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ABSTRACT  

Background and Aims: Metabolic liver disease is the fastest rising cause of hepatocellular carcinoma 

(HCC) worldwide, but the underlying molecular processes that drive HCC development in the setting of 

metabolic perturbations are unclear. We investigated the role of aberrant DNA methylation in metabolic 

HCC development in a multicenter international study.     

Methods: We used a case-control design, frequency-matched on age, sex, and study site. Genome-wide 

profiling of peripheral blood leukocyte DNA was performed using the 850k EPIC array. Cell type 

propor8ons were es8mated from the methyla8on data. The study samples were split 80% and 20% for 

training and valida8on. Differen8al methyla8on analysis was performed with adjustment for cell type, 

and we generated area under the receiver-opera8ng curves (ROC-AUC). 

Results: We enrolled 272 metabolic HCC pa8ents and 316 control pa8ents with metabolic liver disease 

from six sites. Fifty-five differen8ally methylated CpGs were iden8fied; 33 hypermethylated and 22 

hypomethylated in cases versus controls. The panel of 55 CpGs discriminated between cases and 

controls with AUC=0.79 (95%CI=0.71-0.87), sensi8vity=0.77 (95%CI=0.66-0.89), and specificity=0.74 

(95%CI=0.64-0.85). The 55-CpG classifier panel performed bever than a base model that comprised age, 

sex, race, and diabetes mellitus (AUC=0.65, 95%CI=0.55-0.75, sensi8vity=0.62 (95%CI=0.49-0.75) and 

specificity=0.64 (95%CI=0.52-0.75). A mul8factorial model that combined the 55 CpGs with age, sex, 

race, and diabetes, yielded AUC=0.78 (95%CI=0.70-0.86), sensi8vity=0.81 (95%CI=0.71-0.92), and 

specificity=0.67 (95%CI=0.55-0.78).  

Conclusions: A panel of 55 blood leukocyte DNA methylation markers differentiates patients with 

metabolic HCC from control patients with benign metabolic liver disease, with a slightly higher 

sensitivity when combined with demographic and clinical information. 
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Introduc(on 

Metabolic-related liver disease is the fastest growing cause of liver cancer and its most common 

type, hepatocellular carcinoma (HCC)[1, 2]. Metabolic liver disease comprises metabolic dysfunc8on-

associated steato8c liver disease (MASLD), and non-viral and non-alcoholic steato8c liver disease, and 

these are rapidly increasing worldwide [2-4]. Although chronic hepa88s B and C virus (HBV and HCV) 

infec8ons were for several decades the major causes of HCC, improved treatment for HCV and increased 

vaccina8ons for HBV have shi{ed the burden of HCC to non-viral causes, with metabolic liver disease 

being the most rapidly rising cause [5]. Metabolic HCC exhibits unique molecular processes and immune 

characteris8cs and is considered a dis8nct HCC subtype, requiring characteriza8on of its underlying 

molecular signatures, including epigenome-wide DNA methyla8on altera8ons [6].  

Despite evidence of differen8al hepatotumorigenesis by cancer e8ology [7, 8], most exis8ng 

studies on DNA methyla8on profiles for HCC detec8on have been focused on all-cause HCC [9-13]. Few 

studies have assessed HCC detec8on in pa8ents with viral hepa88s [14, 15] or all-cause liver cirrhosis 

[16, 17]. Gene8cally engineered mouse models with metabolic dysfunc8on-associated steatohepa88s 

(MASH)-related HCC suggest a dis8nct DNA methyla8on profile for the progression of MASH to HCC in 

murine models [18, 19]. Exis8ng human studies on MASH-related HCC have focused on liver 8ssues, 

comparing DNA methyla8on status of tumor samples to paired adjacent noncancer 8ssues or to 

noncancer liver 8ssues from different individuals, but these have rarely been validated in circula8ng 

blood for noninvasive tes8ng because of difficulty in obtaining appropriate pa8ent samples [20, 21]. 

Iden8fying promising blood-based DNA methyla8on markers that could be combined with current 

clinical markers of HCC (e.g., alpha-feto protein [AFP], lec8n-reac8ve AFP [AFP-L3], and des-γ-carboxy 

prothrombin [DCP]) would enhance clinical surveillance through noninvasive screening for metabolic 

HCC, a rapidly increasing global public health burden [1, 4]. 
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The goal of this study was to perform an epigenome-wide DNA methyla8on profiling and 

valida8on in pa8ents with metabolic HCC and in cancer-free control pa8ents with metabolic liver disease 

in an interna8onal, mul8center study. Our primary aim was to iden8fy differen8ally methylated 5'-C-

phosphate-G-3' (CpG) posi8ons across the genome that discriminate metabolic HCC cases from 

metabolic controls. We also sought to develop and validate a mul8factorial model combining CpGs with 

selected clinical and demographic variables. In secondary analysis, we assessed whether presence of the 

gene8c risk variant PNPLA3 (I148M) rs738409 could further improve metabolic HCC predic8on by 

combining this variant with differen8ally methylated CpGs and clinical and demographic variables. 

Materials and Methods 

Study Popula0on and Data Collec0on  

Details of the design and methods used for par8cipant recruitment and data collec8on have 

been published [22]. Briefly, data and biospecimen were obtained from the following six interna8onal 

sites: 1) the Barcelona Clinic Liver Cancer Group (BCLC), Hospital Clinic Barcelona and IDIBAPs, Barcelona, 

Spain; 2) Ins8tuto de Inves8gación Sanitaria Biogipuzkoa (IISB), Donos8a University Hospital, San 

Sebas8an, Spain; 3) the Karolinska University Hospital, Sweden; 4) the Virgen del Rocio Hospital Ins8tute 

of Biomedicine of Sevilla (IBIS), Seville, Spain; 5) the University of Texas Southwestern (UTSW), San 

Antonio, Texas; and 6) the Mayo Clinic sites in Rochester, Minnesota, and Jacksonville, Florida. All sites 

provided germline leukocyte DNA and epidemiological data on 673 metabolic HCC cases and 763 cancer-

free controls with a history of MASLD (formerly known as nonalcoholic favy liver disease [NAFLD]), 

metabolic syndrome, or other metabolic condi8ons (e.g., diabetes and obesity). Recruitment and data 

collec8on were completed at all sites before the recent change in the nomenclature from NAFLD to 

MASLD [3]. The par8cipa8ng sites were asked to exclude individuals with compe8ng liver diseases before 

submi~ng their data and DNA samples to the Mayo Clinic. Poten8al par8cipants excluded from the 

study included those with at least one of the following liver diseases: viral hepa88s (HBV, HCV), alcoholic 
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liver disease, autoimmune hepa88s, alpha-1-an8trypsin deficiency, hemochromatosis, Wilson’s disease, 

biliary cirrhosis, primary sclerosing cholangi8s, Budd-Chiari syndrome, and those who consumed ≥20 

grams of alcohol per day. A{er these exclusions, metabolic HCC was defined as imaging or pathologically 

confirmed diagnosis of steatosis-related HCC, metabolic syndrome-related HCC, or cryptogenic HCC—

most of which are associated with MASLD [23]. Controls were cancer-free individuals with imaging or 

pathological confirma8on of hepa8c steatosis. Data received from each site included informa8on on 

case-control status, age at HCC diagnosis or recruitment for controls, sex, ethnicity, body mass index 

(BMI, kg/m2), smoking history, and type II diabetes mellitus status. For the present study, we frequency-

matched 320 metabolic HCC cases with 320 metabolic controls based on age (± 5 years), sex, and study 

site for analyses. All par8cipa8ng sites obtained approval from their local ins8tu8onal review boards 

(IRBs), and an addi8onal IRB approval was obtained from the Mayo Clinic IRB for the present study (IRB#: 

23-000005).  

DNA Methyla0on Assay and Quality Control Checks 

Peripheral blood leukocyte DNA samples obtained from the par8cipants were assayed on the 

Illumina Infinium Methyla8on EPIC BeadChip microarray (EPIC array; Illumina Inc., San Diego, CA, USA), 

which covers 850,000 CpG sites across the genome [24]. The assay was performed at the Mayo Clinic 

Genome Analysis Core laboratory. In brief, DNA quan8fica8on was performed using the Invitrogen Qubit 

dsDNA Quan8fica8on Assay kit (catalog# Q32853; ThermoFisher Scien8fic, Inc., Waltham, MA, USA). This 

was followed by a bisulfite modifica8on process that u8lized the column cleanup kit method under the 

alterna8ve incuba8on condi8ons recommended by Illumina for the EPIC array. Measurements were 

done on a nanodrop instrument following the bisulfite modifica8on. We ran the EPIC array using eight 

96-well plates containing DNA from the 640 cases and controls. We included 16 laboratory control DNA 

samples (human methylated and unmethylated control DNA sets; catalogue #D5011 for methylated and 

#D5014 for unmethylated control DNA, Zymo Research Inc., Irvine, CA, USA). A pair of these methylated 
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and unmethylated laboratory controls were included on each of the eight plates to determine if any of 

the probes should be excluded due to poor performance. Further, we included 64 par8cipant duplicate 

samples that were distributed evenly across the plates. Determina8on of the methyla8on status of the 

target CpG sites involved comparing the ra8o of a fluorescent signal from the methylated allele to the 

sum of the fluorescent signals from both methylated and unmethylated alleles (i.e., the b value). The b 

value per CpG range from 0 (unmethylated) to 1 (fully methylated). Both the laboratory controls and 

par8cipant duplicates indicated excellent assay performance. The unmethylated laboratory controls 

showed an intraclass correla8on of 0.95, while the methylated controls had a correla8on of 0.83. For 

duplicates, we achieved correla8ons ≥0.98, and we retained the duplicated sample with the highest call 

rate in the final analysis. For further quality control (QC), CpGs were excluded if they were located at a 

single nucleo8de polymorphism (SNP) loca8on, failed in more than 10% of samples, were located on the 

X and Y chromosome, were determined to be cross-reac8ve, or overlapped with gene8c variants [24]. 

This resulted in 691,187 CpGs passing QC. Data were normalized with dasen (dasen command 

in watermelon R package) that u8lizes quan8le normaliza8on to normalize methylated and 

unmethylated intensi8es separately, and address types I and type II probes separately [25]. A small 

frac8on of missing b values (<0.01%) were imputed using champ.impute func8on with k-nearest 

neighbor (KNN) and k parameter as five in the ChAMP R package. We used principal component analysis 

(PCA) to assess batch effect across the eight experimental plates. The PCA was performed on the top 

2000 most variable autosome CpG probes, considering all samples (CpG probes with the largest standard 

devia8ons in M-values). We then used the Kruskal-Wallis rank-sum test to inves8gate the associa8on 

between the top two principal components and the experimental plates, which did not show any 

associa8on, ruling out batch effect as a concern. To account for differences in leukocyte cell types, we 

es8mated cell type propor8ons for CD4 T cells (CD4T), CD8 T cells (CD8T), natural killer cells (NK-cells), B 

lymphocytes (B-cells), monocytes, and neutrophils using a customized set of probes obtained from IDOL 
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op8miza8on for blood as implemented in the FlowSorted.Blood.EPIC Bioconductor package [26]. For 

par8cipant samples QC, we excluded samples with (1) poor assay performance based on the methylated 

and unmethylated intensity plot, (2) samples that failed biological sex check using the methods 

implemented in the minfi and watermelon R packages, and (3) samples determined to be outliers based 

on the watermelon method [25]. 

Sta0s0cal Analysis 

Differences in par8cipant characteris8cs were compared using means and standard devia8ons 

(SDs) for con8nuous variables, and frequencies and percentages for categorical variables. The study 

sample was divided randomly into training (80%) and valida8on (20%) sets through a stra8fied approach 

based on frequencies that ensured approximately equal distribu8ons by case-control status, age (5-year 

groups), sex, and study site in both the training and valida8on data. We assessed differences in the 

distribu8on of all study variables between the cases and controls in the training and valida8on data 

separately, but conclusions were based on results of the training data. The variables examined are age 

(con8nuous), sex, race (White, other), BMI (con8nuous), smoking history (never, former, current), 

diabetes mellitus (yes, no), study site (Mayo Clinic and UTSW combined, Karolinska hospital, BCLC-

Barcelona and IISB-San Sebas8an combined, and IBIS-Seville), and leukocyte cell type (CD4T, CD8T, NK-

cells, B-cells, monocytes, and neutrophils). These comparisons were done using a Kruskal-Wallis rank-

sum test for con8nuous variables and c2 test for categorical variables. We combined data from UTSW 

with Mayo Clinic data because the UTSW data comprised only case subjects, and the IISB-San Sebas8an 

data was combined with the BCLC-Barcelona data because the IISB data also comprised case subjects 

only. Variables found to be significantly different between cases and controls in the training data are 

race, diabetes mellitus, CD4T, monocytes, and neutrophils, and these were considered for further 

evalua8on as covariates for (1) CpG selec8on (significant cell types), or (2) mul8factorial predic8on 

modeling (race and diabetes).   
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Candidate CpG selec8on and ini8al predic8ve modeling were done in the training data. Of the 

691,187 CpGs that passed the QC checks, we used false-discovery rate (FDR)-corrected p-value (q-value), 

adjus8ng for the three significant cell types (CD4T, monocytes and neutrophils), to iden8fy 164 

differen8ally methylated CpGs that met the significance threshold (q<0.05) (Suppl. Table 1). These CpGs 

were iden8fied by comparing the metabolic HCC cases with the metabolic controls in the training data 

and using the moderated paired t-test from the R Bioconductor package, linear models for microarray 

data (limma) [27]. To address high-dimensionality and mul8collinearity among the selected CpGs, LASSO 

regression with 10-fold cross valida8on was employed using a generalized linear model via penalized 

maximum likelihood (glmnet). The grid search in glmnet involved keeping the alpha value fixed at one 

and varying lambda (regulariza8on parameter) values. The LASSO regression process generated shrunken 

es8mates for each CpG, and we retained only 55 CpGs with nonzero coefficients for predic8on modeling, 

as these are the most informa8ve markers. We used a Manhavan plot to visualize the CpGs across 

chromosomes, and a volcano plot to visualize the hypomethylated and hypermethylated CpGs. 

Methyla8on values of the CpGs were also visualized using heatmaps. These data visualiza8ons were 

done using the R packages ggplot2 and ComplexHeatmap. 

In our primary analysis, we first constructed a predic8ve model that included key biological 

variables (age and sex), and the significant demographic and clinical variables described above (race and 

diabetes) using area under the receiver opera8ng characteris8c curve (AUC-ROC) analysis with the R 

package pROC. This ini8al model was constructed to provide a baseline context for evalua8ng the 

predic8ve value of the iden8fied CpGs. We followed this with a predic8ve model that included only the 

parsimonious list of 55 differen8ally methylated CpGs using AUC-ROC analysis. We then constructed a 

mul8factorial model that combined the key biological-demographic and clinical variables (age, sex, race, 

diabetes) with the 55 differen8ally methylated CpGs in the same model to evaluate the performance of 

an elaborate model and compare with the performance of the CpGs only model. We performed two 
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secondary analyses. In the first secondary analysis, we evaluated the addi8onal predic8ve impact of 

PNPLA3-rs738409 in a subgroup of par8cipants with gene8c data available from our previous study [22]. 

Here too, we constructed a base model that included only the demographic and clinical variables (age, 

sex, race, diabetes mellitus) and rs738409 using AUC-ROC analysis. This was also followed by a separate 

model for only the 55 CpGs in this subgroup of par8cipants. We then constructed an elaborate model 

that included age, sex, race, diabetes mellitus, rs738409, and the 55 CpGs. All training data predic8ve 

models underwent valida8on in an independent 20% of the sample, evalua8ng AUC, sensi8vity, and 

specificity. In the second secondary analysis, we built similar predic8ve models using only the 

hypermethylated CpGs. The underlying methyla8on data and limited covariates have been made 

available in NCBI/GEO: ID# GSE281691.  

Results 

Of the 640 par8cipant samples included in the study, one sample showed poor assay 

performance, 46 samples had discordance between self-reported sex and biological sex inferred from 

the X:Y chromosome, and five samples were iden8fied as outliers. A{er excluding these samples, 588 

samples remained for analyses (272 metabolic HCC cases and 316 metabolic controls) (Table 1). Briefly, 

in the overall sample, there was a greater representa8on of men (65%), non-Hispanic Whites (87%), and 

individuals with type II diabetes mellitus (65%). Data on the PNPLA3-rs738409 gene8c risk variant was 

available on 75% (n=439) of par8cipants. We split the overall sample in 80:20 ra8o into training (n=469) 

and valida8on (n=119) sets. The cases and controls did not differ significantly by age, sex, or study site in 

either the training or valida8on sample (Table 1). In the training data, cases had greater propor8ons of 

non-Whites and individuals with a history of type II diabetes mellitus than controls. The case par8cipants 

had also higher leukocyte propor8ons of CD4T, monocytes, and neutrophils than did the controls. There 

were no other significant differences observed in the training data. In the valida8on data, only non-
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Whites, individuals with diabetes mellitus, and those with a higher monocyte cell type propor8ons were 

higher in cases than controls. 

We performed an epigenome-wide association study (EWAS) in the training data based on 

691,187 CpGs that passed QC (Figures 1A-1D). The EWAS did not show overfitting as the genomic 

inflation lambda value is closer to one, which is within the expected range (λ=1.31, Figure 1B). Of the 

691,187 CpG sites, 164 were differentially methylated (110 hypermethylated and 54 hypomethylated) in 

the metabolic HCC cases compared to metabolic controls (Figures 1A and 1C, and Suppl. Table 1). We 

used LASSO regression with 10-fold cross validation to assess multicollinearity and reduced the EWAS 

significant CpGs to a parsimonious list of 55 informative markers with non-zero coefficients, of which 33 

were hypermethylated and 22 were hypomethylated (Figure 1D and Table 2). Interestingly, many of the 

genes linked to the differentially methylated CpGs have been associated with liver disease progression 

(e.g., DCP2, TRPV3, ARRB1, KCNIP4, MIR10A), and cancer formation or progression (e.g., MTHFR, GRIK2, 

GSN, HOX3, KCNMA1) (Table 2).  

To provide a context for assessing the discriminatory accuracy of the 55 informative CpGs, we 

first created a base model comprising demographic and clinical variables only: age, sex, race, and 

diabetes mellitus. This base model yielded a training sample AUC=0.66 (95% CI: 0.61-0.71), 

sensitivity=0.81 (95% CI: 0.76-0.86), and specificity=0.47 (95% CI: 0.41-0.53), and validation sample 

AUC=0.65 (95% CI: 0.55-0.75), sensitivity=0.62 (95% CI: 0.49-0.75), and specificity=0.64 (95% CI: 0.52-

0.75) (Figure 2A). Next, we assessed the predictive accuracy of only the parsimonious panel of 55 

informative CpGs in the training data, yielding AUC=0.97 (95% CI: 0.96-0.99), sensitivity=0.93 (95% CI: 

0.89-0.96), and specificity=0.93 (95% CI: 0.90-0.96) (Figure 2B). The validation results for the CpGs only 

model was AUC=0.79 (95% CI: 0.71-0.87), sensitivity=0.77 (95% CI: 0.66-0.89), and specificity=0.74 (95% 

CI: 0.64-0.85) (Figure 2B). We then assessed the combined predictive ability of an elaborate model that 
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included age, sex, race, diabetes mellitus, and the 55 CpGs, yielding training sample AUC=0.98 (95% CI: 

0.97-0.99), sensitivity=0.92 (95% CI: 0.89-0.96), and specificity=0.96 (95% CI: 0.94-0.96). Results from the 

validation sample for the joint elaborate model were AUC=0.78 (95% CI: 0.70-0.86), sensitivity=0.81 

(95% CI: 0.71-0.92), and specificity=0.67 (95% CI: 0.55-0.78) (Figure 2C). These results constitute our 

primary findings.  

In secondary analysis among a subgroup of participants with genetic data, we assessed the 

addi8onal predic8ve impact of the HCC suscep8bility variant, PNPLA3-rs738409 (Figure 3). Here too, we 

created a base model that comprised only age, sex, race, diabetes mellitus and rs738409, yielding 

valida8on sample AUC=0.66 (95% CI: 0.54-0.77), sensi8vity=0.80 (95% CI: 0.69-0.92), specificity=0.45 

(95% CI: 0.30-0.59) (Figure 3A). Valida8on results for a model with only the 55 CpGs in this subgroup 

were AUC=0.76 (95% CI: 0.66-0.86), sensi8vity=0.76 (95% CI: 0.64-0.88), and specificity=0.70 (95% CI: 

0.57-0.83) (Figure 3B). Further, we built an elaborate model that assessed the combined predic8ve 

ability of the clinical, demographic, and gene8c data together with the 55 CpGs in the subgroup of 

par8cipants with available gene8c data. A{er running a penalized LASSO regression analysis for the 

elaborate model in the subgroup analysis, only 44 of the CpGs had non-zero coefficients (Suppl. Table 2), 

together with age, sex, race, diabetes mellitus and rs738409 were used for predic8on modeling. This 

elaborate model yielded a valida8on AUC=0.75 (95% CI: 0.65-0.85), sensi8vity=0.74 (95% CI: 0.61-0.87), 

and specificity=0.70 (95% CI: 0.57-0.83) (Figure 3C).  

We repeated all analyses using only the hypermethylated CpGs from the EWAS significant CpGs 

(n=110, q<0.05). Based on a penalized LASSO regression analysis with 10-fold cross valida8on, we 

iden8fied a 42-CpG classifier panel with non-zero coefficients that showed differen8al methyla8on 

values between cases and controls (Figure 4A-4C and Suppl. Table 3). Upon fi~ng the 42 

hypermethylated CpGs, we observed valida8on AUC=0.75 (95% CI: 0.66-0.84), sensi8vity=0.81 (95% CI: 
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0.71-0.92), and specificity=0.62 (95% CI: 0.50-0.74) (Figure 4D). We performed a separate mul8factorial 

penalized LASSO regression analysis that included age, sex, race, diabetes mellitus, and the 42 CpGs, 

retaining 40 CpGs with non-zero coefficients (Suppl. Table 4) together with age, sex, race, and diabetes 

mellitus. This yielded a valida8on AUC=0.75 (95% CI: 0.66-0.84), sensi8vity=0.72 (95% CI: 0.60-0.84), and 

specificity=0.73 (95% CI: 0.62-0.83) (Figure 4E). We further constructed an independent model in the 

subgroup of par8cipants with gene8c data, fi~ng a penalized LASSO regression analysis with the 42 

hypermethylated CpGs, retaining 38 CpGs (Suppl. Table 5) together with age, sex, race, diabetes mellitus 

and rs738409 for predic8on modeling. This resulted in a valida8on AUC=0.75 (95% CI: 0.65-0.85), 

sensi8vity=0.83 (95% CI: 0.72-0.94), and specificity=0.62 (95% CI: 0.48-0.76) (Figure 4F).  

Discussion 

In this large mul8center study, we performed an EWAS in pa8ents with metabolic liver disease 

from which 55 differen8ally methylated CpGs were iden8fied and independently validated for 

associa8on with metabolic HCC. To provide a context for evalua8ng the predic8ve accuracy of the 

iden8fied CpGs, we first constructed a base model that comprised age, sex, race and diabetes mellitus, 

yielding valida8on AUC of 0.65, sensi8vity of 0.62 and specificity of 0.64, and this base model did not 

perform as well as our 55-CpG classifier model with valida8on AUC of 0.79, sensi8vity of 0.77, and 

specificity of 0.74. We also developed a mul8factorial model that combined age, sex, race, and diabetes 

mellitus with the 55-CpG panel, and this elaborate model had slightly higher sensi8vity but lower 

specificity in the valida8on sample (AUC=0.78, sensi8vity=0.81, specificity=0.67) compared to the 55-

CpGs only model. Further, we explored a mul8factorial model in a subgroup of par8cipants with gene8c 

data, jointly assessing the predic8ve accuracy of age, sex, race, diabetes mellitus, PNPLA3-rs738409, and 

the 55 CpGs. Valida8on results of this model (AUC=0.75, sensi8vity=0.74, specificity=0.70) did not differ 

substan8ally from a model built with only the 55 CpGs in the same subgroup of par8cipants (AUC=0.76, 

sensi8vity=0.76, specificity=0.70). Together, the sensi8vity values of these models are higher or nearly at 
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par with reported sensi8vity of AFP, the most widely used HCC diagnos8c marker, with published 

sensi8vity values of AFP ranging between 0.48 and 0.84 for the detec8on of all-cause HCC [14, 15]. 

However, because 20-30% of HCC tumors do not secrete AFP [28], future studies that combine relevant 

CpGs with AFP or other clinical diagnos8c markers (e.g., DCP) and gene8c risk variants for mul8factorial 

modeling could enhance predic8on of metabolic HCC in pa8ents with metabolic liver disease.   

DNA methyla8on plays an important role in transcriptome regula8on and gene expression [29]. 

Aberrant DNA methyla8on has been found to be stably maintained by the DNA methyltransferase genes, 

DNMT1, DNMT3A and DNMT3B, during mul8stage tumorigenesis of various malignancies [21, 29]. 

Tumor suppressor gene silencing through DNA hypermethyla8on and oncogene ac8va8on through DNA 

hypomethyla8on can both contribute to cancer development, and these methyla8on markers could 

become poten8al targets of therapy [30, 31]. In hepa8c tumorigenesis, aberrant DNA methyla8on has 

been observed in the development of HCC, but most methyla8on studies have focused on single gene 

loci [32] or a target candidate gene panel [9, 33, 34] and even all-cause HCC [9-13], but these have not 

proven to be sufficiently robust when compared to AFP and other clinical diagnos8c biomarkers. A meta-

analysis of 20 studies on all-cause HCC found that target candidate gene-based CpG panels do not 

perform adequately well to inform clinical test development [35]. Our use of an unbiased EWAS 

approach for screening of informa8ve markers has the advantage of iden8fying poten8ally novel 

methyla8on markers for e8ology-specific HCC detec8on, which is important for metabolic HCC given 

evidence of its dis8nct molecular signatures [6], and its fast-rising incidence worldwide [1, 2]. 

Because aberrant methyla8on can repress tumor suppressor genes or enhance oncogene ac8vity 

[30, 31], it is important to assess the effects of both hypermethylated and hypomethylated CpGs jointly 

regarding tumor development. In our primary analysis, we iden8fied 33 hypermethylated and 22 

hypomethylated CpGs that play poten8al roles in metabolic HCC development (Table 2). Among the 
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genes linked to hypermethyla8on in the cases, TRPV3 [36], DCP2 [37], KCNIP4 [38], and ARRB1 [39] have 

been associated with progression of liver disease to fibrosis and cirrhosis. Upregula8on of ARRB1 has 

been further found to induce inflamma8on-associated HCC development, while inhibi8on of this gene 

reduces hepa8c inflamma8on and hepatotumorigenesis [39]. Other studies have found higher 

expression of ARRB1 during HCC metastasis [40], and its upregula8on correlates with tumor progression 

[41]. MTHFR is also one of the hypermethylated CpG-linked genes found in this study, and 

polymorphisms in this gene, which is involved in one-carbon metabolism of folate, have been associated 

with higher HCC risk and poor prognosis of HCC pa8ents [42, 43]. Further, GRIK2 has been associated 

with liver cancer development and metastasis [44]. In vivo experiments have also shown that 

overexpression of GSN, another hypermethylated CpG-linked gene, promotes HCC development through 

inhibi8on of the TP53 tumor suppressor gene [45]. Moreover, GSN has been found to promote HCC 

invasion and metastasis through its regula8on of epithelial-mesenchymal transi8on [46, 47]. 

Among the hypomethylated genes, a study by Wang et al. suggests that HOXB3 is downregulated 

in cryptogenic HCC development [48]. HOXB3, which is involved in several cellular processes, including 

cell growth and differen8a8on, has also been found to be downregulated in breast and pancrea8c 

cancers [49]. In another study, HOXB3 was found to interact with DNMT3B to promote leukemia 

development [50]. MIR10A has been proposed as a marker for liver fibrosis development in chronic liver 

disease [51] and has also been found to promote HCC cell prolifera8on, migra8on, and metastasis [52]. 

Two other hypomethylated CpG-linked genes, VRK2 and MGAT5B, have been associated with HCC 

metastasis [53, 54]. KCNMA1 has been found to be downregulated in HCC, and its upregula8on enhances 

HCC cell lines’ responsiveness to treatment with sorafenib [55]. Further, OSBPL5 is reported to be 

downregulated in HCC [56]. While down regula8on of PAWR has been found to induce bladder cancer, its 

upregula8on with self-amplifying RNA (saRNA) inhibits cancer cell prolifera8on by inducing apoptosis 
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[57]. The poten8al impact of the other genes listed in Table 2 has not been studied extensively and 

therefore requires further inves8ga8on.   

Although HCC is typically diagnosed based on clinical, imaging and/or pathological features, in 

the present study, we did not aim to establish a diagnos8c criterion for metabolic HCC, but rather 

iden8fy DNA methyla8on markers that can robustly discriminate metabolic HCC from benign metabolic 

liver disease. Our aim is that these markers could be combined with clinical biomarkers in future studies 

to improve diagnosis of HCC in pa8ents with chronic metabolic perturba8ons, including improving 

diagnosis in pa8ents with asymptoma8c disease. Iden8fying DNA methyla8on markers that can 

discriminate between cancer and non-cancer samples is an important first step in cancer detec8on in 

high-risk pa8ents [20]. However, whether the markers iden8fied here are aberrantly methylated in the 

precancer stage or early cancer development stage of the mul8stage hepa8c tumorigenesis would need 

to be inves8gated further before the establishment of a specific criterion for metabolic HCC detec8on. 

The iden8fied markers have prospects for clinical transla8on if confirmed in prospec8ve studies with 

long-term follow-up and with evalua8on of early-stage HCC in the background of metabolic liver disease. 

Since the methyla8on markers could be targeted with pyrosequencing or high-performance liquid 

chromatography, both of which can be done in a clinical laboratory, we expect that their clinical 

applica8on would be feasible.  

Our study has several strengths and limita8ons. Strengths of the study includes the focus on 

pa8ents with metabolic liver disease with well-characterized samples sourced through our mul8center 

interna8onal collabora8on. We used the 850k EPIC array for screening of differen8ally methylated CpG 

posi8ons across the genome, as opposed to the smaller 450k array with limited CpG coverage or 

targeted assay panels that have been used in prior studies [16, 17, 20, 21, 31, 58]. Our sample size was 

sufficiently large and enabled separate training and independent valida8on analyses. To ensure rigor and 
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reduce redundancy (mul8collinearity) in CpG selec8on, we employed LASSO regression analysis with 10-

fold cross valida8on in the training models, which adds to the study’s strengths. Our valida8on analysis 

also shows robustness of the models and supports a role of the iden8fied markers in metabolic 

hepatotumorigenesis. Addi8onally, we built a separate model focused on only hypermethylated CpGs, 

which has been done in some studies, but our primary focus was on the combined effect of both the 

hypermethylated and hypomethylated CpGs. Limita8ons include our use of leukocyte DNA samples 

instead of plasma-derived cell-free DNA (cfDNA), for the methyla8on assay. While we did not have 

sufficient plasma volume on our pa8ents for the cfDNA assay, we ameliorated this challenge by 

es8ma8ng leukocyte cell type propor8ons in each par8cipant sample and adjusted for significant cell 

types in the model used for selec8ng differen8ally methylated CpGs. We also did not have data on 

cirrhosis status or tumor stage, and we could not assess these in the study. The cross-sec8onal nature of 

our data cannot preclude reverse causality of the associa8on where the presence of a tumor could alter 

methyla8on status. However, such altera8ons could be useful for early HCC detec8on if confirmed in 

longitudinal studies. Further, our study sample is predominantly non-Hispanic White, thus, follow-up 

studies in a more diverse pa8ent popula8on, preferably using cfDNA and including data on cirrhosis and 

tumor stage and with larger pa8ent samples would be an improvement.  

In summary, we performed an unbiased epigenome-wide screening of differen8ally methyla8on 

markers using germline leukocyte DNA and iden8fied a promising set of CpGs that can discriminate 

pa8ents with metabolic HCC from cancer-free pa8ents with metabolic liver disease. These markers could 

aid in HCC surveillance in pa8ents with metabolic perturba8ons. Although further work is needed to 

confirm the markers iden8fied here, they could serve as components of an integra8ve panel that could 

ul8mately improve outcomes for pa8ents with this frequently deadly cance
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Table 1. Descrip*ve Sta*s*cs of the Training and Valida*on Samples 
 

Overall sample 
N=588 (100%) 

Training Sample 
N=469 (80%) 

Valida4on Sample 
N=119 (20%) 

Characteris4cs 
Cases 
N=219 

Controls 
N=250 p-value Cases 

N=53 
Controls 

N=66 p-value 

Age in years, mean (SD)a 64.8 (10.8) 64.8 (12.1) 64.7 (10.6) 0.91 65.3 (8.1) 65.1 (8.7) 0.94 
BMI in kg/m2, mean (SD) 31.8 (6.8) 31.2 (5.8) 32.4 (7.3) 0.07 30.7 (4.3) 32.2 (8.9) 0.27 
 N (%) N (%) N (%)  N (%) N (%)  
Sex    0.50   0.85 
     Male 385 (65.5) 145 (66.2) 158 (63.2)  37 (69.8) 45 (68.2)  
     Female 203 (34.5) 74 (33.8) 92 (36.8)  16 (30.2) 21 (31.8)  
Race/Ethnicity    <0.01   0.01 
     Non-Hispanic White 512	(87.1) 174 (79.5) 232 (92.8)  43 (81.1) 63 (95.5)  
     Other 76	(12.9) 45 (20.5) 18 (7.2)  10 (18.9) 3 (4.5)  
Smoking History    0.65   0.06 
     Never 287 (48.8) 102 (46.6) 123 (49.2)  24 (45.3) 38 (57.6)  
     Former smoker 258 (43.9) 104 (47.5) 105 (42.0)  22 (41.5) 27 (40.9)  
     Current smoker 34 (5.8) 13 (5.9) 14 (5.6)  6 (11.3) 1 (1.5)  
     Unknown 9 (1.5) 0 (0) 8 (3.2)  1 (1.9) 0 (0)  
Type II diabetes mellitus     <0.001   0.01 
     Yes 381 (64.8) 171 (78.1) 130 (52.0)  42 (79.2) 38 (57.6)  
     No 207 (35.2) 48 (21.90 120 (48.0)  11 (20.8) 28 (42.4)  
Study Site    0.85   0.40 
     Mayo Clinic, MN and FL, and UTSWb 481 (81.8) 172 (78.5) 199 (79.6)  49 (92.5) 61 (92.4)  
     Karolinska University Hospital, Sweden 46 (7.8) 20 (9.1) 22 (8.8)  3 (5.7) 1 (1.5)  
     BCLC, Barcelona, and IISB, San Sebas*an, Spain 36 (6.1) 17 (7.8) 15 (6.0)  1 (1.9) 3 (4.5)  
     IBIS, Seville, Spain 25 (4.3) 10 (4.6) 14 (5.6)  0 (0.0) 1 (1.5)  
White blood cell types        

CD4 T cells, mean (SD) 0.14 (0.07) 0.14 (0.09) 0.16 (0.06) <0.001 0.12 (0.05) 0.14 (0.07) 0.12 
CD8 T cells, mean (SD) 0.07 (0.05) 0.07 (0.06) 0.07 (0.05) 0.19 0.07 (0.05) 0.14 (0.07) 0.63 
Natural killer cells, mean (SD) 0.05 (0.03) 0.05 (0.03) 0.05 (0.03) 0.06 0.05 (0.03) 0.05 (0.02) 0.08 
B lymphocytes, mean (SD) 0.05 (0.04) 0.05 (0.04) 0.05 (0.03) 0.84 0.06 (0.05) 0.04 (0.02) 0.09 
Monocytes, mean (SD) 0.09 (0.04) 0.10 (0.06) 0.09 (0.03) 0.005 0.10 (0.04) 0.08 (0.03) 0.01 
Neutrophils, mean (SD) 0.59 (0.15) 0.60 (0.19) 0.59 (0.11) 0.002 0.61 (0.14) 0.61 (0.12) 0.38 
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Table 1 (con*nued). 

Characteris4cs 

Overall sample 
N=588 (100%) 

Training Sample 
N=469 (80%) 

Valida4on 
N=119 (20%) 

Cases 
N=219 

Controls 
N=250 p-value Cases 

N=53 
Controls 

N=66 p-value 

PNPLA3-rs738409 genotype    0.16   0.94 
   CC 150 (25.5) 54 (24.7) 68 (27.2)  14 (26.4) 14 (21.2)  
   CG 173 (29.4) 71 (33.8) 66 (26.4)  17 (32.1) 19 (28.8)  
   GG 116 (19.7) 50 (22.8) 37 (14.8)  15 (28.3) 14 (21.2)  
   Missing 149 (25.3) 44 (20.1) 79 (31.6)  7 (13.2) 19 (28.8)  

Abbrevia*ons: BCLC, Barcelona Clinic Liver Cancer Group, Barcelona, Spain; BMI, body mass index; IBIS, Ins*tute of Biomedicine of Sevilla, Seville, 
Spain; IISB, Ins*tuto de Inves*gación Sanitaria Biodonos*a Research Ins*tute, Donos*a University Hospital, San Sebas*an, Spain; UTSW, University of 
Texas Southwestern. 
aAge at HCC diagnosis for cases and age at recruitment for controls. 
bData from the UTSW were all cases (N=43) and therefore were combined with Mayo Clinic samples. 
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Table 2. Differen*ally methylated CpGs used for the primary analysis; N=55 CpGs (33 hypermethylated and 22 hypomethylated). 
CpG Probe Chromosomal 

posi*ona 
 
Genes 

Rela*on 
to Island 

Coefficient Cases: Mean 
beta value 

Controls: Mean 
beta value 

Log-fold 
changeb 

Raw P-
value 

cg25433259 Chr6:159271784 OSTCP1 OpenSea 5.1082312 0.66541858 0.63835286 0.01226212 1.86E-08 
cg16392442 Chr12:49595954 - OpenSea 15.2001542 0.17353326 0.15696093 0.01394544 2.95E-08 
cg06457135 chr19:5953406 RANBP3 OpenSea 9.3450824 0.40866314 0.38436786 0.02035666 5.09E-08 
cg12910977 chr5:138207492 LRRTM2;CTNNA1 OpenSea 0.7322945 0.56139306 0.5179095 0.03832187 1.18E-07 
cg02023138 chr12:51701979 BIN2 OpenSea 11.3546081 0.84181837 0.83196508 0.01081285 2.53E-07 
cg07631144 chr17:46657393 MIR10A N_Shore -4.1056162 0.29359393 0.33761632 -0.0353619 3.28E-07 
cg03629335 chr4:100126967 ADH6 OpenSea 2.8296323 0.69035821 0.65791421 0.03776824 4.69E-07 
cg17745097 chr1:11863365 MTHFR N_Shelf 10.4633105 0.08307216 0.07659769 0.00870919 5.36E-07 
cg17938245 chr12:80067352 PAWR OpenSea -5.5211165 0.68665745 0.693618 -0.0119055 5.92E-07 
cg20911897 chr4:37953726 TBC1D1 OpenSea 1.9160149 0.46867666 0.45262885 0.02157469 7.96E-07 
cg06690548 chr4:139162808 SLC7A11 OpenSea 1.8024676 0.78789942 0.76138798 0.0274857 1.07E-06 
cg11322819 chr19:13694039 - OpenSea -14.1189425 0.07830778 0.08513437 -0.0049903 1.38E-06 
cg17894064 chr5:112657195 MCC OpenSea -4.1526787 0.73211569 0.7569463 -0.0258219 1.54E-06 
cg22140708 chr6:10081664 - OpenSea 5.1449817 0.78206787 0.77170398 0.0154948 1.83E-06 
cg20989855 chr4:20985927 KCNIP4 OpenSea 9.0390939 0.22096169 0.20473515 0.0164293 1.90E-06 
cg08311647 chr10:11596182 USP6NL OpenSea -8.2102209 0.32034876 0.33414088 -0.0155017 2.03E-06 
cg03096649 chr7:130056977 CEP41 OpenSea 13.3323684 0.80181661 0.78461484 0.01153379 2.03E-06 
cg09858955 chr2:58135951 VRK2 OpenSea -2.8610325 0.35796606 0.3978885 -0.0302066 2.11E-06 
cg05903720 chr14:104663241 - OpenSea 5.7993613 0.67104233 0.65604405 0.01851333 2.23E-06 
cg20150812 chr9:124029753 GSN OpenSea 5.1334782 0.63156105 0.6199896 0.01418724 2.25E-06 
cg25072592 chr14:75355586 DLST OpenSea 1.5676053 0.53199877 0.51258117 0.0210767 2.34E-06 
cg17702370 chr17:79283128 C17orf55 N_Shore 8.2558677 0.15774941 0.14859067 0.0119348 2.79E-06 
cg20218040 chr6:14369697 - OpenSea 8.2222083 0.78452904 0.76199551 0.01677532 3.60E-06 
cg12600265 chr7:5422883 TNRC18 OpenSea 0.2650506 0.57937612 0.56715465 0.01639226 3.88E-06 
cg10934068 chr6:509762 EXOC2 OpenSea -3.3359868 0.58562148 0.59379713 -0.0261018 3.92E-06 
cg01148781 chr8:99963021 OSR2 S_Shore -4.0754728 0.127759 0.14846004 -0.0227403 4.70E-06 
cg08483768 chr16:86304619 - OpenSea 8.0038342 0.50945873 0.48237272 0.0344807 4.72E-06 
cg01072106 chr9:138952311 NACC2 OpenSea -5.4605017 0.66997388 0.69090851 -0.0133822 4.89E-06 
cg09316997 chr14:91874913 CCDC88C OpenSea 6.4844744 0.58855649 0.56312738 0.01150639 5.05E-06 
cg02650908 chr17:74889830 MGAT5B OpenSea -3.0128946 0.7169462 0.73871776 -0.0218802 5.07E-06 
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Table 2 (con*nued). 

CpG Probe 
Chromosomal 
posi*ona Gene 

Rela*on to 
Island 

Coefficient Cases: Mean 
beta value 

Controls: Mean 
beta value 

Log-fold 
changeb 

Raw P-
value 

cg25289880 chr1:13856326 - OpenSea 0.3631003 0.11750793 0.10623291 0.01184671 5.07E-06 
cg08834436 chr22:27831818 - N_Shelf -5.1226004 0.33084528 0.36666469 -0.0370071 5.43E-06 
cg03593369 chr2:43456557 - S_Shore 0.1501873 0.29323094 0.27353325 0.01358761 5.89E-06 
cg13975855 chr17:46652550 HOXB3 N_Shore -4.3014449 0.7616477 0.78337037 -0.0167974 5.93E-06 
cg06548416 chr1:24438703 MYOM3 OpenSea 2.4685847 0.23242444 0.20555792 0.02863055 6.24E-06 
cg23029198 chr2:146510791 - OpenSea -39.0402834 0.79023973 0.79559585 -0.0081623 6.25E-06 
cg18591228 chr11:3175552 OSBPL5 OpenSea -8.1292725 0.35349018 0.37448402 -0.0097212 6.57E-06 
cg06198776 chr13:73557424 PIBF1 OpenSea -11.514518 0.87081259 0.88156024 -0.008382 6.73E-06 
cg26072749 chr17:46657274 MIR10A N_Shore -6.10247 0.15782119 0.17616999 -0.0143176 6.87E-06 
cg11994115 chr19:40360856 FCGBP N_Shore 8.7958448 0.64306667 0.61853271 0.02644958 6.87E-06 
cg15081698 chr6:101847050 GRIK2 Island 5.0372892 0.12331257 0.11170805 0.01080277 6.97E-06 
cg18496725 chr4:68788615 TMPRSS11A OpenSea -9.0086014 0.75106914 0.77602459 -0.0244003 6.97E-06 
cg05014727 chr10:6214016 PFKFB3 OpenSea -0.373298 0.28626944 0.31704808 -0.0198905 7.25E-06 
cg23852535 chr17:8857258 PIK3R5 OpenSea 10.6771863 0.83787502 0.83078653 0.00737971 7.32E-06 
cg14217303 chr15:85177537 SCAND2P S_Shore 3.2816993 0.25645962 0.24704736 0.00983248 7.36E-06 
cg12256648 chr3:143752097 - OpenSea -3.2169829 0.42099641 0.44279351 -0.0234836 7.53E-06 
cg08841898 chr12:27717865 PPFIBP1 OpenSea -18.5292437 0.68745191 0.70022304 -0.0092687 7.55E-06 
cg10341940 chr18:76822780 - OpenSea -24.5248737 0.82390723 0.82977233 -0.006565 7.77E-06 
cg25153204 chr10:79291246 KCNMA1 OpenSea -7.5939005 0.84999289 0.85835243 -0.0110492 8.58E-06 
cg03366951 chr3:39302545 - OpenSea 6.709593 0.16306437 0.15399861 0.01408014 8.95E-06 
cg03741619 chr17:3438918 TRPV3 Island 16.8968122 0.07389002 0.06818281 0.00544581 1.03E-05 
cg01601658 chr6:168785524 - OpenSea 3.3166661 0.30778145 0.288747 0.01968328 1.04E-05 
cg08635097 chr13:44833857 - OpenSea 9.6920045 0.12942612 0.12314091 0.00755129 1.11E-05 
cg21539223 chr5:112312093 DCP2 N_Shore 27.1214227 0.04927896 0.04464676 0.00476079 1.13E-05 
cg08960830 chr11:75047180 ARRB1 OpenSea 8.8896234 0.69990481 0.69248749 0.00905003 1.16E-05 
aPosi*ons are based on the human reference genome assembly GRCh38. 
bFold change comparing beta es*mates between cases and controls. 
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Figure 1. Epigenome-wide analysis for selec8on of differen8ally methylated CpGs associated with metabolic HCC. The analysis was performed among 272 Metabolic HCC cases 
and 316 metabolic controls. (A) ManhaAan plot with false discovery rate (FDR)-adjusted p-value threshold (red horizontal line) for selecJon of significant CpGs (q-value<0.05; 
n=164 CpGs) in the training data for further screening. (B) Q-Q plot of CpGs showing a lambda (λ) value that is closer to 1. (C) Volcano plot of the 164 FDR-significant CpGs, 
showing hypomethylated CpGs in red color and hypermethylated CpGs in green color among cases versus controls in the training data. (D) Results of a LASSO regression model 
with 10-fold cross validaJon, reducing the 164 FDR-significant CpGs to a parsimonious list of 55 CpGs with non-zero coefficients (33 hypermethylated and 22 hypomethylated) 
and scaling of absolute importance of each CpG in the presence of the other CpGs. This is the final set of CpGs used for the primary analysis. 
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Figure 2. Dis8nguishing metabolic HCC from benign metabolic liver disease using demographic and clinical variables and 
differen8ally methylated CpGs. The study sample comprised 272 Metabolic HCC cases and 316 metabolic controls. (A) Training 
and validaJon results from area under the receiver operaJng characterisJc curve (AUC-ROC) analysis for a model that included 
age (conJnuous), sex, race (White, other), and type II diabetes mellitus (yes, no). (B) AUC-ROC analysis for a model that included 
only the 55 differenJally methylated CpGs as shown in Table 2. (C) An elaborate mulJfactorial AUC-ROC analysis for a model 
that included age, sex, race, diabetes mellitus. and the 55 CpGs. AbbreviaJons: AUC, area under the receiver operaJng curve; 
HCC, hepatocellular carcinoma; sens., sensiJvity; spec.: specificity.  
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Figure 3. Discrimina8ng between metabolic HCC and metabolic liver disease in a subgroup of par8cipants with gene8c data. 
These analyses were performed among 75% of the study sample (n=439). (A) Training and validaJon results from area under the 
receiver operaJng characterisJc curve (AUC-ROC) analysis for a model that included age (conJnuous), sex, race (White, other), 
diabetes mellitus (yes, no), and PNPLA3-rs738409 genotype. (B) Training and validaJon results for a model that included only 
the 55 differenJally methylated CpGs as shown in Table 2. (C) MulJfactorial AUC-ROC analysis for metabolic HCC combining the 
clinical and demographic variables with CpGs. This mulJfactorial model was built using LASSO regression with 10-fold cross 
validaJon and examining the clinical and demographic variables and the 55 CpGs. However, only 44 CpGs with non-zero 
coefficients were retained in addiJon to age, sex, race, diabetes mellitus, and rs738409 for predicJon modeling. AbbreviaJons: 
AUC, area under the receiver operaJng curve; HCC, hepatocellular carcinoma; sens., sensiJvity; spec.: specificity. 
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Figure 4. Characterizing metabolic HCC using hypermethylated CpGs only, and in combina8on with clinical, demographic, and PNPLA3-rs738409. The analysis was performed 
among 272 Metabolic HCC cases and 316 metabolic controls. (A) LASSO regression with scaled absolute importance of 42 hypermethylated CpGs used for the CpGs only model. 
(B) DifferenJal distribuJon of the combined product of the 42 hypermethylated CpGs (esJmated coefficients x beta values) between cases and controls. (C) Heatmap of 42 
selected CpGs in the training data. (D) Modeling of area under the receiver operaJng characterisJc curves (AUC-ROCs) for the hypermethylated CpGs only (n=42) in the training 
and validaJon samples. (E) A separate model that evaluated the combinaJon of age (conJnuous), sex, race (White, other), type II diabetes mellitus (yes, no), and the 
hypermethylated CpGs in a disJnct LASSO regression model with 10-fold cross validaJon, retaining 40 hypermethylated CpGs plus age, sex, race, and diabetes for predicJon 
modeling. (F) A subgroup analysis modeling AUCs for the hypermethylated CpGs plus age, sex, race, diabetes, and PNPLA3-rs738409 among parJcipants with geneJc data 
(n=439) using a separate LASSO regression with 10-fold cross validaJon. This analysis retained 38 CpGs, age, sex, race, diabetes, and rs738409 for predicJon modeling in the 
training (n=346) and validaJon (n=93) samples. AbbreviaJons: AUC, area under the receiver operaJng curve; HCC, hepatocellular carcinoma; sens., sensiJvity; spec.: specificity. 
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