2263 (28.85%) 2204 (33.00%) 0.000 

South 4733 (32.59%) 2599 (33.14%) 2134 (31.96%) 0.134 

West  2393 (16.48%) 1360 (17.34%) 1033 (15.47%) 0.003 

Unknown 138 (0.95%) 77 (0.98%) 61 (0.91%) 0.736 

    

 

Industry 

   

0.000 

Oil & Gas Extraction, Mining 6 (0.04%) 5 (0.06%) 1 (0.01%) 0.302 

Manufacturing, Nondurable Goods 3013 (20.75%) 1486 (18.94%) 1527 (22.87%) 0.000 

Manufacturing, Durable Goods 467 (3.21%) 254 (3.24%) 213 (3.19%) 0.905 

Transportation, Communication, 

Utilities 1768 (12.18%) 1007 (12.84%) 761 (11.40%) 0.009 

Retail Trade 42 (0.29%) 22 (0.28%) 20 (0.30%) 0.954 

Finance, Insurance, Real Estate 661 (4.55%) 371 (4.73%) 290 (4.34%) 0.281 

Services 2866 (19.74%) 1479 (18.86%) 1387 (20.77%) 0.004 

Agriculture, Forestry, Fishing 4 (0.03%) 2 (0.03%) 2 (0.03%) 1.000 

Construction 33 (0.23%) 20 (0.26%) 13 (0.19%) 0.558 

Wholesale  54 (0.37%) 37 (0.47%) 17 (0.25%) 0.045 

Unknown 5607 (38.61%) 3160 (40.29%) 2447 (36.64%) 0.000 
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Ablation.  

The number in parentheses represents the percentage within the overall, success, or failure 

groups. Industry is categorized based on the employer responsible for the claim payment, and 

regions follow the Census Bureau's regional definitions.  
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Table 2. Baseline clinical characteristics of patients in sample undergoing AF ablation  

 

Clinical Variable 

Overall 

(N=14521) 

AF ablation Success 

(N=7843) 

AF ablation Failure 

(N=6678) p-value 

 

Charlson Comorbidity Index 

   

0.292 

0 4371 (30.10%)  2375 (30.28%) 1996 (29.89%) 0.607 

1 4295 (29.58%) 2277 (29.03%) 2018 (30.22%) 0.872 

>=2 5855 (40.32%) 3191 (40.68%) 2664 (39.89%) 0.611 

    

 

Elixhauser Comorbidity Index 

   

0.447 

0 44 (0.30%) 24 (0.31%) 20 (0.30%) 1.000 

1 989 (6.81%) 515 (6.57%) 474 (7.10%) 1.000 

>=2 13488 (92.89%) 7304 (93.13%) 6184 (92.60%) 1.000 

     

Both Atrial Flutter and AF 

(ICD-9 and ICD-10) 

 

3591 

(24.73%) 1963 (25.03%) 1628 (24.38%) 0.376 

     

Patients with ICD-10 

 

N=8924 N=4700 N=4224 0.279 

Paroxysmal AF (ICD-10 only) 2877 (32.24%) 1512 (32.17%) 1365 (32.32%)  

Persistent AF (ICD-10 only) 4106 (46.01%) 2213 (47.09%) 1893 (44.82%)  

Other AF 1941 (21.75%) 975 (20.74%) 966 (22.87%)  
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The number in the brackets represents the percentage within the overall, success, or failure 

groups. The paroxysmal and persistent AF only exists in the ICD-10 space, which the overall 

ICD-10 population is 8924, success population is 4700, and failure population is 4224.  
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Table 3. Performance Comparison between XGB and CHADS2 and CHA2DS2VASc Risk Scores Stratified by Sex).  

 XGB 
(mean ± SD) 

CHADS2 

Scores 
CHA2DS2VASc 

Scores 
p-value 

(XGB C2) 
p-value 

(XGB C2V) 
p-value 

(C2 C2V) 
Population  
(n=14,521) 

0.525 
(0.522-0.527) 

0.498 
 

0.498 
 

0.000 0.000 0.507 

Female 
(n=5,800) 

0.521 
(0.517-0.525) 

0.498 0.50 0.000 0.000 0.510 

Male 
(n=8,721) 

0.527 
(0.524-0.531) 

0.498 0.498 
 

0.000 0.000 0.498 

 

All performance values are reported in terms of AUC ROC. Cell values for XGB report average ± standard deviation (SD). 
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Table 4.  ROC Performance by Clinical and Demographic Predictors Across Atrial Arrhythmia 

Subgroups.  

 ICD+Demo+ 

(CCI+ECI) 
Demo+ (CCI+ECI) Demo 

Paroxysmal AF 

(n=2,877) 

0.546 

(0.542-0.551) 

0.543 

(0.538-0.549) 

0.534 

(0.527-0.540) 

Persistent AF 

(n=4,106) 

0.526 

(0.520-0.532) 

0.516 

(0.512-0.520) 

0.525 

(0.520-0.530) 

ICD-10, With Atrial 

Flutter  

(n=1,889) 

0.543 

(0.536-0.551) 

0.514 

(0.505-0.523) 

0.518 

(0.511-0.525) 

ICD-10 Population  

(n=8,924) 

0.531 

(0.528-0.535) 

0.527 

(0.525-0.531) 

0.529 

(0.526-0.532) 

 

This population only includes patients who had their first AF ablation in or after 2015. “ICD” 

means ICD codes of patients past medical history; “Demo” represents demographic variables 

(region, sex, age, and industry); the numbers in the brackets represent the confidence interval 

after 30 Monte Carlo runs.  
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