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Abstract 

Chronic pain is a pervasive condition that involves complex neurobiological mechanisms 

and frequently co-occurs with mental health challenges such as anxiety, depression, and 

posttraumatic stress disorder (PTSD), interacting significantly with psychiatric outcomes. 

Despite its prevalence, the neural mechanisms of chronic pain and its interactions with 

mental health remain poorly understood – however, functional brain imaging studies 

suggest the "pain connectome", a collection of regions amongst numerous brain 

networks, plays a role in mediating the subjective perception of pain, and serves aspects 

of psychopathology. Here, we tested whether neural synchrony, a key mechanism in brain 

network communication, was predictive of self-reported chronic pain severity in a group 

of Canadian Armed Forces (CAF) service members and Veterans (n = 99) and examined 

if brain network functioning within the pain connectome interacts with symptoms of mental 

health challenges. We applied a 5-minute eyes-open resting-state 

magnetoencephalography (MEG) paradigm combined with multivariate modelling using 

partial least squares regression (PLSR). MEG is a powerful electrophysiological 

technique for imaging neural activity, including synchrony and network interactions, and 

PLSR allows exploration of complex multivariate data with high dimensionality to extract 

primary and interacting effects of interest in brain data. Pain severity was moderately 

correlated with the continuum of depression, anxiety, and PTSD symptoms, with mental 

health outcomes highly correlated between each other. We identified significant positive 

and negative associations between neural synchrony in the pain connectome and chronic 

pain severity. Beta oscillations were primarily related to pain severity and showed little-to-

no interaction with mental health outcomes. Similarly, theta band synchrony exhibited a 

more specific and prominent association with the pain-anxiety interaction. Conversely, 

high frequency gamma synchrony was associated with chronic pain severity and showed 

significant effects for pain-anxiety, pain-depression, and pain-PTSD interactions. 

Additionally, predictive modeling using machine learning revealed that cross-spectral 

synchrony could reliably predict chronic pain severity in individual cases, suggesting it as 

a robust neurobiological marker for chronic pain. It also demonstrated moderate 

predictive accuracy in indexing comorbid interactions between pain and mental health. 

Our findings show that complex, multidimensional patterns of neural synchrony in the pain 

connectome mediate both chronic pain intensity and its interaction with mental health, 

offering new avenues for targeted and personalized therapeutic interventions and 

objectively tracking treatment efficacy. 

Keywords 

Chronic pain, mental health comorbidities, pain connectome, magnetoencephalography 

(MEG), neural synchrony, multivariate modeling, partial least squares regression (PLSR).  
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Introduction 

Chronic pain is typically defined as pain that persists for more than three months. Unlike 

acute pain, which is a temporary, direct response to noxious stimuli or injury, chronic pain 

may be idiopathic and can continue even after "recovery" from injury or disease [1,2]. 

Chronic pain is highly prevalent, impacting approximately 20.5% of adults in the United 

States [3] and 18.9% in Canada [4], imposing a substantial socioeconomic burden; for 

instance, in Canada, the total economic impact of chronic pain ranges between $38.2 and 

$40.3 billion annually due to direct healthcare costs and lost productivity [5]. Chronic pain 

is multifaceted, involving complex interactions between physiological processes and 

psychosociological factors, making management and treatment a significant challenge in 

clinical practice [6]. 

Chronic pain is served by complex neural mechanisms that go beyond simple sensory 

processing, involving both the peripheral and central nervous system (CNS), where 

peripheral sensitization initiates pain signals via inflammatory mediators at the site of 

injury. In contrast, CNS changes are maintained within the dorsal horn of the spinal cord 

and the brain [7,8]. The role of glial cells in modulating and maintaining chronic pain by 

releasing pro-inflammatory cytokines that enhance pain signals also illustrates the 

complexity of chronic pain mechanisms [9]. Furthermore, the descending modulation 

pathway, which normally suppresses pain, may cause dysfunction and paradoxically 

promote pain by facilitating pain pathways [10,11]. Collectively, maladaptive processes 

contribute to the persistent nature of chronic pain, underscoring the need for 

comprehensive understanding and innovative treatment strategies. 

The "dynamic pain connectome" has emerged as a core framework for understanding the 

extensive brain network alterations associated with persistent pain states [12,13]. The 

pain connectome refers to a collective map of regions and neural connections related to 

pain processing, including those with interacting roles in emotional and cognitive 

processes. Key networks within the pain connectome include the default mode network, 

which is associated with self-referential thoughts and the perception of pain intensity, and 

the salience network, which is involved in detecting and filtering salient stimuli, including 

pain. The central executive network engages in higher-order cognitive functions and pain 

modulation, while the sensorimotor network processes the sensory aspects of pain and 

coordinates motor responses. Additionally, the limbic system modulates emotional 

responses to pain. These networks interact dynamically to modulate the experience of 

pain, reflecting the complex and multifaceted nature of pain perception and regulation in 

the brain [14,15]. 

Magnetoencephalography (MEG) is valuable in studying the pain connectome due to its 

high temporal resolution, which captures the rapid fluctuations in neural dynamics – such 
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as synchronisation across neural ensembles – that mediate the subjective percept of 

pain. For instance, alpha oscillatory activity is involved in neuropathic and non-

neuropathic chronic pain, a potential biomarker for differentiating pain mechanisms [16]. 

Altered alpha power has been identified in key pain processing regions including the 

insula, cingulate cortex, and thalamus in chronic pain patients [17]. Additionally, alpha-

band slowing and reductions in localised beta activity correlate with pain severity and 

interference in patients with multiple sclerosis [18], suggesting oscillatory activity 

mediates pain intensity percepts. Suppression of peak alpha frequency (PAF) has also 

been observed in chronic pain conditions, with specific associations between PAF 

changes in frontal and parietal regions and baseline pain levels [19]. Sex differences in 

alpha within the pain connectome [20] suggest distinct sexually dimorphic mechanisms 

in pain perception and processing.  

Furthermore, beta oscillations have been implicated in top-down pain modulation, with 

studies showing that attention to pain enhances beta activity in key regions like the 

primary somatosensory cortex [21]. Beta oscillatory suppression during conditioned pain 

modulation further highlights the role of neural oscillations in modulating pain perception 

[22]. Additionally, cross-network functional coupling is associated with chronic pain, 

suggesting that neural oscillations are mechanistic markers in the perceptual severity and 

interference of pain [23]. Pain sensitivity and interference correlate with functional 

coupling within and across the ascending nociceptive and salience networks, with notable 

sex differences in the theta, alpha, and low gamma bands [24]. Altogether, these findings 

demonstrate that neural oscillations serve as mechanistic markers of the perceptual 

severity of pain, its modulation through attentional processes, and its interference with 

cognitive and emotional functioning. 

The comorbidity of chronic pain and mental health disorders, such as anxiety, depression, 

and posttraumatic stress disorder (PTSD), presents a significant challenge for developing 

an integrated approach to understanding and treating pain. Chronic pain frequently co-

occurs with various mental health conditions, and their interaction is complex – comorbid 

pain and mental health challenges lead to increased disability and impairment [25], with 

a strong association between depression and anxiety with chronic pain, where mental 

health disorders exacerbate the severity and disability related to pain [26]. For example, 

chronic pain leads to "catastrophizing," which amplifies negative mood and depression 

[27]. Evidence suggests chronic pain and mental health disorders share common 

neurobiological pathways and psychosocial factors, complicating their management [28-

31]. The "mutual maintenance" model, often discussed in the context of PTSD and chronic 

pain, suggests that anxiety sensitivity, selective attention to threat, and a lowered 

threshold for alarm are critical mechanisms that perpetuate both conditions [32]. 

Research also shows that individuals with comorbid PTSD and chronic pain experience 
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more severe mental health symptoms (e.g., depression and anxiety) and utilize coping 

strategies that may inadvertently maintain their condition [33,34]. 

Effective pain management includes not only pharmacological interventions targeting 

shared neurobiological pathways but also cognitive-behavioral and neuromodulatory 

therapies that address the neurocognitive and psychological aspects of comorbidities 

[31,32,34-36]. The integration of these approaches is crucial for improving both pain and 

psychological outcomes, highlighting the importance of addressing these conditions 

concurrently rather than in isolation. 

In this study, we examined the complex neural signatures embedded in the "pain 

connectome" and the intricate relationship between chronic pain and anxiety, depression, 

and PTSD symptoms, controlling for potential confounding factors such as age and sex. 

To achieve this, we employed partial least squares regression (PLSR) [37,38], a 

multivariate technique suitable for revealing covariance between collinear and non-

parametric data, revealing the association between chronic pain severity, mental health 

outcomes, and neural synchronisation in the pain connectome [12,13]. We then employed 

machine learning with cross-validation to predict pain levels and pain-mental health 

interactions based on significant synchronization patterns. We focused on a sample 

recruited from active military members and Veterans because it is well known that chronic 

pain is widespread in this population. For example, rates of chronic pain range from 25% 

to 82% among active duty and Veteran populations in the US [39-42], and approximately 

41% of Canadian Veterans report experiencing constant pain or discomfort [43]. This 

study contributes to our understanding of the complex neurobiological mechanisms and 

topological presentation of pain and its interplay with mental health, opening new avenues 

for targeted treatments combining cognitive-behavioural and neuromodulatory 

interventions. 

Methods 

Participants 

We recruited n = 106 active-duty military personnel and Veterans of the Canadian Armed 

Forces (CAF), as part of a cross-sectional study on the relationships between brain, 

cognitive, and mental health outcomes in military. After quality assurance procedures, we 

retained n = 99 usable sets of individual data (mean age = 46.8 years, SD = 9.8 years; 

88% male, n = 87). From the 106 initial sets, three were removed due to the inability of 

the participants to complete either MEG or MRI scans for various reasons, such as 

scanner malfunction, or participants not being able to fit in the scanner(s). In addition, two 

sets were removed during preprocessing, due to excessive sensor noise. Another three 

participants were removed due to incomplete questionnaire data. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.15.24317356doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.15.24317356
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

The participants served in a wide variety of capacities across numerous roles including 

infantry, armoured, ordnance disposal, special operations forces, paratroopers, artillery, 

and administrative or technical roles. Inclusion criteria were being between the ages of 

20 and 65 and the ability to be imaged in an MRI scanner's confined space. Exclusions 

were made for individuals with ferrous metal implants that could affect MEG or MRI 

scanning, or those with a history of seizures, or active substance use disorders. Written 

informed consent was obtained from all participants, and the Hospital for Sick Children 

Research Ethics Board approved the study protocol. All participants provided their written 

informed consent for study participation. 

Data Collection 

Five minutes of eyes-open resting-state MEG data (600 Hz) in the supine position was 

collected using a 151-channel CTF system at the Hospital for Sick Children in Toronto. 

Fiducial coils, placed at the left and right pre-auricular points as well as the nasion, were 

used for continuous head motion monitoring. For MEG source modelling, MRI scans were 

collected on a 3T Siemens PrismaFit scanner equipped with a 20-channel head and neck 

coil. A high-resolution 3D MPRAGE T1-weighted image was obtained with an isotropic 

voxel size of 0.8 mm (TR of 1870 ms, TE of 3.1 ms, and TI of 945 ms) over a field of view 

measuring 240  256 mm and comprising 240 slices each 0.8 mm thick. 

On the day of scanning, participants completed self-reported screening questionnaires 

for psychiatric, neurological, neurobehavioural, neurocognitive, and pain symptoms. 

These included the McGill Pain Questionnaire [44], the Generalized Anxiety Disorder 

(GAD-7) scale [45], the Patient Health Questionnaire 9 (PHQ-9) screener [46], and the 

PTSD Checklist-Military Version (PCL-M) [47], which is based on DSM-IV criteria to 

maintain consistency with prior research.  

MEG Signal Processing 

MEG data were processed using FieldTrip and SPM toolboxes [48,49]. Data were 

bandpass filtered (1-150 Hz), and epoched into 10-second pseudo-trials and the 

maximum number of trials were retained after removing trials where head position 

deviated more than 5 mm from the original position. In addition, epochs including SQUID 

jumps in excess of ±2 pT were also removed. Subsequently, cardiac and ocular artefacts 

were removed following independent component analysis (ICA) using the "fastica" 

method from FieldTrip, and visual inspection of the resulting components. 

Source localization was performed to pinpoint cortical activity within thirty-six regions of 

interest (ROIs) within the pain connectome [12,13]. To localize sources, a forward solution 

was created for each participant by using the individual anatomical T1-weighted MRI 

scans. After co-registration of the MEG data to the MRI, a linearly constrained minimum 
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variance (LCMV) beamformer [50] was employed to estimate electrophysiological activity 

at the predetermined ROIs, using the epoched, artifact-free sensor-level data. 

For connectivity analysis, the broadband, source-level time-series data were bandpass 

filtered into the canonical frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-14 

Hz), beta (15-30 Hz), low-gamma1 (30-55 Hz), low-gamma2 (65-80 Hz), and high-gamma 

(80-150 Hz). The Weighted Phase-Lag Index (wPLI) was used to quantify functional 

connectivity between pairwise ROI connections [51]. A 36-by-36 connectivity matrix was 

constructed for each frequency band and epoch per participant by calculating the wPLI 

between all possible ROI pairs. These matrices were subsequently averaged across 

epochs to yield a functional connectivity matrix per participant for each frequency band. 

We provide the ROIs’ coordinates in the Supplementary Material. 

Partial Least Squares Modeling 

We employed PLSR [37,38] to model the complex relationships between neural 

synchrony as independent variables and specific outcomes, including pain severity, the 

interaction of pain severity with anxiety symptoms, the interaction of pain severity with 

depressive symptoms, and the interaction of pain severity with PTSD symptoms, as 

dependent variables. This technique is well-suited to highly collinear data and cases 

where the number of observations is smaller than the number of predictors. Prior to 

conducting the PLSR analysis, we controlled the effects of sex and age using multiple 

linear regression. Our analysis included separate models for each dependent variable: 

pain intensity, pain-anxiety interaction, pain-depression interaction, and pain-PTSD 

interaction across each frequency band. 

For statistical inference of the model coefficients, we utilized a resampling procedure. 

Specifically, we performed a permutation test by resampling the subject labels 1,000 

times and rerunning the PLSR on each resampled data. This process generated a 

distribution of coefficients from the resampled models corresponding to each original 

coefficient. We then compared the coefficients from the actual model to this distribution 

to calculate a p-value for each coefficient, thereby assessing their statistical significance. 

This approach underscored the role of neural synchrony in predicting pain intensity and 

its interactions with mental health conditions. 

Predictive Modeling 

Significant connections identified through PLSR modeling served as input variables. To 

predict pain and its interactions with various mental health conditions, we employed 

leave-one-out cross-validation (LOOCV). Five regressor algorithms were used: elastic 
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net, random forest, partial least squares, support vector machine with a linear kernel, and 

support vector machine with a radial kernel. Model performance was compared using 

mean absolute error (MAE) and R² for goodness of fit. The algorithm with the lowest MAE 

was selected to generate actual-predicted plots. Our target variables included pain, and 

pain-anxiety, pain-depression, and pain-PTSD interactions. 

Modeling and Visualization Tools 

We used the R programming environment and packages "pls" and "caret" for statistical 

modeling [52-54], along with "ggplot2" and "BrainNet Viewer" for visualization [55,56]. 

Results 

Chronic pain severity moderately correlates with mental health outcomes 

The severity of chronic pain, anxiety, depression, and PTSD were positively skewed 

(Figure 1A), highlighting the need for non-parametric statistical methods. Spearman 

correlations between chronic pain and mental health outcomes were generally low to 

moderate (all p-values were significant after multiple comparisons with medium effect 

sizes: 𝑝pain & anxiety = 3.92e-4, 𝑝pain & depression = 1.11e-4, 𝑝pain & depression = 1.31e-4) (Figure 

1B). Conversely, pairwise correlations between mental health outcomes were high (all p-

values significant after multiple comparisons with large effect sizes).  

The medium effect sizes observed between pain and mental health outcomes indicated 

that, while these associations were related, they were not entirely overlapping, supporting 

further exploration into how interactions between pain and specific mental health 

outcomes including anxiety, depression, and PTSD might relate to neural measurements. 

Despite the high intercorrelation among mental health outcomes, examining the neural 

correlates of pain’s interaction with each mental health condition could yield distinct 

insights, capturing the complexity of these comorbid conditions within the pain 

connectome. 
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Figure 1. Severity measures and their associations. (A) Histogram of pain, anxiety, depression, and 

PTSD severities across subjects. (B) Spearman's correlation matrix of chronic pain and mental condition 

measures. All correlations are statistically significant after multiple comparison correction. Asterisks denote 

correlation coefficients with large effect sizes. 

Chronic pain is associated with neural synchrony in the pain connectome and 

interacts with mental health outcomes 

PLSR modelled the association between chronic pain and network neural synchrony, and 

the interaction between pain and mental health outcomes. The PLSR method is suitable 

for collinear and nonparametric contexts, effectively projecting the complexity of the data 

in a robust and reliable manner [37,38] and models the association between continuous 

clinical measures and their interaction with functional connectivity. 

Chronic pain severity is associated with frequency-specific neural synchrony 

Significant associations between chronic pain and neural synchrony were identified 

across many connections in the pain connectome, particularly in the beta and high-

gamma frequency bands (Figure 2, Row 1). Theta synchrony exhibited an inverse 

relationship with pain across three connections in the somatosensory and subcortical 

networks, contrary to the direct association of the left amygdala to the medial prefrontal 

cortex. Beta synchrony showed large-scale significant effects with pain, exhibiting both 

positive and negative associations, regions involving the default mode and 

somatosensory networks being anti-correlated with pain intensity, and connections with 

the central executive and subcortical networks showing the greatest number of positive 

correlations with pain. Across the low-gamma ranges, several within-network and 

between-network connections were anti-correlated with pain, contrary to the connection 

from the left primary somatosensory cortex to the left medial temporal lobe, which is 

directly related to pain severity in low-gamma2 band. In the high-gamma band, 

connections from regions involving the central executive network, the default mode 

network, and subcortex to other regions were mostly correlated with pain intensity, while 

other regions were both correlated and anti-correlated with pain severity. 
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Neural synchrony is associated with the interaction between pain and anxiety 

PLSR revealed significant interactions between pain and anxiety across various brain 

networks and lobes (Figure 2, Row 2), primarily in the theta and gamma range. For theta, 

the interaction between pain and anxiety was negatively associated with synchrony, 

especially for synchronous neural interactions connecting the somatomotor network, in 

addition to direct associations of the medial prefrontal cortex to the right putamen and left 

amygdala. The magnitude of synchrony between the left pallidum to right putamen was 

also anti-correlated with the pain-anxiety interaction in the beta frequency band – the only 

connection to show an effect at this frequency. For low-gamma1, many connections, 

especially those involving somatomotor regions, were anti-correlated with pain-anxiety 

interaction, in contrast to minor connections with the ventral attention and subcortical 

networks, which were positively correlated with pain-anxiety. In the low-gamma2 

frequency band, the connection between the mid cingulate cortex and the right caudate 

was also negatively correlated with pain-anxiety intensity. In high-gamma, there were 

several functional connections across various networks with positive and negative 

correlations with pain-anxiety interactions. 

Neural synchrony is associated with the interaction between pain and depression 

Pain-depression interactions were significantly associated with neural synchrony across 

all frequencies, except alpha and delta (Figure 2, Row 3). In the theta band, pain-

depression interaction was inversely related to the synchrony of the right secondary motor 

cortex and the right secondary somatosensory cortex. In the beta band, the connection 

between right putamen and left supplementary motor area was correlated with the pain-

depression interaction, while connections between right putamen to left pallidum and right 

dorsolateral prefrontal cortex to left posterior insula were anti-correlated. In low-gamma1, 

several within and between network connections involving somatomotor and subcortical 

regions were negatively associated with pain-depression interactions, contrary to the 

positive association of this interaction with synchrony between the right pallidum and left 

putamen. The connection between the mid cingulate cortex and the right caudate was 

also anti-correlated with pain-depression intensity in the low-gamma2 frequency band. In 

high-gamma, positive and negative correlations were observed across numerous regions 

across various brain networks. 

Neural synchrony is associated with the interaction between pain and PTSD severity 

Pain and PTSD interact significantly with neural synchrony across the beta, low-gamma 

and high-gamma bands (Figure 2, Row 4). In the beta band, synchrony between the left 

putamen and right dorsolateral prefrontal cortex was positively associated with the pain-

PTSD interaction. In contrast, connections from the left posterior insula to the right 

dorsolateral prefrontal cortex, from the right putamen to the left pallidum, and from the 
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subgenual anterior cingulate cortex to the left occipital cortex were inversely associated 

with pain-PTSD interactions. In the low-gamma1 band, several connections, especially 

those involving somatomotor, were negatively associated with pain-PTSD interactions. 

Conversely, three connections between subcortical regions and other networks, as well 

as between the right secondary somatosensory cortex and the right temporoparietal 

junction, were positively associated with the pain-PTSD interaction. In the high gamma 

band, most brain regions exhibited synchrony with other regions that were both positively 

and negatively associated with pain-PTSD interactions. 

Figure 2. Transpectral neural synchrony is associated with pain severity and significantly interacts 

with mental health outcomes. Brain maps show connections with their regional synchronization intensity 

significantly associated with pain and the interaction between pain and mental health across various 

frequency bands, along with the strength of this relationship, obtained through PLSR. Nodes represent 

regions from the pain connectome and are color-coded by network membership. The colors of the links 

denote the direction of the association; red indicates a direct relationship between connection strength and 

clinical measure, while blue indicates an inverse relationship. The width of the connections also indicates 

the strength of the effect. Abbreviations: CE: Central Executive, DM: Default Mode, LIM: Limbic, SAL: 

Salience, SM: Somatomotor, SC: Subcortical, VA: Ventral Attention, VIS: Visual. 

Neural synchrony reliably predicts chronic pain severity and the interaction of pain 

and mental health outcomes 

We used the significant connections identified in the previous section across all frequency 

bands to perform leave-one-out cross-validation for predicting pain severity and the 
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interactions of pain with mental health. Figure 3 illustrates the performance of predictive 

models for the dependent variables using various machine learning methods. 

For the prediction of pain severity, partial least squares machine learning method yielded 

the minimum absolute error (MAE = 9.45), which corresponds to 16.57% of the maximum 

score on the pain severity scale. It also achieved the highest goodness of fit (R² = 0.40), 

with a Spearman’s correlation of 0.70 between the actual and predicted values. In 

predicting the pain-anxiety interaction, the partial least squares algorithm also proved to 

be the best predictive algorithm, achieving MAE = 148, along with R² = 0.38 and a 

Spearman’s correlation of 0.48 between the actual and predicted values. Regarding the 

interaction of pain and depression, elastic net was the most predictive algorithm, 

exhibiting a slightly lower error compared to partial least squares which also had an MAE 

of 179, R² = 0.27, and a Spearman’s correlation of 0.46. For the prediction of pain-PTSD 

interaction, elastic net also demonstrated the best performance, with MAE = 516, R² = 

0.36, and a Spearman’s correlation of 0.55 between the actual and predicted values. 

Figure 3. Transpectral neural synchrony reliably predicts chronic pain severity and pain-mental 

health interactions. Each column demonstrates the prediction of a target variable. The top barplots show 

the Mean Absolute Error (MAE) in the predicting of target variables by a set of algorithms. The middle 

barplots display the R-squared (R²) values as the measure of goodness of fit for the predictions by each 

algorithm. The bottom row scatter plots indicate the actual versus predicted values for the best-performing 

algorithm with the lowest MAE. The reported correlation values are Spearman’s, and the axes represent 
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the ordered actual and predicted values. (Abbreviations: EN: ElasticNet, RF: Random Forest, PLS: Partial 

Least Square, LSVM: Linear Support Vector Machine, RSVM: Radial Support Vector Machine) 

Discussion 

Summary 

In this study, we comprehensively examined the complex relationship between neural 

synchrony and chronic pain in the pain connectome, as well as the neural synchrony 

associated with the interaction between chronic pain and mental health conditions such 

as anxiety, depression, and PTSD symptoms (Figure 2).  

Using PLSR applied to MEG-based synchrony, we uncovered significant associations 

between chronic pain severity and neural synchrony across multiple frequency bands, 

with the most pronounced effects occurring in the beta and high-gamma bands, across 

various brain networks, with minor but significant associations in theta and low-gamma 

frequency bands.  

Our results reveal that chronic pain is not only linked to specific patterns of neural 

synchrony but also that cross-frequency connections are influenced by co-occurring 

mental health symptoms. The interaction between pain and anxiety was notably mediated 

by neural synchronization in theta low- (theta) and high-frequency (gamma) ranges, while 

the interaction between pain and depression, and pain and PTSD, were associated with 

synchronisation primarily in the gamma band, but also a small number of connections in 

the beta band. These findings highlight the complex repertoire of multispectral neural 

states that underlie the percept of chronic pain and show co-occurring mental health 

challenges significantly interact with the neural architecture supporting pain percepts. 

Overall, these results show that transpectral synchrony within specific brain networks is 

a predictive biomarker for both pain severity and interactions with mental health (Figure 

3). This provides a potential pathway for developing personalized biomarkers and 

interventions in chronic pain management. 

Comparisons with prior work 

Comparing our results on chronic pain mechanisms with existing literature on MEG 

spectral power analysis within the pain connectome reveals both consistency and 

contradictory results in the neural substrates of chronic pain (Figure 2, Row 1). For 

example, Kisler et al. reported decreased low-gamma power in the default mode and 

ascending nociceptive pathway [16], which partially aligns with our findings of minor 

salience and default mode connections negatively associated with pain in this band. 

However, their observation of increased alpha power contrasts with our lack of significant 

connectivity effects in the alpha band – but of course, regional, oscillatory power changes 
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are distinct mechanisms from network-level phase synchronisation [57]. Kim et al. (2019) 

found increased alpha and decreased beta band power in chronic multiple sclerosis pain 

[18], which are consistent with those connections negatively associated with pain in the 

beta band and contrast with other beta connections and the lack of significant alpha 

connections in our observations. Fauchon et al.'s exploration of peak alpha frequency 

abnormalities in chronic pain conditions [20], with sex-based differences, offers a 

compelling comparison to our results. We regressed out sex from the analysis and did 

not find significant connections for the alpha synchronisation, although we did not look at 

peak alpha frequency. Diers et al. demonstrated reduced beta activity during conditioned 

pain modulation, linking beta oscillations to top-down pain regulation [21], and Jin et al. 

showed increased beta activity in the somatosensory cortex during attentional focus on 

pain, highlighting beta's role in cognitive control [22]. These findings align with our result, 

where beta synchrony shows both positive and negative associations with pain intensity. 

Another study by Kim et al. (2020) examining cross-network functional coupling [23] 

revealed abnormalities in alpha, beta, and gamma frequency bands in chronic pain, 

resonating with our findings of significant connectivity associations in various frequency 

bands. Studies by Parker et al. and Lim et al. on spectral power shifts in response to pain 

or interventions [58,59] align with our connectivity patterns in similar frequency bands but 

contrast with our emphasis on connectivity over spectral power. Choe et al., Hsiao et al., 

and Iwatsuki et al. provide direct comparisons, highlighting decreased global connectivity 

and frequency-specific reorganization in chronic pain, reinforcing the importance of 

examining neural connectivity [60-62]. Dinh et al.'s exploration of increased connectivity 

at theta and gamma frequencies in frontal brain areas of chronic pain patients [63] 

intersects with our findings of high connectivity in the theta and high-gamma bands. Their 

emphasis on frontal connectivity as a target for interventions aligns with our observations. 

Our observed pain-anxiety interactions in the theta and gamma frequency bands aligns 

with broader literature implicating theta oscillations in cognitive and affective processes 

related to anxiety [64] and oscillations in sensory processing and pain perception [16,60] 

(Figure 2, Row 2). These findings suggest that connectivity in these bands is crucial in 

integrating and modulating pain and anxiety experiences. The anti-correlation between 

pain-anxiety interaction and subcortical beta synchronization points to the role of beta in 

modulating neural mechanisms underlying these conditions [21-23,65]. The absence of 

significant associations in the alpha and delta bands, despite alpha's consistent 

implication in anxiety and pain [16-19,65], may hint at distinct oscillatory power and neural 

synchrony roles. This suggests that while alpha power alterations are a generalized 

marker of stress, connectivity patterns may not directly correspond to pain-anxiety 

interactions. 

MEG studies in major depressive disorder (MDD) and chronic pain have highlighted 

nuanced neural connectivity patterns bridging emotional and physical pain processing. 
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Nugent et al. reported no significant differences in functional connectivity between healthy 

controls and individuals with MDD [66]. However, other studies have identified specific 

connectivity patterns predictive of therapeutic outcomes, such as alpha connectivity 

between the dorsolateral prefrontal cortex and subgenual anterior cingulate cortex [67], 

and altered connectivity dynamics in MDD, particularly in beta and low-gamma bands [68-

70]. Research in chronic pain has documented altered beta oscillations in modulation of 

pain and abnormalities in functional coupling across beta and gamma bands [21-23, 62], 

mirroring the disrupted connectivity patterns observed in depression. This consistency 

highlights a shared neural architecture between chronic pain and depression. Our findings 

align with both depression-specific and chronic pain observations, suggesting common 

neural processing alterations in both conditions, particularly in gamma and beta bands 

(Figure 2, Row 3). This convergence emphasizes the roles of these bands in the co-

occurrence of pain and depression. The absence of significant connections in the alpha 

band in our pain-depression interaction results also contradicts weaker partial directed 

coherence observed in depression [71] and parallels peak alpha frequency abnormalities 

in chronic pain [20]. 

Comparing our results with existing literature on resting-state MEG connectivity and 

network measures for pain and PTSD enhances our understanding (Figure 2, Row 4). 

Studies show that beta and gamma frequency activity correlates with PTSD severity and 

altered neural connectivity [72]. Similarly, pain research highlights frequency 

abnormalities in chronic pain patients, particularly in the beta and gamma bands [21-23]. 

These studies suggest shared neurophysiological mechanisms linking pain and PTSD 

that are consistent with our results on the association of beta and gamma synchrony and 

pain-PTSD interaction. High-gamma band dynamics in PTSD reveal significant insights 

on high-frequency oscillations predicting PTSD severity and altered connectivity patterns 

[73,74]. These insights mirror our observations on pain-PTSD interactions in the high-

gamma band. Theta band alterations in both PTSD and chronic pain are well-

documented, with chronic pain studies observing increased theta connectivity and PTSD 

research variably reporting increased connectivity related to symptom severity [63,75]. 

Our findings do not represent theta connectivity's role in pain-PTSD interaction. 

Predictive modelling 

Applying machine learning techniques to predict chronic pain, pain severity, and 

perception of pain has attracted attention in pain research [76,77]. Our study 

demonstrates the effectiveness of these algorithms in predicting pain severity based on 

neural synchrony with appropriate predictive accuracy. By using the entire frequency 

spectrum for modeling, we can capture a broader range of neural states, which enhances 

the performance of predictive modeling (Figure 3). Our result aligns with existing 

literature focusing on neuroimaging with varying degrees of success [78-84]. Some 
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studies have reported high accuracy in pain prediction, often utilizing advanced 

algorithms; others have shown moderate predictive performance, underscoring the 

complexity of pain as a subjective and multifaceted phenomenon. The variability in 

predictive performance across studies can be attributed to several factors, including 

differences in data types (e.g., EEG vs. fMRI), the underlying neural mechanism being 

measured, the specific algorithm employed, and the pain phenotypes being modeled [85-

87]. Moreover, despite the promising results in pain prediction, there remains a need for 

robust external validation of these models to ensure their applicability in diverse clinical 

settings. Some studies have successfully validated their models on independent datasets, 

thereby demonstrating their potential for clinical translation [84]. However, challenges 

such as inadequate reporting standards and potential biases persist, limiting the 

generalizability of these models across different populations and pain conditions, an issue 

that has been addressed in some research [88]. 

In the interaction between pain and mental health outcomes, our study extends the use 

of machine modeling approach using neural synchrony inputs to explore these complex 

relationships, particularly focusing on predicting the interaction of pain with anxiety, 

depression, and PTSD (Figure 3). The comorbidity of chronic pain with mental health 

disorders is well-documented, with evidence suggesting that the interplay between pain 

and mental health exacerbates both conditions, leading to increased disability and 

impairment [25]. Chronic pain often co-occurs with anxiety, depression, and PTSD, 

forming a bidirectional relationship where each condition intensifies the other 

[26,27,32,33]. Despite the extensive evidence on the comorbidity of pain and mental 

health disorders [25-36], employing machine learning to model these interactions using 

neuroimage data remains limited. Our study underscores the importance of this approach, 

suggesting that machine learning techniques can effectively capture the intricate 

relationships between chronic pain and mental health outcomes. 

Limitations & Future Direction 

There are several limitations to this study. The cross-sectional nature of the data limits 

our ability to infer causality between neural synchrony changes and chronic pain severity 

or its interaction with mental health. Longitudinal studies are needed to better understand 

these temporal dynamics and disentangle "state versus trait" pain percepts. Indeed, the 

establishment of registries such as the DoD’s Uniformed Services University Pain 

Registry Biobank represent efforts that allow the collection of multimodal pain-related data 

longitudinally, promising to add to our understanding of the developmental trajectory of 

chronic pain [89]. While our machine learning models show promise, the generalizability 

of these models is unknown without external validation using independent datasets and 

different pain populations would be critical to ensure applicability in clinical settings.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.15.24317356doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.15.24317356
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

For future studies, several directions are recommended. Longitudinal studies should be 

conducted to explore the causal relationship between neural synchrony and the 

development or exacerbation of chronic pain and comorbid mental health conditions. 

Furthermore, integrating multimodal data, including genetic, behavioral, and other 

neuroimaging modalities, could enhance the accuracy of predictive models and lead to 

more personalized treatment strategies. Emphasizing personalized medicine, future 

interventions could be tailored to target specific neural synchrony patterns identified in 

individuals, potentially improving outcomes in chronic pain management. Finally, 

exploring the effects of therapeutic interventions, such as neurostimulation or 

mindfulness-based therapies, on neural synchrony within these specific frequency bands 

could provide new avenues for treating chronic pain, especially in patients with comorbid 

mental health disorders. 

Conclusion 

The findings of this study offer a deeper understanding of the neural complexity underlying 

chronic pain and its significant interactions with mental health conditions such as anxiety, 

depression, and PTSD. By employing advanced techniques such as partial least squares 

regression and machine learning, we identified that neural synchrony across specific 

frequency bands can serve as predictive biomarkers for both pain severity and its 

comorbidity with mental health disorders. These insights not only align with but also 

expand upon existing literature, highlighting the intricate and multifaceted nature of 

chronic pain and its connections to mental health, reinforcing the importance of not 

viewing chronic pain and mental health as independent conditions in clinical settings, nor 

in terms of the underlying neurobiological mechanisms. We emphasise the need for a 

multidisciplinary approach to the assessment and treatment of chronic pain, integrating 

chronic pain's physical and mental health dimensions. This integrated approach is crucial 

for developing more effective, comprehensive care models that reflect the true complexity 

of chronic pain, its significant mental health comorbidities, and its neurobiology. 
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