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Abstract  10 

Background: Distinguishing between non-severe and severe dengue is crucial for timely intervention and 11 

reducing morbidity and mortality. Traditional warning signs recommended by the World Health 12 

Organization (WHO) offer a practical approach for clinicians but have limitations in sensitivity and 13 

specificity. This study evaluates the performance of machine learning (ML) models compared to WHO-14 

recommended warning signs in predicting severe dengue among laboratory-confirmed cases in Puerto 15 

Rico. 16 

Methods: We analyzed data from Puerto Rico’s Sentinel Enhanced Dengue Surveillance System (May 17 

2012–August 2024), using 40 clinical, demographic, and laboratory variables. Nine ML models, 18 

including Decision Trees, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, Artificial 19 

Neural Networks, AdaBoost, CatBoost, LightGBM, and XGBoost, were trained using 5-fold cross-20 

validation and evaluated with area under the receiver operating characteristic curve (AUC-ROC), 21 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). A 22 

subanalysis excluded hemoconcentration and leukopenia to assess performance in resource-limited 23 

settings. An AUC-ROC value of 0.5 indicates no discriminative power, while a value closer to 1.0 reflects 24 

better performance. 25 

Results: Among the 1,708 laboratory-confirmed dengue cases, 24.3% were classified as severe. Gradient 26 

boosting algorithms achieved the highest predictive performance, with AUC-ROC values exceeding 94% 27 

for CatBoost, LightGBM, and XGBoost. Feature importance analysis identified hemoconcentration 28 

(≥20% increase during illness or ≥20% above baseline for age and sex), leukopenia (white blood cell 29 

count <4,000/mm³), and timing of presentation to a healthcare facility at 4–6 days post-symptom onset as 30 

key predictors. Excluding hemoconcentration and leukopenia did not significantly affect model 31 

performance. Individual warning signs like abdominal pain and restlessness had sensitivities of 79.0% 32 

and 64.6%, but lower specificities of 48.4% and 59.1%, respectively. Combining ≥3 warning signs 33 

improved specificity (80.9%) while maintaining moderate sensitivity (78.6%), resulting in an AUC-ROC 34 

of 74.0%. 35 
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Conclusions: ML models, especially gradient boosting algorithms, outperformed traditional warning 36 

signs in predicting severe dengue. Integrating these models into clinical decision-support tools could help 37 

clinicians better identify high-risk patients, guiding timely interventions like hospitalization, closer 38 

monitoring, or the administration of intravenous fluids. The subanalysis excluding hemoconcentration 39 

confirmed the models’ applicability in resource-limited settings, where access to laboratory data may be 40 

limited. 41 

Keywords: ensemble learning, gradient boosting, feature importance, clinical decision support, 42 

Caribbean  43 
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Background 44 

Dengue is a significant public health concern worldwide, with approximately 390 million 45 

infections annually, of which 96 million manifest clinically [1, 2]. In Puerto Rico, dengue has been 46 

associated with nearly 30,000 confirmed and probable cases from 2010 to 2020, including 584 severe 47 

cases, 10,000 hospitalizations, and 68 deaths [3]. A surge in dengue cases on the island in 2024 prompted 48 

a public health emergency declaration by Puerto Rico’s Department of Health, highlighting the ongoing 49 

threat of dengue to the island [4]. These regular outbreaks strain healthcare resources and pose substantial 50 

morbidity and mortality risks. A critical aspect of managing dengue is distinguishing between non-severe 51 

and severe cases, as the latter require intensive medical intervention to prevent complications and 52 

fatalities. Early identification of patients at risk of severe dengue is important for timely intervention and 53 

improved patient outcomes. However, predicting which patients will progress to severe dengue remains a 54 

challenge, often leading to delayed treatment and increased healthcare burden. 55 

The World Health Organization (WHO) has recommended identifying severe dengue through 56 

clinical assessment of warning signs such as persistent vomiting, abdominal pain, mucosal bleeding, 57 

restlessness, and hepatomegaly [5]. Although these warning signs offer a practical approach for clinicians, 58 

their specificity and sensitivity in accurately predicting severe dengue are limited. Studies have shown 59 

that relying solely on these warning signs can result in both false positives and negatives, potentially 60 

leading to over- or under-treatment of patients [6-10]. The substantial burden of dengue on the healthcare 61 

system, both in terms of economic cost and human suffering, underscores the need for innovative 62 

approaches to disease diagnosis. A more accurate and efficient method for risk stratification could lead to 63 

substantial improvements in patient care and resource allocation. 64 

In recent years, machine learning (ML) has emerged as a powerful tool for analyzing complex 65 

datasets and uncovering patterns not easily discernible by traditional methods. In the context of dengue, 66 

ML models can analyze a multitude of factors beyond the established warning signs, including patient 67 

demographics, laboratory results, clinical symptoms, and epidemiological data, to enhance the prediction 68 

of severe disease [11, 12]. By leveraging ML, we aim to improve the accuracy of severe dengue 69 
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predictions, offering a more robust and data-driven approach to risk stratification. If successful, these 70 

models could transform dengue management by enabling early, accurate identification of high-risk 71 

patients, ultimately leading to improved patient outcomes and reduced mortality rates. Additionally, 72 

targeted intervention for high-risk patients can optimize resource allocation, ensuring critical care is 73 

available to those who need it most. 74 

This project specifically leverages data from Puerto Rico’s Sentinel Enhanced Dengue 75 

Surveillance System (SEDSS), which has detailed clinical and laboratory information on dengue cases, 76 

allowing for the exploration of potential predictors of disease severity beyond the conventional warning 77 

signs. In addition to exploring ML approaches, this project also aims to evaluate the performance of 78 

WHO-recommended warning signs in predicting severe dengue among laboratory-confirmed cases, 79 

which include both molecular (RT-PCR) and serologic (IgM ELISA) testing. By doing so, we seek to 80 

bridge the gap between research and clinical practice by demonstrating the practical applications of both 81 

traditional and advanced computational tools in identifying severe dengue. If our findings demonstrate 82 

that ML models offer improved prediction of severe dengue compared to traditional methods, this could 83 

highlight the potential for integrating advanced computational tools into public health strategies and 84 

clinical protocols. For example, predictive ML models could be incorporated into clinical decision 85 

support systems used in emergency departments or outpatient clinics, enabling real-time risk stratification 86 

for severe dengue. This integration could help healthcare providers prioritize patients for hospitalization, 87 

allocate medical resources more efficiently, and guide timely interventions to prevent complications and 88 

fatalities. These tools could enable early and accurate identification of high-risk patients, improve patient 89 

outcomes, and optimize resource allocation. 90 

 91 

Methods 92 

Study population 93 

In this analysis, we used data from SEDSS, an ongoing facility-based study in Puerto Rico that 94 

tracks the frequency and causes of acute febrile illness [13, 14]. Our study included data from SEDSS 95 
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from May 2012 to August 2024. SEDSS has included five sites: 1) Centro Médico Episcopal San Lucas 96 

(CMESL) in Ponce, a tertiary acute care facility (2012-present), 2) Hospital Episcopal San Lucas (HESL) 97 

- Guayama, a secondary acute care hospital (2013–2015), 3) Hospital de La Universidad de Puerto Rico 98 

in Carolina, another secondary acute care teaching hospital (2013–2015), 4) Centro de Emergencia y 99 

Medicina Integrada (CEMI), an outpatient acute care clinic in Ponce (2016-present), and 5) Auxilio 100 

Mutuo Hospital, a tertiary care facility in the San Juan Metro Area (2018–present).  101 

 102 

Study enrollment and data collection 103 

SEDSS enrolls participants using convenience sampling. Potential participants are identified by 104 

triage nurses as any patient with an acute febrile illness (AFI) defined by the presence of fever (≥38.0°C 105 

for temperatures measured orally, ≥37.5°C for temperatures measured rectally, and ≥38.5°C for 106 

temperatures measured axillarily for both children and adults) at the time of triage or chief complaint of 107 

having a fever within the past seven days. During the Zika virus epidemic in Puerto Rico (June 2016–108 

June 2018), patients were eligible if they presented with either rash and conjunctivitis, rash and arthralgia, 109 

or fever [15]. Starting in April 2020, patients with cough or dyspnea within the last 14 days (with or 110 

without fever) were also eligible to better capture respiratory viruses [16]. No age groups were excluded, 111 

although infants were only eligible for enrollment if they presented to the hospital after their initial 112 

discharge after birth. After meeting the inclusion criteria and being informed about the study, participants 113 

provided written informed consent. In cases where patients were incapacitated at the time of triage due to 114 

acute illness, consent was sought after their stabilization. 115 

SEDSS collects data via patient interviews and medical record reviews at enrollment and 116 

convalescence (∼7–14 days later). The case investigation form (CIF) gathers information about patient 117 

demographics, comorbidities, and clinical features. The convalescent sample processing form (CSPF) 118 

echoes CIF data, adding the second specimen collection date and AFI severity indicators 119 

(hospitalizations, clinic visits). Inpatient medical data for participants with AFIs who were admitted to the 120 

hospital from CMESL, HESL-Guayama, and Auxilio Mutuo Hospital also were collected using a separate 121 
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form (Hospital Admitted Abstraction Form) to collect key clinical indicators of disease severity and 122 

progression. For admitted patients, these data included information on extent and nature of hemorrhage, 123 

plasma leakage (e.g., ascites and pleural and cardiac effusions), hematologic indicators of increased 124 

intravascular permeability (e.g., hematocrit and serum albumin levels), additional blood pressure and 125 

heart rate measures to assess shock, and indicators of severe organ involvement (e.g., liver impairment, 126 

meningitis, and encephalitis) [14].  127 

Dengue warning signs and severe dengue were defined by the World Health Organization [17], 128 

incorporating available clinical indicators from SEDSS intake and follow-up forms and abstracted 129 

inpatient medical records. Dengue warning signs were defined by abdominal pain or tenderness, 130 

persistent vomiting, plasma leakage (pleural or pericardial effusion or ascites), mucosal bleeding, 131 

restlessness, hemoconcentration (defined as either a hematocrit increase of ≥20% during illness or a 132 

hematocrit value ≥20% above baseline for age and sex), or hepatomegaly. Detailed definitions for these 133 

variables have been provided previously [18]. Severe dengue was defined as severe plasma leakage or 134 

shock, severe bleeding, or severe organ impairment [18]. The presence and overlap of warning signs 135 

among severe dengue cases were visualized using an Euler plot via the eulerr R package [19]. 136 

 137 

Sample collection and laboratory procedures  138 

 Blood, nasopharyngeal (NP), and oropharyngeal (OP) specimens were collected at enrollment 139 

from eligible participants. Additional blood samples (serum and whole blood) were also collected during 140 

the convalescent phase. Participation required providing at least one sample (blood or OP/NP swab). All 141 

patients had molecular testing for dengue virus for specimens collected within 7 days of symptom onset. 142 

Serologic testing was done by Immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent 143 

assay (ELISA) for anti-DENV antibodies for specimens collected >3 days after symptom onset [20].  144 

 145 

Variables 146 
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A total of 40 variables were selected based on the WHO’s criteria for severe dengue, physicians’ 147 

clinical experience, and a review of current literature to potentially differentiate between severe and non-148 

severe dengue cases [17, 18, 21-24]. These features included age group, days post onset of symptoms, 149 

clinical signs and symptoms, laboratory findings, pre-existing health conditions, and dengue virus 150 

serotype. Clinical symptoms included report of fever, rash, headache, myalgia, abdominal pain, chills, 151 

itchy skin, eye pain, nasal discharge, cough, sore throat, persistent vomiting, diarrhea, arthralgia, arthritis, 152 

back pain, calf pain, nausea, no appetite, and restlessness. Clinical signs, as observed by healthcare 153 

providers, included objective fever at the time of enrollment, yellow skin (jaundice), observed bruising, 154 

conjunctivitis, hepatomegaly, mucosal bleeding, pale skin, and blue lips (cyanosis). Clinical laboratory 155 

findings comprised leukopenia (defined as white blood cell count <4,000/mm³), the calculated value of 156 

hemoconcentration (an increase in the concentration of red blood cells due to plasma loss), and dengue 157 

immune status (primary or post-primary) as measured from results for anti-dengue virus immunoglobulin 158 

G (IgG) on or before day 5 of illness. Pre-existing health conditions like obesity (BMI ≥ 30), gastritis, 159 

chronic arthritis, hypertension, chronic kidney disease, diabetes, thyroid disease, and high cholesterol 160 

were also considered. Additionally, dengue virus serotype was included, coded as “unknown” for 161 

probable cases identified through IgM ELISA, as serotype data was only available for confirmed reverse 162 

transcription polymerase chain reaction (RT-PCR) cases. Thrombocytopenia and clinical fluid 163 

accumulation were excluded from the analysis, as they generally manifest after the onset of severe disease 164 

or are components of its definition, making them less useful as predictive features. This comprehensive 165 

set of variables was intended to represent the multifaceted nature of factors influencing dengue infection 166 

severity. 167 

 168 

Sensitivity analyses 169 

To further explore the performance of the models in resource-constrained settings, where 170 

complete blood counts (CBCs), dengue immune status, and serotype information might not be readily 171 

available, we performed sub-analyses to evaluate model robustness and applicability. The sub-analyses 172 
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included: 1) excluding results found on a CBC (i.e., leukopenia and hemoconcentration), 2) excluding 173 

IgG and serotype results, and 3) excluding leukopenia, hemoconcentration, IgG, and serotype results. 174 

These analyses were designed to assess how well the models could predict progression to severe dengue 175 

in various clinical scenarios, particularly where access to comprehensive clinical laboratory results or 176 

pathogen-specific testing might be limited. 177 

To ensure the robustness of our models and account for potential confounding from co-circulating 178 

arboviruses, we performed a sensitivity analysis with the highest-performing individual ML model, 179 

excluding cases that tested positive for chikungunya virus (CHIKV) by either IgM or RT-PCR. This 180 

analysis aimed to confirm that the predictive features for severe dengue remain consistent even in the 181 

absence of CHIKV, given the potential overlap in clinical presentations between the two viruses. 182 

 183 

Sampling 184 

Our analysis included laboratory-confirmed dengue cases, confirmed by either molecular or 185 

serologic testing, focusing on differentiating between severe and non-severe cases. Due to an imbalance 186 

in the dataset, where non-severe cases were more prevalent, we used upsampling to balance the class 187 

distribution. Upsampling involves increasing the number of minority class samples (severe dengue cases) 188 

through duplication, which helps to prevent model bias towards the majority class and improves the 189 

model’s ability to accurately predict severe dengue cases [25]. Upsampling was done using the upSample 190 

function from the caret package in R [26]. Following upsampling, the dataset was divided into training 191 

and testing sets using a 70/30 split: 70% of the data was allocated for training the models, while the 192 

remaining 30% was reserved for testing. This partitioning ensured that the models were trained on a 193 

substantial portion of the data while retaining a sufficient amount for unbiased evaluation. 194 

 195 

Machine learning models 196 

An initial logistic regression (LR) model served as a baseline simple model to explore the 197 

relationship between potential predictors and the outcome of severe dengue. Stepwise selection, 198 
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implemented using the stepAIC function from the MASS package in R [27], was used to iteratively add 199 

or remove variables to identify the optimal model with the lowest Akaike Information Criterion. This 200 

approach balances model complexity and goodness-of-fit by selecting variables that contribute 201 

significantly to the model. The final logistic regression model, derived from stepwise selection, was 202 

evaluated on both the training and testing sets.  203 

In addition, we used nine ML methods to predict severe dengue and analyze feature importance. 204 

A comprehensive selection of models was used to leverage different strengths, enhance predictive 205 

performance, and provide a nuanced understanding of the factors contributing to severe dengue. The 206 

algorithms used include Decision Trees (DT), K-Nearest Neighbors (KNN), Naïve Bayes, Support Vector 207 

Machines (SVM), Artificial Neural Networks (ANN), Adaptive Boosting (AdaBoost), Categorical 208 

Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), and eXtreme Gradient Boosting 209 

(XGBoost). DTs create a tree-like structure to make predictions by recursively splitting the data based on 210 

feature values [28]. KNNs predict the class of a data point by considering the majority class of its closest 211 

neighbors in the feature space [29]. Naïve Bayes is a probabilistic classifier that applies Bayes’ theorem, 212 

assuming independence between predictors [30]. SVMs identify the optimal hyperplane to separate 213 

classes, making them effective for high-dimensional data [31]. ANNs are inspired by biological neural 214 

networks and consist of interconnected nodes that can capture complex patterns [32]. AdaBoost, 215 

CatBoost, LightGBM, and XGBoost are ensemble methods that combine multiple weak learners to 216 

improve predictive performance [33, 34]. AdaBoost adjusts weights to focus on difficult-to-predict 217 

instances, CatBoost handles categorical features effectively, LightGBM is efficient with large datasets 218 

due to its leaf-wise tree growth, and XGBoost uses regularization techniques to prevent overfitting, 219 

enhancing accuracy and robustness [33-35]. 220 

The hyperparameters (model-specific settings, such as learning rate, maximum tree depth, or 221 

number of estimators) for each ML model were carefully tuned using a grid search strategy to optimize 222 

performance. The area under the receiver operating characteristic curve (AUC-ROC) was used as the 223 

optimization metric, ensuring a focus on maximizing classification performance. We used 5-fold cross-224 
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validation during model training to enhance robustness and mitigate overfitting. Specific details of the 225 

grid search strategy and parameters included in each model are provided in Table S1.  226 

The following R packages were used for model implementation: rpart [36] for DT, e1071 [37] for 227 

Naïve Bayes and SVM, caret [26] for KNN, nnet [38] for ANN, keras [39] for DNN, ada [40] for 228 

AdaBoost, catboost [41] for CatBoost, lightgbm [42] for LightGBM, and xgboost [43] for XGBoost. All 229 

analyses were done using R version 4.4.0 [44]. 230 

 231 

Ensemble model  232 

To leverage the predictive power of multiple ML algorithms, we used an ensemble learning 233 

approach with a stacked generalization framework. This method combines the strengths of various 234 

individual models to improve overall predictive performance and robustness. We used predictions from 235 

LR and the nine different ML models as base learners in our ensemble. Specifically, we used a logistic 236 

regression model as the meta-learner to combine the outputs of the base models. This approach allows the 237 

meta-model to learn the optimal combination of base models’ predictions. To improve the performance of 238 

the meta-model, we again used stepwise selection with the stepAIC function from the MASS package 239 

[27].  240 

Pearson correlation coefficients were calculated to measure the linear correlation between the 241 

predictions of the ML models. This analysis helps determine whether the models are making similar 242 

predictions for severe dengue, potentially reflecting the selection of similar variables and patterns across 243 

the models. The results were visualized in a heatmap using ggplot2 [45]. 244 

  245 

Performance evaluation 246 

Model performance for each ML model and the meta-model was evaluated on both the training 247 

and testing sets using AUC-ROC as the primary performance metric. AUC-ROC is an aggregate measure 248 

of performance across all possible classification thresholds, providing a comprehensive assessment of the 249 
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model’s ability to distinguish between classes. We used the DeLong method to calculate the confidence 250 

intervals for the AUC-ROC to ensure accurate estimation of the model’s performance [46].  251 

The performance of the ensemble model was further evaluated using several metrics, including 252 

accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1 253 

score, and Cohen’s kappa. These metrics provide a comprehensive view of the model’s performance, 254 

capturing both the ability to correctly classify severe dengue cases and the overall agreement between 255 

predicted and actual classifications. 256 

 257 

Feature importance 258 

Feature importance was calculated for each ML model to quantify the contribution of each 259 

variable to the model’s predictive accuracy. This approach enables the identification of the most 260 

influential features, which enhances our understanding of the factors driving the predictions for severe 261 

dengue. Feature importance was assessed for both the 40-variable feature set and a subset excluding 262 

CBCs, IgG, and serotype results. Different methods were applied across the ML algorithms to determine 263 

feature importance. For ensemble-based methods, including XGBoost, LightGBM, and CatBoost, feature 264 

importance was calculated using the Gain metric, which measures the contribution of each feature to the 265 

model’s decision-making process. Gain represents the improvement in the model’s accuracy brought by a 266 

feature, with higher values indicating greater importance. For XGBoost, LightGBM, and CatBoost, we 267 

used the xgb.importance, lgb.importance, and catboost.get_feature_importance functions from the 268 

xgboost [43], lightgbm [42], and catboost [41] packages, respectively. 269 

Permutation importance was applied to assess feature importance for KNN, Naive Bayes, and 270 

ANN. This method involves randomly shuffling feature values and measuring the subsequent decline in 271 

model performance. A substantial decrease in accuracy indicates a highly influential feature. For DT, 272 

feature importance was determined by the reduction in impurity (Gini index or entropy) achieved by 273 

splitting data based on that feature. AdaBoost assigned importance to features based on their contribution 274 

to correcting errors in subsequent models, with higher weights indicating greater influence. For SVM, 275 
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feature importance was derived from the absolute value of the model coefficients. The magnitude of these 276 

coefficients reflects the influence of each feature on the decision boundary, with larger coefficients 277 

indicating greater importance. 278 

We also calculated and plotted SHapley Additive exPlanations (SHAP) values for the top three 279 

performing models based on AUC-ROC. SHAP values provide a nuanced measure of each feature’s 280 

contribution to the prediction of severe dengue cases, enabling a deeper understanding of model decision-281 

making. Positive SHAP values indicate a higher likelihood of severe dengue, whereas negative values 282 

suggest a protective effect. The SHAP approach is particularly valuable as it allows for the decomposition 283 

of the prediction into individual feature contributions, offering a clear interpretation of how different 284 

variables influence the model’s predictions.  285 

 286 

Post-hoc variable reduction analysis 287 

To assess the predictive performance of a simplified variable set, we conducted a post-hoc 288 

analysis using the ML model that achieved the highest AUC. This analysis aimed to identify the 289 

minimum number of features needed to maintain high accuracy. We began with the top features identified 290 

through SHAP values in the original 40-variable analysis, adding one feature at a time, starting with the 291 

highest-ranking. At each step, we evaluated the AUC-ROC to determine the impact of including 292 

additional features. The goal was to develop a more streamlined model that remains feasible and 293 

interpretable, especially in clinical settings with limited diagnostic resource. 294 

 295 

Diagnostic accuracy of warning signs 296 

In addition to ML, we evaluated the diagnostic accuracy of individual warning signs for 297 

identifying severe dengue cases. The performance of each warning sign was assessed using sensitivity, 298 

specificity, PPV, NPV, and AUC-ROC. Sub-analyses assessed the performance of warning signs by 299 

dengue serotype and immune status. Dengue serotype was determined via RT-PCR, whereas immune 300 

status was classified based on IgG antibody results in the first 5 days after illness onset (primary: IgG; 301 
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post-primary: positive IgG). Cases lacking serotype or immune status data were excluded from sub-302 

analyses. This approach aimed to identify potential clinical differences in the presentation and predictive 303 

capacity of warning signs for severe dengue across serotypes and infection statuses. 304 

 305 

Ethics statement 306 

The Institutional Review Boards at the Centers for Disease Control and Prevention (CDC), 307 

Auxilio Mutuo, and Ponce Medical School Foundation approved the SEDSS study protocols 6214, and 308 

120308-VR/2311173707, respectively. Written consent to participate was obtained from all adult 309 

participants and emancipated minors. For minors aged 14 to 20 years, written consent was obtained, and 310 

for those aged 7 to 13 years, parental written consent and participant assent were obtained. 311 

 312 

Results 313 

Characteristics of dengue cases 314 

From May 2012 to August 2024, there were 51,877 unique AFI visits from 41,647 participants 315 

enrolled in SEDSS, including 8,404 hospitalizations or transfers and 75 deaths. Of these visits, there were 316 

50,189 AFI visits from 40,495 participants tested for DENV. From these, 1,708 (3.4%) had dengue (1,218 317 

confirmed, 490 probable). The majority of the 1,206 serotyped dengue cases were DENV-1 (n=905, 318 

75.0%), followed by DENV-3 (n=149, 12.4%), DENV-2 (n=102, 8.5%), and DENV-4 (n=50, 4.1%). Of 319 

1,708 dengue cases, 759 (44.4%) were hospitalized or transferred, and two (0.1%) died. The median 320 

duration from symptom onset to presentation at the emergency room was 3 days [IQR: 2, 5]. Of the 730 321 

participants assessed for immune status using DENV IgG, 577 (79.0%) were positive, indicating post-322 

primary dengue, whereas the remaining 153 (21.0%) were negative, suggesting primary dengue 323 

infections. 324 

Among the 1,708 laboratory-confirmed dengue cases, 24.3% (n=415) were classified as severe 325 

dengue. Compared to those without severe dengue, participants with severe dengue were more likely to 326 

present between 4 to 6 days post-symptom onset (52.4% vs. 32.0%, p < 0.001) and be aged 10-19 years 327 
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(51.6% vs. 36.3%, p < 0.001) (Table 1). Among dengue cases tested, a higher proportion of severe cases 328 

were post-primary DENV infections (85.7% vs. 76.3%, p = 0.007). Participants with severe dengue had a 329 

higher prevalence of warning signs such as persistent vomiting (37.6% vs. 20.4%), abdominal pain 330 

(79.0% vs. 51.6%), restlessness (64.6% vs. 40.9%), mucosal bleeding (22.9% vs. 13.8%), and 331 

hemoconcentration (20.7% vs. 3.3%) compared to lab-confirmed non-severe cases (all p < 0.001) (Figure 332 

1). All 30 dengue cases with seizures were classified as severe dengue. Leukopenia (77.1% vs. 53.5%) 333 

was more prevalent among participants with severe dengue (p < 0.001). 334 

 335 

Performance of warning signs for predicting severe dengue 336 

Among warning signs, abdominal pain and restlessness had the highest sensitivities for predicting 337 

severe dengue at 79.0% and 64.6%, respectively, but the lowest specificities of 48.4% and 59.1% (Table 338 

2). In contrast, hepatomegaly and hemoconcentration demonstrated the highest specificities at 97.8% and 339 

96.7%, respectively, but were less sensitive at 4.6% and 20.7%, respectively. The presence of any 340 

warning sign yielded the highest sensitivity (92.8%) but a low specificity (29.2%), with an AUC-ROC of 341 

61.1%. Combining three or more warning signs increased the specificity to 65.1% while maintaining 342 

moderate sensitivity (87.2%), resulting in the highest AUC-ROC (71.3%) among the combinations tested.  343 

Performance of warning signs for predicting severe dengue demonstrated some variability across 344 

serotypes and immune status, though the interpretation is constrained by limited sample sizes and 345 

overlapping confidence intervals (Tables S2-S3). 346 

 347 

Performance evaluation of machine learning models 348 

The ensemble model demonstrated a strong correlation between predictions from the CatBoost, 349 

XGBoost, LightGBM, and AdaBoost models, with Pearson correlation coefficients of 0.91, 0.89, 0.89, 350 

and 0.84, respectively, indicating that these gradient boosting models had substantial influence on the 351 

ensemble’s predictions (Figure 2). This high correlation suggests that the models may be selecting and 352 

emphasizing similar variables in their predictive processes. In contrast, weaker correlations were observed 353 
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between the ensemble model and simpler models like KNN (0.48), Naïve Bayes (0.48), and DT (0.51), 354 

indicating different prediction patterns and potential differences in variable selection. Additionally, high 355 

inter-model correlations among gradient boosting models, particularly between LightGBM and XGBoost 356 

(0.98), further support the idea that these models capture similar patterns in the data and rely on 357 

comparable sets of variables. 358 

AUC values for the 40-variable feature set across various ML models demonstrated varying 359 

levels of predictive performance. Gradient boosting algorithms achieved the highest AUC values of 360 

97.1% for CatBoost, 95.5% for XGBoost, and 94.5% for LightGBM, indicating strong discriminatory 361 

power (Figure 3). ANN showed moderate performance (AUC = 88.4%), whereas LR and SVM had lower 362 

discrimination (AUC = 79.4% and 78.9%, respectively). KNN, Naïve Bayes, and DT had the lowest AUC 363 

values of 74.1%, 75.9%, and 76.2%, respectively, indicating limited predictive ability. The ensemble 364 

meta-model provided a slight improvement over CatBoost with an AUC of 97.7%. 365 

Exclusion of immune status and serotype data minimally affected model performance across all 366 

ML algorithms (Figure 3). Conversely, removing leukopenia and hemoconcentration significantly 367 

reduced predictive power for Naïve Bayes, LR, SVM, and ANN (AUC decreased by 3.2% ~ 5.2%). 368 

CatBoost, XGBoost, LightGBM, and the ensemble model consistently maintained high performance, 369 

showing minimal to no change in AUC, regardless of the inclusion or exclusion of leukopenia and 370 

hemoconcentration. Excluding CHIKV-positive cases in the sensitivity analysis resulted in minimal 371 

changes to the AUC-ROC scores for CatBoost, confirming that the model’s predictive performance for 372 

severe dengue remains robust even in the presence of co-circulating arboviruses (Table S4).  373 

The ensemble model with 40 variables achieved the highest overall AUC of 97.7% with 374 

corresponding sensitivity and specificity of 95.6% and 93.3%, respectively (Table S5). The F1 score was 375 

94.5% and Kappa was 88.9%, indicating a high level of agreement and balanced performance between 376 

precision and recall in the model’s classification of severe dengue cases.  377 

 378 

Feature importance 379 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.15.24317377doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.15.24317377


17 

For the 40-variable feature set, SHAP values identified hemoconcentration, days post symptom 380 

onset, and leukopenia as most important features for CatBoost, XGBoost, and LightGBM (Figure 4, 381 

Figures S1-S2). Similarly, LR highlighted these variables as having the highest adjusted odds ratios for 382 

severe dengue (hemoconcentration: aOR 7.02; leukopenia: aOR 2.24; days post onset 4–6 days: aOR 383 

1.96) (Table S6). Additionally, these models highlighted pale skin, age group, and the clinical warning 384 

signs of restlessness, abdominal pain, and persistent vomiting as key predictors of severe dengue 385 

progression. Hemoconcentration also stood out as a top feature for Naïve Bayes and SVM (Figure S3-S4). 386 

AdaBoost, which focuses on correcting errors from previous classifiers, assigned greater importance to 387 

chronic conditions such as high cholesterol, chronic arthritis, and hypertension. Although hepatomegaly is 388 

a recognized warning sign, it had a lower importance score in our analysis, suggesting it may play a more 389 

limited role in predicting severe dengue in this context. 390 

 391 

Post-hoc variable reduction analysis 392 

To explore a more streamlined predictive model, we conducted a post-hoc variable reduction 393 

analysis using the ML model with the highest AUC, CatBoost. Starting with the top feature identified by 394 

SHAP values (days post onset), we sequentially added variables, assessing AUC-ROC at each step. The 395 

AUC improved consistently with each additional variable, though the gains diminished over time. By 396 

including just 20 variables—compared to the original 40-variable set—the model achieved an AUC of 397 

96.5% (Figure 5). The optimal reduced feature set included days post onset, hemoconcentration, 398 

leukopenia, restlessness, pale skin, abdominal pain, age group, diarrhea, rash, persistent vomiting, cough, 399 

calf pain, sore throat, arthralgia, itchy skin, eye pain, back pain, mucosal bleeding, myalgia, and arthritis. 400 

This reduced model offers a more practical and interpretable approach while maintaining high predictive 401 

accuracy, making it feasible for use in clinical settings, especially where diagnostic resources are limited. 402 

 403 

Discussion 404 
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Our study underscores the potential of ML models, particularly gradient boosting algorithms, to 405 

outperform traditional warning signs in predicting severe dengue. This improved predictive ability could 406 

transform clinical decision-making, enabling earlier and more accurate identification of high-risk patients, 407 

thereby improving outcomes in dengue-endemic regions like Puerto Rico. 408 

Hemoconcentration, days post symptom onset, and leukopenia emerged as the most important 409 

features across multiple ML models, aligning with their known relevance in dengue prognosis [47-49]. 410 

Hemoconcentration, which reflects plasma leakage through an increased red blood cell concentration, was 411 

consistently highlighted as a top predictor by CatBoost, XGBoost, LightGBM, and several other 412 

algorithms. Days post symptom onset is a crucial temporal marker, likely capturing the dynamic nature of 413 

disease as cases often progress to the critical phase of dengue (when severe disease occurs) 3–7 days after 414 

symptom onset. Leukopenia, or low white blood cell count, often reflects the body’s response to viral 415 

infections, including dengue. In addition, pale skin, age group, and clinical warning signs such as 416 

restlessness, abdominal pain, and persistent vomiting were identified as key predictors of severe dengue 417 

progression. The variability in feature importance across models emphasizes the complexity of severe 418 

dengue prediction, highlighting the need for tailored approaches that account for both individual patient 419 

characteristics and disease progression.  420 

Our analysis highlights the strong predictive performance of gradient boosting algorithms—421 

CatBoost, XGBoost, and LightGBM—with AUC values above 94%, reflecting their ability to capture 422 

complex, non-linear patterns in clinical data [35, 50-52]. Despite this high predictive accuracy, the 423 

interpretability of these models remains a limitation in clinical settings, where transparency in decision-424 

making is critical for trust and practical use [53-55]. Compared to simpler models like LR, which offers 425 

straightforward interpretations of how each variable influences severe dengue risk, gradient boosting 426 

algorithms can be challenging to interpret. This trade-off between high performance and interpretability 427 

suggests that ML models may be most useful as supplementary tools for alerting clinicians to high-risk 428 

cases, rather than as standalone decision aids. 429 
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In contrast, simpler models like Naïve Bayes, Decision Trees, and KNN showed weaker 430 

correlations and lower AUC values, reflecting their limitations in capturing data complexity. The 431 

ensemble model, achieving the highest AUC of 97.7%, demonstrates the added value of combining 432 

multiple ML algorithms to enhance predictive accuracy, with high sensitivity and specificity, making it 433 

particularly useful in resource-limited settings [56, 57]. Additionally, the exclusion of immune status and 434 

serotype data had minimal impact on model performance, indicating these variables are not essential for 435 

accurate prediction in this context. The high NPV across models suggests that ML tools can still be 436 

valuable for identifying low-risk patients who may not require intensive monitoring. In these cases, the 437 

ML model’s recommendation could serve as an early discharge or outpatient management decision-438 

support mechanism, further optimizing healthcare resource allocation. 439 

The post-hoc variable reduction analysis demonstrated that a streamlined set of 20 variables 440 

achieved strong predictive accuracy (AUC of 96.5%), close to the full 40-variable model. This reduced 441 

set offers a balance between interpretability and performance, making it more practical for clinical 442 

application, particularly in settings with limited diagnostic resources. By focusing on essential 443 

predictors—such as hemoconcentration, days post onset, leukopenia, and key symptoms—this approach 444 

prioritizes feasibility and interpretability, even if it means a modest sacrifice in predictive power. For 445 

added clinical utility, LR could complement ML approaches by further refining and validating the 446 

reduced variable set with interpretable odds ratios, enabling clinicians to apply these findings more 447 

confidently in practice [58]. 448 

Traditional warning signs showed both strengths and limitations. Abdominal pain and restlessness 449 

were the most sensitive indicators, consistent with other studies [6, 9], yet their low specificities limit 450 

their utility. Conversely, markers like hepatomegaly and hemoconcentration had high specificity but low 451 

sensitivity. Combining multiple warning signs improved specificity while maintaining high sensitivity, 452 

yielding the highest AUC among tested combinations. In contrast, gradient boosting ML algorithms 453 

offered a more balanced approach with high sensitivity and specificity, crucial for accurate risk 454 

stratification in clinical settings. Our findings align with a recent study where an 8-gene XGBoost model 455 
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outperformed clinical warning signs, significantly improving negative predictive power and 456 

demonstrating strong generalizability across patient cohorts [54]. Although our models focus on 457 

demographic and clinical features, the integration of gene expression data presents an intriguing avenue 458 

for future exploration [54, 55].  459 

This study has several limitations. First, these ML models need to be re-fitted to different 460 

variables and populations to ensure accuracy across various settings. Second, the relatively small dataset 461 

increases the risk of overfitting, potentially affecting the models’ robustness and generalizability. Third, 462 

the prevalence of DENV-1 cases from the 2012-2013 outbreak may limit the models’ applicability to 463 

other periods, regions, populations, age groups, or serotypes. Fourth, the models were developed using 464 

data from the SEDSS, where inclusion criteria required febrile illness, potentially limiting generalizability 465 

to broader populations. Fifth, due to limited sample sizes for serotypes and immune statuses, we could not 466 

conduct ML analyses for these subgroups; future studies with larger datasets are needed to validate 467 

findings. Sixth, there is a potential limitation related to the inclusion of false negatives—SEDSS cases 468 

who may have later presented to a non-SEDSS facility with severe disease—although this is considered 469 

unlikely given typical healthcare-seeking behaviors. Seventh, the SEDSS data’s robustness may not 470 

accurately reflect real-world conditions, where datasets are often sparse, contain free-text fields, or have 471 

incomplete information, potentially affecting model performance. Eighth, dengue and severe dengue are 472 

often underdiagnosed and underreported, which could impact model results; however, our findings likely 473 

represent a conservative estimate when accounting for underreporting. Finally, implementing ML models 474 

in clinical practice may require computational resources and infrastructure not available in all settings, 475 

particularly in low-resource environments where dengue is endemic. 476 

 477 

Conclusions 478 

Although traditional warning signs are essential in clinical practice, their low specificity often 479 

leads to high hospitalization rates, potentially overwhelming healthcare systems. Our findings suggest 480 

that ML models, particularly gradient boosting algorithms, offer a more effective approach by integrating 481 
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multiple variables and capturing complex interactions, thereby improving specificity while maintaining 482 

sensitivity. Implementing these models in clinical decision-making could help identify patients at highest 483 

risk for progression to severe dengue, reducing unnecessary hospitalizations and easing healthcare 484 

burdens. Although resource constraints may limit direct ML implementation in some settings, platforms 485 

like SEDSS can still leverage ML techniques to identify key predictors of severe disease. This approach 486 

can optimize patient care by prioritizing the most critical predictors, even in low-resource environments 487 

where advanced ML algorithms may not be feasible. 488 

 489 

Abbreviations 490 

AdaBoost: Adaptive Boosting 491 

AFI: acute febrile illness 492 

ANN: Artificial Neural Networks 493 

AUC-ROC: area under the receiver operating characteristic curve 494 

CatBoost: Categorical Boosting 495 

CBC: complete blood count 496 

CHIKV: chikungunya virus 497 

CSPF: convalescent sample processing form 498 

CEMI: Centro de Emergencia y Medicina Integrada 499 

CIF: case investigation form 500 

CMESL: Centro Médico Episcopal San Lucas 501 

DT: Decision Trees 502 

ELISA: enzyme-linked immunosorbent assay 503 

HESL: Hospital Episcopal San Lucas 504 

KNN: K-Nearest Neighbors 505 

LightGBM: Light Gradient Boosting Machine 506 

LR: logistic regression 507 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.15.24317377doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.15.24317377


22 

ML: machine learning 508 

NPV: negative predictive value 509 

PPV: positive predictive value 510 

RT-PCR: reverse transcription polymerase chain reaction 511 

SEDSS: Sentinel Enhanced Dengue Surveillance System 512 

SHAP: SHapley Additive exPlanations 513 

SVM: Support Vector Machines 514 

XGBoost: eXtreme Gradient Boosting 515 

WHO: World Health Organization  516 
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Figure Titles and Legends 698 

Figure 1. Euler plot of proportion of severe dengue cases with each warning sign, Sentinel Enhanced 699 

Dengue Surveillance System, Puerto Rico, 2012–2024. 700 

Figure 2. Pearson’s correlation of predictions between machine learning models, Sentinel Enhanced 701 

Dengue Surveillance System, Puerto Rico, 2012–2024. Pearson correlation coefficients measure the linear 702 

agreement between the predictions of different machine learning models. Higher values indicate similar 703 

prediction patterns across models, suggesting that models are identifying similar cases as severe dengue. 704 

Darker colors represent higher correlations.  705 

Figure 3. Forest plot of AUC values for Decision Trees (DT), K-Nearest Neighbors (KNN), Naïve Bayes, 706 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), Adaptive Boosting (AdaBoost), 707 

Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), eXtreme Gradient 708 

Boosting (XGBoost), and ensemble models for a 40-variable feature set and subsets excluding CBCs, 709 

IgG, and serotype results, Sentinel Enhanced Dengue Surveillance System, Puerto Rico, 2012–2024. 710 

DeLong method was used to obtain the 95% confidence intervals for the AUC-ROC. CBC = complete 711 

blood count, IgG = immunoglobulin G, AUC-ROC = area under the receiver operating characteristic 712 

curve. 713 

Figure 4. SHapley Additive exPlanations (SHAP) values for the 40 Features in CatBoost, Sentinel 714 

Enhanced Dengue Surveillance System, Puerto Rico, 2012–2024. SHAP values measure each feature’s 715 

contribution to the prediction of severe dengue in the CatBoost model. Positive SHAP values indicate a 716 

higher likelihood of severe dengue, while negative values suggest a lower likelihood (or protective 717 

effect). Each dot represents a single case, with its horizontal position showing the SHAP value, reflecting 718 

the strength and direction of the feature’s impact. The color of the dots indicates the actual feature value 719 

for each case. For most features, values are binary (0 or 1), representing presence or absence (e.g., rash or 720 

no rash). For age group, the scale ranges from 0 to 7, with 0 indicating the youngest age group (<1 year) 721 

and 7 indicating the oldest age group (≥50 years). An example interpretation: if' ‘persistent vomiting’ has 722 

a positive SHAP value and the dot is green (value = 1), it indicates that the presence of persistent 723 
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vomiting strongly increases the likelihood of severe dengue for that case. The mean SHAP values shown 724 

on the right represent the average absolute impact of each feature across all cases, indicating the overall 725 

importance of that feature in the model’s predictions. 726 

Figure 5. Iterative improvement in area under the curve (AUC) with additional variables in CatBoost 727 

model for severe dengue prediction, Sentinel Enhanced Dengue Surveillance System, Puerto Rico, 2012–728 

2024. This figure shows the change in AUC as top-performing variables are sequentially added to the 729 

CatBoost model. Starting with the highest-impact feature, “Days post onset,” each subsequent model 730 

includes one additional variable in the order of their mean SHAP values. The combinations of variables 731 

and their AUC, along with 95% confidence intervals, are shown to demonstrate the predictive gain with 732 

each added variable. 733 

  734 
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Table 1. Demographic and clinical characteristics of participants with laboratory-confirmed dengue (RT-PCR and IgM 
ELISA) by severity, Sentinel Enhanced Dengue Surveillance System, Puerto Rico, 2012–2024. 

Total 
N = 1,708 

n (column %) 

Severe dengue 
N = 415 

n (column %) 

Not severe 
N = 1,293 

n (column %) p-value 

Days post onset     <0.001 

   0  128 (7.5)   18 (4.3)   110 (8.5)   

   1-3  810 (47.4)  133 (32.0)   677 (52.4)   

   4-6  695 (40.7)  243 (58.6)   452 (35.0)   

   7+   75 (4.4)   21 (5.1)    54 (4.2)   

Age group     <0.001 

   <1   32 (1.9)    5 (1.2)    27 (2.1)   

   1-4  109 (6.4)   11 (2.7)    98 (7.6)   

   5-9  238 (13.9)   42 (10.1)   196 (15.2)   

   10-19  684 (40.0)  214 (51.6)   470 (36.3)   

   20-29  225 (13.2)   38 (9.2)   187 (14.5)   

   30-39  118 (6.9)   27 (6.5)    91 (7.0)   

   40-49   93 (5.4)   20 (4.8)    73 (5.6)   

   50+  209 (12.2)   58 (14.0)   151 (11.7)   

Female sex   802 (47.0)  185 (44.6)   617 (47.7)  0.290 

DENV immune status      <0.001 

   Post-primary 577 (33.8) 180 (43.4) 397 (30.7)  

   Primary 153 (9.0) 30 (7.2) 123 (9.5)  

   Not tested 978 (57.3) 205 (49.4) 773 (59.8)  

DENV Serotype    <0.001 

   1  905 (53.0)  226 (54.5)   679 (52.5)   

   2  102 (6.0)   15 (3.6)    87 (6.7)   

   3  149 (8.7)   18 (4.3)   131 (10.1)   

   4   50 (2.9)   19 (4.6)    31 (2.4)   

   Unknown  502 (29.4)  137 (33.0)   365 (28.2)   

Comorbidities     

   Chronic pulmonary disease or asthma  347 (20.3)   76 (18.3)   271 (21.0)  0.273 

   Cancer   27 (1.6)    6 (1.4)    21 (1.6)  0.978 

   Chronic kidney disease   12 (0.7)    5 (1.2)     7 (0.5)  0.285 

   Coronary heart disease   52 (3.0)   16 (3.9)    36 (2.8)  0.347 

   Diabetes  108 (6.3)   29 (7.0)    79 (6.1)  0.601 

   High cholesterol   84 (4.9)   24 (5.8)    60 (4.6)  0.420 

   Hypertension  156 (9.1)   41 (9.9)   115 (8.9)  0.611 

   Arthritis   23 (1.3)    5 (1.2)    18 (1.4)  0.965 

   Thyroid disease   74 (4.3)   16 (3.9)    58 (4.5)  0.682 

   Obesity  214 (12.5)   43 (10.4)   171 (13.2)  0.148 

   Gastritis   28 (1.6)    9 (2.2)    19 (1.5)  0.451 

Warning signs     

   Persistent vomiting  420 (24.6)  156 (37.6)   264 (20.4)  <0.001 

   Abdominal pain  995 (58.3)  328 (79.0)   667 (51.6)  <0.001 

   Restlessness  797 (46.7)  268 (64.6)   529 (40.9)  <0.001 

   Mucosal bleeding  274 (16.0)   95 (22.9)   179 (13.8)  <0.001 

   Hemoconcentration  129 (7.6)   86 (20.7)    43 (3.3)  <0.001 

   Hepatomegaly   47 (2.8)   19 (4.6)    28 (2.2)  0.015 

Other clinical signs/symptoms     

   Fever 1695 (99.2) 412 (99.3) 1283 ( 99.2) 1.000 
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   Conjunctivitis  147 (8.6)   26 (6.3)   121 (9.4)  0.064 

   Chills 1362 (79.7)  369 (88.9)   993 (76.8)  <0.001 

   Nausea 1175 (68.8)  333 (80.2)   842 (65.1)  <0.001 

   No appetite 1330 (77.9)  363 (87.5)   967 (74.8)  <0.001 

   Rash  971 (56.9)  286 (68.9)   685 (53.0)  <0.001 

   Yellow skin   69 (4.0)   36 (8.7)    33 (2.6)  <0.001 

   Itchy skin  627 (36.7)  190 (45.8)   437 (33.8)  <0.001 

   Bruise  103 (6.0)   35 (8.4)    68 (5.3)  0.025 

   Headache 1432 (83.8)  372 (89.6)  1060 (82.0)  <0.001 

   Eye pain 1026 (60.1)  288 (69.4)   738 (57.1)  <0.001 

   Myalgia 1276 (74.7)  362 (87.2)   914 (70.7)  <0.001 

   Arthralgia 1062 (62.2)  301 (72.5)   761 (58.9)  <0.001 

   Back pain  912 (53.4)  261 (62.9)   651 (50.3)  <0.001 

   Calf pain  627 (36.7)  180 (43.4)   447 (34.6)  <0.001 

   Arthritis  251 (14.7)   84 (20.2)   167 (12.9)  <0.001 

   Nasal discharge  545 (31.9)  149 (35.9)   396 (30.6)  0.052 

   Sore throat  615 (36.0)  168 (40.5)   447 (34.6)  0.034 

   Cough  726 (42.5)  189 (45.5)   537 (41.5)  0.167 

   Diarrhea  736 (43.1)  228 (54.9)   508 (39.3)  <0.001 

   Seizure   30 (1.8)   30 (7.2)     0 (0.0)  <0.001 

   Pale skin  783 (45.8)  266 (64.1)   517 (40.0)  <0.001 

   Blue lips   72 (4.2)   35 (8.4)    37 (2.9)  <0.001 

Laboratory     

   Leukopenia 1012 (59.3)  320 (77.1)   692 (53.5)  <0.001 

p-values were calculated using either the chi-square test or Fisher’s exact test, as appropriate, based on the sample 
sizes in each category. 

 735 
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Table 2. Performance of warning signs for predicting severe dengue (n=1708), Sentinel Enhanced Dengue Surveillance System, Puerto Rico, 2012–2024. 

Warning sign 

True 
Positive  

n (%) 

True 
Negative 

n (%) 

False 
Positive 

n (%) 

False 
Negative 

n (%) 
Sensitivity  
% (95% CI) 

Specificity  
% (95% CI) 

Positive 
Predictive Value  

% (95% CI) 

Negative 
Predictive Value  

% (95% CI) 
AUC-ROC 

% (95% CI) 

Persistent vomiting 156 (9.1) 1029 (60.2) 264 (15.5) 259 (15.2) 37.6 (32.9, 42.4) 79.6 (77.3, 81.7) 37.1 (32.5, 42.0) 79.9 (77.6, 82.0) 58.5 (56.0, 61.1) 

Abdominal pain 328 (19.2) 626 (36.7) 667 (39.1) 87 (5.1) 79.0 (74.8, 82.9) 48.4 (45.7, 51.2) 33.0 (30.0, 36.0) 87.8 (85.2, 90.1) 60.4 (58.5, 62.3) 

Restlessness 268 (15.7) 764 (44.7) 529 (31.0) 147 (8.6) 64.6 (59.8, 69.2) 59.1 (56.4, 61.8) 33.6 (30.3, 37.0) 83.9 (81.3, 86.2) 58.7 (56.7, 60.8) 

Mucosal bleeding 95 (5.6) 1114 (65.2) 179 (10.5) 320 (18.7) 22.9 (18.9, 27.2) 86.2 (84.2, 88.0) 34.7 (29.0, 40.6) 77.7 (75.4, 79.8) 56.2 (53.2, 59.2) 

Hemoconcentration  86 (5.0) 1250 (73.2) 43 (2.5) 329 (19.3) 20.7 (16.9, 24.9) 96.7 (95.5, 97.6) 66.7 (57.8, 74.7) 79.2 (77.1, 81.1) 72.9 (68.7, 77.1) 

Hepatomegaly 19 (1.1) 1265 (74.1) 28 (1.6) 396 (23.2) 4.6 (2.8, 7.1) 97.8 (96.9, 98.6) 40.4 (26.4, 55.7) 76.2 (74.0, 78.2) 58.3 (51.1, 65.5) 

Any warning sign 388 (22.7) 347 (20.3) 946 (55.4) 27 (1.6) 93.5 (90.7, 95.7) 26.8 (24.4, 29.3) 29.1 (26.7, 31.6) 92.8 (89.7, 95.2) 60.9 (59.1, 62.7) 

Only one warning sign 78 (9.0) 347 (40.1) 413 (47.7) 27 (3.1) 74.3 (64.8, 82.3) 45.7 (42.1, 49.3) 15.9 (12.8, 19.4) 92.8 (89.7, 95.2) 54.3 (52.2, 56.4) 

Only two warning signs 126 (14.9) 347 (41.0) 347 (41.0) 27 (3.2) 82.4 (75.4, 88.0) 50.0 (46.2, 53.8) 26.6 (22.7, 30.9) 92.8 (89.7, 95.2) 59.7 (57.3, 62.1) 

Three or more warning signs 184 (24.7) 347 (46.6) 186 (25.0) 27 (3.6) 87.2 (81.9, 91.4) 65.1 (60.9, 69.2) 49.7 (44.5, 54.9) 92.8 (89.7, 95.2) 71.3 (68.4, 74.1) 

AUC-ROC: area under receiver operating characteristic curve. 
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