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Background: Publicly available artificial intelligence (AI) Visual Language Models (VLMs) 
are constantly improving. The advent of vision capabilities on these models could enhance 
workflows in radiology. Evaluating their performance in radiological image interpretation is 
vital to their potential integration into practice. 
 
Aim: This study aims to evaluate the proficiency and consistency of the publicly available 
VLMs, Claude and GPT, across multiple iterations in basic image interpretation tasks. 
Method: Subsets from publicly available datasets, ROCOv2 and MURAv1.1, were used to 
evaluate 6 VLMs. A system prompt and image were inputted into each model thrice. The 
outputs were compared to the dataset captions to evaluate each model's accuracy in 
recognising the modality, anatomy, and detecting fractures on radiographs. The consistency 
of the output across iterations was also analysed. 
 
Results: Evaluation of the ROCOv2 dataset showed high accuracy in modality recognition, 
with some models achieving 100%. Anatomical recognition ranged between 61% and 85% 
accuracy across all models tested. On the MURAv1.1 dataset, Claude-3.5-Sonnet had the 
highest anatomical recognition with 57% accuracy, while GPT-4o had the best fracture 
detection with 62% accuracy. Claude-3.5-Sonnet was the most consistent model, with 83% 
and 92% consistency in anatomy and fracture detection, respectively. 
 
Conclusion: Given Claude and GPT's current accuracy and reliability, integration of these 
models into clinical settings is not yet feasible. This study highlights the need for ongoing 
development and establishment of standardised testing techniques to ensure these models 
achieve reliable performance. 
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Introduction  

 

The integration of artificial intelligence (AI) models into the medical domain is already 
becoming a reality in contemporary Australian healthcare with acknowledgement from 
professional bodies such as the Australian Health Practitioner Regulation Agency 
(APHRA)[1] and the Royal Australian and New Zealand College of Radiologists (RANZCR) 
[2]. Radiology, as a data-driven specialty, can greatly benefit from these models in both 
interpretive and non-interpretive uses, from report generation to streamlining administrative 
processes [3], [4]. Task-specific specialised models are already being seen in clinical 
practice, such as those that can detect radiologic findings on chest X-rays [5] or do real-time 
detection and triaging of cerebral haemorrhage cases on CT [6]. 
 
While these task-specific models are beneficial, they are inflexible and can only perform 
tasks predefined by their training dataset [7]. As such, there has been a turn towards 
developing generalist foundation models that can perform a diverse range of tasks with little 
to no additional training [7]. Advancements in multimodal architectures and self-supervised 
learning that allow for training on large amounts of unlabelled data have made this possible 
[7], [8]. Successful development and validation of foundation models will reduce the need for 
multiple task-specific models, which has the potential to simplify the deployment and 
management of AI systems [9]. While medical foundation models are in development, in 
August 2024, Zhang et al. [9] touted their BiomedGPT model as the first fully transparent 
generalist medical foundation model to be thoroughly evaluated. However, research and 
attention to foundation models have preceded this, with many looking at publicly available 
large language models (LLMs) such as OpenAI’s GPT due to its accessibility and ease of use 
[10], [11].  
 
In 2022, the release of ChatGPT showcased the model's in-context learning abilities, allowing 
it to learn from a limited number of examples and generalise to new test sets [7]. The model 
was exclusively text-based at this stage and lacked image interpretation capabilities. By early 
February 2023, the first article exploring the application of ChatGPT in radiology was 
published, followed by over 50 additional articles within six months[12]. These studies 
predominantly addressed non-image analysis tasks such as generating differential diagnoses 
from text prompts, structured reporting, and enhancing patient communication [12]. In 
September 2023, the GPT model range was extended to include vision capabilities with the 
introduction of GPT-4V, transforming it into a vision-language model (VLM) capable of 
processing textual and visual data. This advancement prompted rapid evaluation of the 
model's image interpretation abilities, potentially expanding its utility in clinical settings. 
However, initial assessments revealed that the vision capabilities were not yet reliable for 
clinical use, performing below the standards of its text-based counterpart [13], [14].  
 
Despite the limitations in their image interpretation capabilities, existing studies have 
highlighted the substantial potential of these models. In March 2024, Anthropic introduced 
the Claude 3 model family, followed by an update to Claude Sonnet in June 2024, positioning 
them as direct competitors to OpenAI’s GPT models [15]. These models possess similar 
multimodal capabilities, prompting researchers to rapidly publish evaluations of Claude’s 
performance compared to GPT-4 [16], [17]. However, the volume of studies assessing the 
image interpretation abilities of Claude models remains significantly lower than those 
focusing on GPT models, likely due to the recent release of Claude. 
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This study seeks to contribute to the developing body of research by providing one of the 
initial evaluations of the image interpretation capabilities of Claude models relative to GPT 
models. Demonstrating satisfactory performance in fundamental tasks could facilitate the 
integration of these models into radiologic workflows, such as patient triage and screening, 
and potentially enhance the radiographer’s ‘Red Dot System’—a method in which 
radiographers annotate radiographs suspected of containing abnormalities [18]. Additionally, 
accuracy in image interpretation is critical for more advanced applications, including 
automated report generation. The primary objective of this study is to evaluate the 
proficiency and consistency of Claude and GPT models in essential diagnostic tasks, 
explicitly focusing on accurately identifying imaging modalities, anatomical regions, and 
fractures in radiographic images. 
 

Method 
 
Dataset Construction  
 
In this retrospective study, two publicly available datasets were used: ROCOv2 to assess the 
models’ proficiency in recognising image modalities and anatomical regions [19] and 
MURAv1.1 to evaluate proficiency in identifying anatomical regions and detecting fractures 
in upper appendicular radiographs [20].  
 
ROCOv2 is a large manually validated dataset extracted from the PMC Open Access Subset 
that covers a range of modalities, anatomical regions and medical concepts [19]. A subset of 
100 images spans three modalities, including computed tomography (CT), magnetic 
resonance imaging (MRI) and general X-ray. A breakdown of the anatomical regions 
included per imaging modality is shown in Table 1. The ROCOv2 dataset also has the 
limitation of lower image quality. All cases were manually screened and excluded if they had 
poor image quality or additional annotations on the image to reduce the chances of 
confounding the results. The ground truth for modality and anatomical region were extracted 
from the CSV metadata attached to the dataset.  
 
MURAv1.1 is a large dataset containing upper extremity musculoskeletal radiographs 
manually labelled as normal or abnormal. From this, a subset of 300 images were selected 
across six anatomical regions: elbow, finger, forearm, hand, humerus, and wrist. Images were 
chosen to ensure a fracture prevalence of 50%, resulting in 25 normal and 25 abnormal 
images for each region. MURAv1.1 only labelled images as normal or abnormal, 
encompassing fractures and other abnormalities such as hardware, lesions, degenerative joint 
diseases, etc. As the scope of this study only included fracture detection, images with a low 
level of complexity, defined as those with clear and direct radiologic signs, were manually 
selected to avoid inaccuracies in the ground truth as best as possible.  
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Table 1 - Aggregated data of anatomical regions by imaging modalities for ROCOv2. 

Modality and anatomical region Total number of images n 
Total 100 
CT 40 

Abdomen and pelvis 15 
Chest 14 
Brain 10 
Spine 1 

MRI 31 
Brain 15 
Spine 16 

X-ray 29 
Chest 10 
Abdomen 3 
Skeletal  16 

 
Testing 

This study utilised six model variations of Claude and GPT: Anthropic’s Claude 3 Haiku, 
Claude 3 Opus, and Claude 3.5 Sonnet, and OpenAI’s GPT-4 Turbo, GPT-4o Mini, and 
GPT-4o. Each of these models underwent independent testing using Python with OpenAI’s 
(GPT) and Anthropic’s (Claude) APIs to automate the submission of images with the prompt. 
A system prompt was crafted to guarantee consistent replies for the automated assessment. 
The system prompt for MURAv1.1 and ROCOv2 can be found in Table 2. 
 

Table 2 - System prompts for MURAv1.1 and ROCOv2. 

MURAv1.1 Prompt ROCOv2 System Prompt 
You are a useful research assistant. 
 
You are being provided with images to 
determine the anatomical region and fracture 
present. 
 
You should return a one-line answer in CSV 
format and never return header. 
 
You should NEVER return "Unknown" and 
instead provide best guess. 
 
You should return 1st col as Anatomical Region 
and 2nd col as Fracture present where 1 is YES 
and 0 is NO. 
 
Example output format: 
Foot,0 
Back,0 
Shoulder,1 

You are a useful research assistant. 
 
You are being provided with images to 
determine the anatomical region and modality. 
 
You should return a one-line answer in CSV 
format and never return header. 
 
You should NEVER return "Unknown" and 
instead provide best guess. 
 
You should return 1st col as Modality and 2nd 
col as Anatomical Region. 
 
Example output format: 
CT,Brain 
X-ray,Foot 
MRI,Brain 
 
 
 

 

Chat interfaces are nondeterministic, with intentional randomness to mimic natural language. 
This can result in different outputs generated for the same prompt [21]. Using the API, the 
temperature hyperparameter can be adjusted to limit randomness; however, to see the 
standard performance of these models, we opted to use the default values for GPT and 
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Claude, which were 0.7 and 1, respectively. Given this, each test was conducted three times 
to evaluate consistency and uniformity across several iterations. 
 
To evaluate the models’ performance, the output was compared to the captions collected with 
the images to determine performance in recognition of imaging modality, anatomical region 
and detection of fractures. As the focus was on an objective evaluation method, no follow-up 
questions or avenues for the models to provide reasoning was provided reasoning, such as 
free text or bounding boxes, were permitted. 
 
Data Analysis 
 
The primary metric used to evaluate the performance was the accuracy of each model in 
recognising imaging modality, anatomical region, and detecting fractures in the first iteration. 
For the ROCOv2 subset, metrics were calculated per modality, while the MURAv1.1 subset 
was calculated per anatomical region with additional sensitivity and specificity calculations 
for fracture using Excel. Consistency was defined as having the same answer across all three 
iterations. Using GraphPad Prism 10, the Chi-squared test was performed to compare models 
and evaluate the statistical significance using a p-value of less than 0.05.  
 

Results 
 
Models’ performance in imaging modality and anatomical region identification 
 
The ROCOv2 subset consisted of 100 images distributed between 3 imaging modalities (CT, 
MRI, X-ray) and various anatomical regions. Several models obtained a 100% (100/100) 
accuracy rate for modality identification with outstanding consistency (Figure 1). The 
exceptions were Claude 3 Haiku and Claude 3 Opus, which misidentified CT images as MRI. 
 
There were varying degrees of success in anatomical region identification. Claude 3.5 Sonnet 
demonstrated the highest accuracy overall with 85% (85/100) correctly identified, followed 
by GPT-4 Turbo, which had 78% (78/100) accuracy. Claude 3 Haiku performed the worst 
overall, with a 61% (61/100) accuracy rate. Generally, the anatomical regions in CT were 
best recognised, followed by X-ray and then MRI. Claude 3 Opus, Claude 3 Sonnet, GPT-4 
Turbo and GPT-4o demonstrated consistent answers in over 90% of cases (Figure 1). 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317414doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1 - Accuracy and consistency of GPT and Claude models in detecting modality and anatomy from ROCOv2 dataset. 

 

Models’ performance in anatomical region identification and fracture detection of upper 
appendicular radiographs 
 
The MURAv1.1 subset consisted of 300 images, with 50 images across six anatomical 
regions and a 50% fracture prevalence. The anatomical areas included were the elbow, finger, 
forearm, hand, humerus, and wrist. Overall accuracy and consistency in anatomical region 
identification and fracture detection are displayed in Figure 2. Across all models, there was 
poor anatomical identification, with the highest accuracy rate being 57% (171/300) from 
Claude 3.5 Sonnet. A breakdown of accuracy in anatomical region per region is shown in 
Table 3. 
 
Overall, GPT-4o performed the best in detecting fractures with a 62% (186/300) accuracy 
rate. The next best models were Claude 3.5 Sonnet (difference: 3%, χ2 = 11.9, p = 0.0005) 
and GPT-4o Mini (difference: 3%, χ2 = 46.8, p = 0.0001). Claude 3.5 Sonnet, however, 
marked 85% (254/300) of cases as normal, resulting in 114/150 false negatives with a 
sensitivity of 24% and specificity of 93%. The radar graphs (Figure 3) highlight GPT-4o's 
balance across accuracy, sensitivity, and specificity, particularly excelling in detecting 
fractures across all regions, while the confusion matrices (Figure 4) reveal a high number of 
false negatives for Claude 3.5 Sonnet, especially in the hand and wrist regions, which directly 
impacted its sensitivity. 
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Figure 2 - Accuracy and consistency of Claude and GPT models in identifying anatomical regions and fractures from the 
MURAv1.1 dataset. 

 

Table 3 - Anatomical region accuracy per region on MURAv1.1 – identified/total (%) 

 

claude-3-
haiku-
20240307 

claude-3-opus-
20240229 

claude-3-5-
sonnet-
20240620 

gpt-4-turbo-
2024-04-09 

gpt-4o-mini-
2024-07-18 

gpt-4o-2024-
05-13 

Elbow 10/50 (20) 30/50 (60) 40/50 (80) 20/50 (40) 28/50 (56) 43/50 (86) 
Finger 0/50 (0) 11/50 (22) 9/50 (18) 13/50 (26) 1/50 (2) 5/50 (10) 
Forearm 16/50 (32) 19/50 (38) 34/50 (68) 26/50 (52) 19/50 (38) 22/50 (44) 
Hand 43/50 (86) 49/50 (98) 50/50 (100) 49/50 (98) 50/50 (100) 50/50 (100) 
Humerus 0/50 (0) 3/50 (6) 2/50 (4) 11/50 (22) 5/50 (10) 0/50 (0)  
Wrist 23/50 (46) 24/50 (48) 35/50 (70) 37/50 (74) 40/50 (80) 32/50 (64) 
Overall 92/300 (31) 136/300 (45) 170/300 (57) 156/300 (52) 143/300 (48) 152/300 (51) 
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Figure 3 - Radar charts illustrating the accuracy, sensitivity, and specificity of each model across different anatomical 
regions. 

 
Figure 4 - Heatmaps of confusion matrix components (True Positives, False Positives, True Negatives, and False Negatives) 
across models and regions. 
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Discussion 
 
This study provided an objective preliminary evaluation of the Claude-3 and GPT-4 variant 
models using the identification of imaging modality, anatomical region and detection of 
fractures to depict the models’ performance in basic radiologic image interpretation tasks. 
While these models demonstrated that they could identify features on medical images, overall 
performance in clinically relevant tasks indicates that they cannot be relied on for stand-alone 
radiological interpretation.  
 
On the ROCOv2 data subset, there was a satisfactory performance in the accuracy and 
consistency of the models, with many achieving 100% accuracy for imaging modality 
identification and at least 70% for the anatomical region. Models could identify the 
anatomical region on CT images well; however, they fell short for MRI images, with 
accuracy ranging from only 42% –74%. This outcome was likely because the models did not 
specify the level for lumbar spine images and predicted only ‘Spine’ in all but one case across 
all models. Given that lumbar spine images accounted for 26% (8/31) of all MRI cases, this 
was detrimental to their accuracy outcome on anatomical region identification. The answer of 
‘Spine’ was not accepted because the same error was not encountered for cervical spine 
images to the same degree. Although both tasks are considered rudimentary with little clinical 
value, most models performed well, demonstrating that they can identify relevant features in 
medical images.  
 
Model performance in the MURAv1.1 data subset focussing on upper appendicular 
radiographs was substantially lower. Claude 3.5 Sonnet’s identification of anatomical region 
on the MURAv1.1 data set had an accuracy of 57% (170/300). While this was the highest-
performing model on the MURAv1.1 dataset, this accuracy rate was still lower than the 
lowest-performing model on the ROCOv2 dataset – Claude 3 Haiku with 61% accuracy 
(61/100). These two subsets are not directly comparable as there is a difference in the number 
and the modality of the cases. However, when we isolate the x-ray images from the ROCOv2 
subset, the lowest-performing model – Claude 3 Haiku with 65.5% accuracy (19/29) – still 
outperformed the highest-performing model on the MURAv1.1 dataset. The main regions of 
difficulty were finger and humerus studies. Finger studies were often predicted as ‘Hand’ 
while humerus studies were often predicted as either ‘Elbow’, ‘Shoulder’, or ‘Arm’. This 
may be because the predicted anatomical regions are components of the actual anatomical 
region, and the models did not consider the whole image. 
 
Fracture detection on the MURAv1.1 subset is where there is more clinical relevance. 
Fracture detection is one of the most common radiologic tasks in trauma patients, often with 
clear radiologic signs. Despite this, the models did not perform well in this task, with the best 
accuracy outcome from GPT-4o with 62% (186/300) correctly identified cases. However, 
Claude 3.5 Sonnet was quite consistent with 83% and 92% consistency for the anatomical 
region and fracture detection across the three iterations, indicating reliable model 
performance.  
 
The results of this study are consistent with published literature. Brin et al. [14] evaluated 
GPT-4 on pathological cases across multiple modalities, finding an overall diagnostic 
accuracy of only 35.2% with a high rate of hallucinations. Similarly, Reith et al. [17] 
evaluated GPT-4, Gemini-1.5-Pro and Claude 3 Opus on paediatric radiological images and 
found an overall accuracy of 27.8%. Kurokawa et al. [16], comparing Claude 3 Opus and 
Claude 3.5 Sonnet, and Horiuchi et al. [13], comparing GPT-4-based ChatGPT and GPT-4V-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.16.24317414doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.16.24317414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

based ChatGPT, both found that there was poorer accuracy on image-based questions than on 
text-only questions. However, models designed specifically for fracture detection perform 
quite well, with Guermazi et al. [22] finding that the stand-alone performance of their model 
had an AUC of 0.97. This highlights the current difference in the efficacy of specialised 
models and publicly available VLMs. Despite this, the ability to integrate both textual and 
visual data more closely aligns with the decision-making process of radiologists, meaning 
that VLMs have the potential to surpass task-specific image analysis models mainly based on 
convolution neural networks [14].  
 
As one of the aims of this study was to provide an objective evaluation, we did not explore 
avenues that would give insight into the model’s output. Studies that did use free-text outputs 
could comment on more qualitative findings revealing that hallucinations, where the models 
provide incorrect or fabricated information, were quite common, constituting a large 
limitation to future integration [14], [17]. In addition, prompting models to produce an 
‘explanation’ for its output does not reflect the mechanical process underlying the prediction. 
It can, therefore, be used only to promote critical thinking rather than understanding the 
model itself [23]. Without insight into the models’ structure, training data or model weights, 
we cannot explain the behaviour and outputs of an AI model [23]. Explainable AI is, 
therefore, another field of interest in AI development as it can increase physician and patient 
trust in these models.  
 
Quality benchmark datasets can also increase the trustworthiness of AI models [24]. Reliable 
benchmark datasets can be used as standardised tests, which enable more consistent and 
objective evaluation and comparison of AI systems. However, benchmark creation is not an 
easy process with many considerations, such as the representatives of cases, quality of 
labelling, image quality and de-identification [24]. Our method in this study could contribute 
to a more comprehensive and unified framework for benchmarking and standardised testing. 
Strides have already been made with RadBench from Wu et al. [25].  
 
Our study had some limitations. As these models are trained on a proprietary mix that 
includes publicly available information on the Internet [15], we cannot be sure that the 
ROCOv2 and MURAv1.1 datasets were not included in the training set, which could lead to 
an overestimation of model performance. There is potential selection bias due to the 
subjective selection of cases. Furthermore, images with no fractures were selected from the 
cases in MURAv1.1 that were labelled as negative for abnormalities; however, this was not 
verified. Image interpretation performance was not evaluated with the textual clinical context 
provided. Doing so could have impacted model performance positively as it would more 
closely align with real decision-making processes. Our study had a limited scope, mainly 
focussing on fractures in upper appendicular radiographs; however, this is not fully 
representative of the range of pathology investigated with medical imaging. Finally, these 
models are constantly updating, so the results found in this study only represent a snapshot of 
time. 
 
Conclusion  
 
In this study, the current performance in accuracy and reliability of Claude and GPT 
demonstrates that integration of these models into clinical settings is not yet feasible. This 
study highlights the need for ongoing development and establishment of standardised testing 
techniques to ensure these models achieve reliable performance. Further works should 
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evaluate the performance of Claude and GPT on a wider range of pathologies and images that 
are not publicly available.  
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