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Abstract 

PURPOSE Tissue-agnostic biomarkers that capture the commonality in cancer biology, may 

provide a new avenue for treatment development and optimization across cancer types. Here, we 

aimed to evaluate and validate the clinical value of a tissue-agnostic cellular morphometrics 

biomarker (CMB) signature, which was discovered by artificial intelligence (AI) from H&E-

stained whole-slide images (WSI) of diagnostic slides of colon cancers, in pan-gastrointestinal 

(pan-GI) pre-cancer lesions and cancers. 

METHODS We discovered CMBs from WSI using our well-established CMB-ML pipeline and 

established a CMB risk score (CMBRS) using multivariate regression models. Based on CMBRS, 

we assigned individual patients from The Cancer Genome Atlas Colon Adenocarcinoma Cohort 

(TCGA-COAD) (n=430) to CMB risk groups (CMBRG). We then extensively evaluated tissue-

agnostic clinical value of CMB signature, CMBRS and CMBRG in multi-cohorts with different 

types of GI cancer (n=2,219) and risk assessment of precancerous lesions (n=1,016). We unraveled 

each CMB-related biological function using bulk RNA-sequencing, single-cell RNA-sequencing 

(scRNA-seq) and opal multiplex immunohistochemistry (IHC) techniques. 

RESULTS From the TCGA-COAD cohort, we developed a 13-CMB signature and constructed 

CMBRS/CMBRG that predict prognosis of colon cancer patients. Importantly, this 13-CMB 

signature proved prognostic and predictive values for TCGA patients with rectal, gastric and 

esophageal cancer independent of traditional clinical factors. These findings were independently 

validated using multiple cohorts from Drum Tower Hospital. Moreover, 13-CMB signature 

exhibited the power for risk stratification of colon adenoma and early esophageal neoplastic lesion 

patients for predicting cancer progression. In addition, we demonstrated and validated independent 

prognostic impacts of gene signatures and CMB signatures and a significant increase in predictive 
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power by integration of CMB signature, gene signature and clinical factors. Correlations between 

CMBs and gene expression levels revealed the association of each CMB with biological functions 

including cell proliferation, epithelial-to-mesenchymal transition and immune microenvironment. 

The association of CMBs with the immune microenvironment was prospectively validated by 

scRNA-seq and was further confirmed by Opal multiplex IHC staining in colon cancer. 

CONCLUSION This study demonstrates the clinical value of tissue-agnostic AI-empowered 

CMB signature from WSI with defined biological functions, which can be used in clinical settings 

to assess risk, diagnose disease, and guide clinical interventions. Tissue-agnostic CMBs potentially 

provide a new avenue for a rapid, robust and cost-effective cross-cancer prediction that is essential 

for developing common treatment strategy for multiple cancers. 
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Abbreviations: 

H&E: hematoxylin and eosin 

AI: artificial intelligence 

GI: gastrointestinal 

CMB: cellular morphometrics biomarker 

WSI: whole-slide images 

CMBRS: CMB risk score 
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CMBRG: CMB risk group 

OS: overall survival 

scRNA-seq: single cell RNA sequencing 

IHC: immunohistochemistry 

TCGA-COAD: The Cancer Genome Atlas - Colon Adenocarcinoma 

TCGA-STAD: The Cancer Genome Atlas - Stomach Adenocarcinoma 

TCGA-READ: The Cancer Genome Atlas - Rectum Adenocarcinoma 

TCGA-ESCA: The Cancer Genome Atlas - Esophageal Carcinoma 

LGIN: Low-Grade Intraepithelial Neoplasia 

HGIN: High-Grade Intraepithelial Neoplasia 

CAP: Colon Adenomatous Polyps 

EEL: Early Esophageal Lesion 

CRC: Colorectal Cancer 

DT: Drum Tower Hospital 

 

Introduction 

The past decades of cancer research and clinical oncology have been devoted to tumor 

characterization at both the cellular and molecular levels, which led to the emerging evidences of 

tissue-agnostic treatment benefits of certain drugs (e.g., nivolumab, a PD1 inhibitor 1, trastuzumab 

deruxtecan, a HER2 targeted antibody 2,3 and Olaparib,  an polymerase inhibitor with activity in 

germline BRCA1 and BRCA2 4),  leveraging the molecular profiling of tumors regardless of the 

organ in which tumors are originated. Moreover, most cancer types can be further subdivided into 

different molecular subgroups, including breast cancer 5, lung cancer 6, brain cancer 7 and gastric 
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cancer 8,9, that have distinct clinical outcomes and requires subtype-specific treatment 

optimization. In sight of these evidences, regulatory agencies, including the US Food and Drug 

Administration (FDA), are working towards the guideline on tissue-agnostic drug development 

10,11, with the potential to reclassify cancer and restructure oncology based on their molecular 

landscape.  

However, the intertumoral and intratumoral cancer heterogeneity is not solely defined by 

their molecular profile, but also reflected in tissue histology that captures dynamic 

microenvironments including the cytoplasm, nucleus, organelles and extra-cellular components, 

which therefore remains as the gold standard for cancer diagnosis and together contribute to 

diverse therapeutic responses 12,13.  In addition, the affordability, accessibility and the turnaround 

time of genomic profiling are practical barriers to the implementation of genomics as a tool in 

primary care, which not only impedes its global application 14,15 but also exacerbates health 

disparity 15. In contrast, histopathological slides with hematoxylin and eosin (H&E) staining are 

routinely used in cancer diagnosis by pathologists. Therefore, the tissue-agnostic characterization 

and biomarker development of tumors at pathologic level is believed to provide a new avenue to 

overcome the challenges in precision oncology.   

With the adoption of digital workflows in histopathology and recent advancements in 

artificial intelligence (AI), numerous studies have revealed the possibility to discover cancer 

biomarkers in the form of whole slide images (WSI)16. And we previously developed and 

extensively validated a powerful AI-based pipeline: Cellular Morphometric Biomarker (CMB) via 

Machine Learning (CMB-ML), to profile the cellular morphometric landscape from WSI in 

multiple type of cancers and model systems 17-19 that have demonstrated association with 

prognosis, treatment response and tumor microenvironments. However, the majority effort in 
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tissue-histology-based biomarker development is still devoted into specific cancer type, leaving 

the potential of tissue-agnostic biomarker insufficiently explored, which is essential to the tissue-

agnostic cancer diagnosis, treatment and drug development.  

Gastrointestinal (GI) cancers account for a quarter of the global cancer incidence and a 

third of cancer-related deaths, and the disparities across countries warrants context-specific 

targeted GI cancer control and health systems planning 20. Tremendous efforts have been devoted 

to the molecular profiling and biomarker development both cancer-type-specifically and tissue- 

agnostically in GI cancers 21-24. However, the progress in the management and treatment of GI 

precancers and cancers has been limited 25, which imposes significant clinical challenges and 

underscores the unmet needs in precision oncology. In this study, we conducted comprehensive 

evaluation and validation of clinical value of an AI-empowered tissue-agnostic CMB signature 

discovered from WSIs of colon cancers in pan-GI pre-cancers and cancers (Figure 1). Specifically, 

we first discovered CMBs from WSI and established a CMB risk score (CMBRS) system and 

CMB risk group (CMBRG) in TCGA-COAD cohort and then extensively evaluated the clinical 

utility of CMB signature, CMBRS and CMBRG for GI precancerous patient risk assessment and 

GI cancer patient prognosis. Furthermore, the CMB-associated biological functions were assessed 

by bulk RNA-sequencing and validated by single-cell RNA-sequencing (scRNA-seq) and opal 

multiplex immunohistochemistry (IHC) techniques. Our findings demonstrate that tissue-agnostic 

CMBs can provide a new avenue for a rapid, robust and cost-effective aid to make clinical 

decisions in GI pre-cancer and cancer patients. 

 

Methods 

Human cohorts 
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The human gastrointestinal cancer and precancerous cohorts included in this study consisting of 

1,118 patients from the Cancer Genome Atlas (TCGA) and 1,558 patients collected from the 

Nanjing Drum Tower Hospital (DT), the Affiliated Hospital of Nanjing University Medical School. 

Specifically, the TCGA-COAD cohort (Supplementary Table S1) included 430 patients diagnosed 

with colon adenocarcinoma, the TCGA-STAD cohort (Supplementary Table S2) included 375 

patients diagnosed with stomach adenocarcinoma, the TCGA-READ cohort (Supplementary Table 

S3) included 157 patients diagnosed with rectal adenocarcinoma, and the TCGA-ESCA cohort 

(Supplementary Table S4) included 156 patients diagnosed with esophageal carcinoma. The 

inclusion criteria in TCGA cohorts are primary tumors with diagnostic slides and follow-up 

information.  

The DT-COAD/READ cohort (Supplementary Figure S1, Supplementary Table S5 and S6) 

included 243 patients diagnosed with primary colon adenocarcinoma and 64 patients diagnosed 

with primary rectal adenocarcinoma, who received radical surgery between Jan. 2007~Dec.2015 

at Drum Tower Hospital. There were 177 (57.7%) male and130 (42.3%) female patients, with a 

median age of 60.0 years (range: 15-87 years). The complete cohort consisted of 1,135 patients, 

with 827 excluded due to loss of follow-up (n=542), lack of clinical information (n=152), diagnosis 

of other tumor between the follow-up duration (n=16), history of colorectal cancer before this 

study (n=21), no pathological slides or with insufficient quality slides (n=97).  

The DT-STAD cohort (Supplementary Figure S2, Supplementary Table S7) included 208 

patients diagnosed with primary gastric cancer, who received radical gastrectomy between Jan. 

2009~Jun.2015 at Drum Tower Hospital. There were 157 (75.5%) male and 51 (24.5%) female 

patients, with a median age of 62 years (range: 24-90 years). The complete cohort consisted of 

1,198 patients, with 990 excluded due to loss of follow-up (n=766), lack of clinical information 
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(n=67), history of gastric cancer before this study (n=77), no pathological slides or with 

insufficient quality slides (n=80). 

The DT-CAP cohort (Supplementary Figure S3, Supplementary Tables S8-S10) included 

880 patients received colonoscopy between Jan. 2013~Dec. 2021 at Drum Tower Hospital. There 

were 565 (64.2%) male and 315 (35.8%) female patients, with a median age of 60 years (range: 

21-91 years). The complete cohort consisted of 8831 patients, with 7951 excluded due to non-

adenoma disease (n=3,896), lost follow-up (n=3,692), lack of clinical information (n=135), history 

of colectomy (n=30), with hyperplastic polyps (n=116), no pathological slides or with insufficient 

quality slides (n=82). The cohort was divided into two sets, DT-CAP-Discovery set (n=299) whose 

patients were diagnosed from Jan. 2013 to Dec. 2016 and DT-CAP-Validation set (n=581) whose 

patients were diagnosed from Jan. 2017 to Dec. 2021. 

The DT-EEL cohort (Supplementary Figure S4, Supplementary Table S11) included 136 

patients with early neoplastic lesions diagnosed by gastroscopy between Jan. 2013~Dec. 2021 at 

Drum Tower Hospital. There were 86 (66.2%) male and 44 (33.8%) female patients, with a median 

age of 63 years (range: 34-85 years). The complete cohort consisted of 704 patients, with 568 

excluded due to lost follow-up (n=237), the interval between two inspections less than 1 year 

(n=297), diagnosis of other tumors within the follow-up duration (n=8), history of esophagectomy 

(n=3), no pathological slides or with insufficient quality slides (n=23). 

The DT-COAD-scRNASeq cohort (Supplementary Figure S5, Supplementary Table S12) 

included 20 patients with colon cancer and received radical surgery from Aug. 2023 to Oct. 2023. 

There were 10 (50.0%) male and 10 (50.0%) female patients, with a median age of 63.5 years 

(range:32-91 years). The complete cohort consisted of 17 patients, with 3 excluded due to 

insufficient sample quality (n=3). We analyzed gene expression, diagnostic slides and clinical data 
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of human gastrointestinal cancer and precancerous lesions from two cohorts. The public cohort 

consists of 1,118 patients collected from TCGA database, and the validation cohort consists of 

1,558 patients collected from the Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing 

University Medical School. The validation study was approved by the Institutional Review Board 

of Nanjing Drum Tower Hospital and conducted in accordance with the Declaration of Helsinki. 

The model development using the publicly available TCGA-COAD cohort was performed at 

Lawrence Berkeley National Laboratory. The hospital validation study was approved by the 

Institutional Review Board (IRB) at the participating hospital and was independently carried out 

at Nanjing Drum Tower Hospital. 

 

Identification of CMBs and construction of the CMB Risk Score (CMBRS) and CMB Risk 

Group (CMBRG) from TCGA-COAD  

Patients with H&E-stained diagnostic slides and complete clinical information were used to 

develop the CMBs, CMBRS and CMBRG. Based on the stacked predictive sparse decomposition 

(SPSD) 26 technique and our Cellular Morphometric Biomarker via Machine Learning (CMB-ML) 

pipeline 17, 27, we defined 128 CMBs from cellular objects extracted from the whole slide images 

(WSI) of H&E stained tissue histology sections in TCGA-COAD cohort. In the CMB-ML pipeline, 

we used a single network layer with 128 CMBs and a sparsity constraint of 30 at a fixed random 

sampling rate of 1000 cellular objects per WSIs from the cohort. The pre-trained CMB-ML model 

reconstructed each cellular region as a sparse combination of pre-defined 128 CMBs and thereafter 

represents each patient as an aggregation of all delineated cellular objects belonging to the same 

patient. The experimental settings was identical to our previous study27  to keep the reconstruction 

error less than 10% during training. 
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The prognostic effect of high or low levels of each CMB on overall survival (OS) was 

assessed by Kaplan-Meier analysis (survminer package in R, version 0.4.8) and log-rank test 

(survival package in R, version 3.2-3), where TCGA-COAD cohort was divided into two groups 

(i.e., CMB-high and CMB-low groups) based on each CMB (cut-off estimated using survminer 

package in R, version 0.4.8). The set of CMBs as a prognostic signature was selected via a 

multivariate Cox proportional hazards (CoxPH) regression model, including these CMBs with a 

significant effect on poor outcome events.  

The construction of CMBRS was defined below, where the coefficients of the final CMBs 

as categorical variables were obtained from multivariate CoxPH regression analysis: 

CMBRS = ∑(𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐶𝑀𝐵_𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖) ∗ (𝐶𝑀𝐵_𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖 )

N

𝑖=1

 

Where  N is the number of final CMBs that were independently and significantly associated with 

poor outcome events, and  𝐶𝑀𝐵_𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖 is the category of the  𝑖𝑡ℎ CMB (i.e., CMB-high=1; 

CMB-low=0). After CMBRS construction, the retrospective cohort was divided into high-risk 

group (top 1/3), intermediate-risk group (middle 1/3), and low-risk group (bottom 1/3) based on 

CMBRS, and the CMBRS cut-offs between high/intermediate and intermediate/low were recorded 

and fixed for as the CMBRG model. During hospital validation study, both the cut-points for CMB 

and CMBRS remain unchanged. 

 

Re-optimization of CMBs 

During biomarker transfer to different tumor types, the original CMBs developed from TCGA-

COAD remain fixed. The cut-points of each CMB were re-optimized using the same strategy as 

for TCGA-COAD cohort, and the cut-point for CMBRS was then established accordingly. After 
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re-optimization per TCGA cohort, these cut-points remain unchanged during hospital validation 

for the same tumor type.   

 

Functional annotation of CMB-correlated genes  

For each CMB, Pearson correlation analysis was performed among all the TCGA samples 

described above to determine the genes significantly associated with each CMB (Statistical 

significance: P value < 0.05). The enrichment analysis was conducted using online database: Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to annotate the 

biological function of the genes related to different CMB. (Statistical significance: adjusted p value 

< 0.05, cell component enrichment: Q value < 0.05, biological process enrichment Q value <0.2, 

molecular function enrichment: Q value <0.2, KEGG enrichment Q value < 0.2) The result of these 

enrichment analysis was applied to draw the network diagram of the same function shared with 

different CMB. The functional networks were then created in Cytoscape (version 3.10.1) based on 

the results of enrichment analysis for Cellular Components, Molecular Function, Biological 

Process and KEGG, respectively. 

 

Preparation of single-cell suspensions and scRNA sequencing 

In this study we prospectively collected 17 colon cancer samples to validate our findings using 

scRNA sequencing, where all the patients have been diagnosed with colon cancer through biopsy 

before the resection. For isolation of colon cells, fresh intestines were collected from colorectal 

resection. Three biological replicates were included in each group. Intestines were dissected and 

washed to remove fecal content with pre-cold PBS for several times, minced into small pieces, and 

incubated with 0.5 mg/mL digestive enzymes 1 for 30 min at 37℃ in a water bath. After 
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centrifugation, supernatant was collected and the precipitation was continued to be digestion with 

0.5 mg/ml digestive enzyme 1 for another 30 min. After digestion for total 60 min, all the 

supernatant and precipitation were combined and filtered through a 70 μM cell strainer (BD 

Falcon, 352350). After centrifugation at 500 g for 5 min, the precipitation was further digested 

with 1 mL trypsin for 15 min. The supernatants were collected, then all the supernatant was filtered 

through 35 μM cell strainer (BD Falcon, 352235). After centrifugation at 500 g for 5 min, the cell 

precipitated was resuspension with PBS+0.01%BSA.  

Single cell suspensions were loaded on 10x Genomics Chromium™ according to 

manufacturer’s protocol based on the 10x GEM Code proprietary technology. Single-cell RNA-

Seq libraries were prepared using 10x Genomics Chromium Next GEM Single Cell 3ʹ Kits v3.1 

according to manufacturer’s protocol. Briefly, the initial step involves performing an emulsion 

where individual cells were isolated into droplets together with gel beads coated with unique 

primers bearing 10x Genomics cell barcodes, unique molecular identifiers (UMI), and poly(dT) 

sequences. Reverse transcription reactions were engaged to generate barcoded full-length cDNA 

followed by the disruption of emulsions using the recovery agent and cDNA clean up. Bulk cDNA 

was amplified and cleaned up. Sequencing libraries were constructed using the reagents from the 

10x Genomics Chromium Next GEM Single Cell 3ʹ Kits v3.1, following these steps: (1) 

fragmentation, end repair, and a-tailing; (2) size selection with SPRI select; (3) adaptor ligation; 

(4) post ligation cleanup with SPRI select; (5) sample index PCR and cleanup with SPRI select 

beads. Indexed libraries were pooled according to number of cells and sequenced on a NovaSeq 

6000 (Illumina) using paired-end 150 bp. 

 

scRNA-seq data processing 
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The reads mapping and quality control steps were performed through Cellranger (v.7.1.0). The 

exclusion criteria of cells as below: the number of UMI > 500, percentage of mitochondria gene < 

30% and percentage of hemoglobin gene < 5%. After exclusion, we used scDblFinder to detect 

and remove the cells identified as doublet. The total number of cells included into the final analysis 

was 106515. A seurat object was generated from the filtered scRNA-seq data using the package 

Seurat (v.4.1.3). Then we conducted the Single Cell Transform (SCT transform), Principal 

Component Analysis (PCA), graph-based clustering and Uniform Manifold Approximation and 

Projection (UMAP) to reduce the dimension information of the scRNA-seq data and clustered the 

cells into 27 subclusters and annotated the clusters with 11 main cell types with their feature genes. 

We applied chi-square test to evaluate the difference of cell composition among three CMBRGs 

and spearman correlation to identify the CMB associated with specific cell clusters. CellChat 

(v.1.6.1) was employed to describe the ligand-receptor interaction between each cell subclusters. 

For each CMB, Pearson correlation analysis was performed among all the TCGA pan-GI cohorts 

to determine the genes significantly associated with each CMB (Statistical significance: P value < 

0.05). Using the AddModuleScore function from package Seurat, we added the score of each CMB 

based on the average expression level of CMB-related genes to every single cell. UMAP plot was 

deployed to illustrate the distribution of each CMB score in different cell clusters. The scores of 

proliferation related genes and G2/M phase related genes were estimated and illustrated using the 

similar approach.  

 

Multiplexed immunohistochemical (IHC) staining 

5μm Paraffin-embedded sections were deparaffinized with xylene and gradient ethanol solutions, 

and antigen retrieval was conducted via microwave treatment. Endogenous peroxidase was 
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neutralized with endogenous peroxidase blocking solution (SP KIT-A1 Fuzhou Maixin Biotech. 

Co., Ltd.) was used to block the binding of irrelevant antibodies. The primary antibodies series 

included anti-CD4 (Cat No. ab133616, dilution 1:500, Abcam), anti-CD8α (Cat No. 85336, 

dilution 1:200, Cell Signaling), anti-CD3 (Cat No. ab16669, dilution 1:150, Abcam), anti-CD68 

(Cat No. 76437, dilution 1:400, Cell Signaling), anti-CD206 (Cat No. 91992, dilution 1:400, Cell 

Signaling) and anti- CD80 (Cat No. ab134120, dilution 1: 1000, Abcam) antibodies. Following the 

application of the Opal polymer HRP anti-rabbit secondary antibodies (Panovue), to detect the 

antibody staining, and the tissues were incubated with one of the following fluorophores according 

to the manufacturer’s instructions: PPD 520, PPD 620, PPD 570, PPD 540, PPD 650 and PPD690 

(dilution 1:100). The tissue section was then mounted in SlowFade Gold Antifade Reagent with 

DAPI (Thermo Fisher Scientific, Inc.). Whole slide tissue scanning was performed at 10× 

magnification using the Vectra Polaris System (Akoya Biosciences), and tumor area according to 

the H&E staining of the adjacent slide was performed at 20× magnification for subsequent analysis 

in Inform 2.6.0. The intensity of each fluorescein was deconvoluted from 8 randomly selected 

fields at 20× magnification. After the acquisition and deconvolution of fluorescence signal, we 

used spearman correlation to find the CMB related to specific cell cluster. 

 

Nomogram with calibration curve 

To evaluate the capability of CMBRG in predicting the prognosis, nomogram models for each 9 

cohorts containing all the independent variables related to the prognosis or recurrence were 

constructed with package rms (v6.7.1). All these models were validated by calibration curve 

through 3-fold cross-validation. 
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Statistical Analysis 

Statistical analysis was performed with the software: R (version 4.2.2). Kaplan-Meier plot with 

log-rank test was used to evaluate the prognostic value of the CMBRG. Multivariable CoxPH 

regression model was employed to demonstrate the significant and independent prognostic value 

of CMBRS by adjusting for other important clinical factors. Pearson or Spearman correlation 

analysis was used to evaluate the association between CMBRS and other clinical or pathological 

factors. The receiver operating characteristic curve (ROC) model was employed to describe the 

performance of prognostic model with or without CMBRS (Statistical significance: P value < 

0.05). 

 

Results 

Study design   

To develop tissue agnostic biomarkers from H&E-stained diagnostic slides, we designed a 

comprehensive and international multicenter study with multi-step sequential evaluation and 

validation (Figure 1): 

a) Discovery and validation in colon cancer to assess clinical value of CMBs: We used 

our well-established CMB-ML to discover CMBs from H&E-stained diagnostic slides, 

then established a CMB signature and score system using TCGA-COAD cohort. Clinical 

values of the CMB signature and score system were evaluated with independent validation 

using the colon cancer patient cohort from Drum Tower Hospital. 

b) Transfer learning to develop tissue-agnostic biomarkers for pan-GI cancer: We used 

transfer learning to translate CMBs, the CMB signature and scoring system into other GI 
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cancers and then comprehensively evaluated their clinical values together with independent 

validation.   

c) Biological understanding of CMBs to provide therapeutic mechanisms and strategies 

by utility of CMBs: We discovered biological functions associated with each CMB using 

bulk RNA and scRNA sequencing with validation by opal multiplex IHC.  

d) Clinical application of CMBs in precancerous lesions to assist assessment, diagnosis 

and treatment planning. We deployed clinical application of CMBs, the CMB signature 

and score system for risk assessment of precancerous lesions and early-stage cancers to 

help tailor clinical decisions and personalized care.  

e) Integration of multimodal makers to improve predictive power: We established a 

strategy for integration of multimodal factors including CMB signature, gene signature and 

clinical factors to improve risk prediction for precision clinical decisions.  

Overall, this study aimed to provide a new AI-based avenue that aids clinicians to make 

precision clinical decisions by cross-cancer knowledge transfer learning. 

 

 

CMB signature discovery and its clinical value in TCGA-COAD 

At the initial stage of our research, the CMB-ML pipeline28 characterized cellular objects that were 

represented by 15 morphometric properties from H&E-stained diagnostic slides of 430 patients in 

TCGA-COAD cohort, and thereafter identified 128 CMBs through unsupervised sparse learning. 

Subsequently, we profiled each patient as a 128-dimensional feature vector consisting of the 

relative abundance of 128 CMBs and then evaluated the prognostic value of the 128 CMBs with 

respect to OS in TCGA-COAD cohort.  
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OS analysis revealed that 75 of 128 CMBs had a significant prognostic impact in the 

TCGA-COAD patient cohort (P < 0.05). Among them, 13 CMBs (Supplementary Figure S6) 

demonstrated independent and significant association with OS (Figure 2B), thus defined as a 13-

CMB signature for establishing a risk score (CMBRS) for each patient. To assess the prognostic 

value of such a signature, we constructed the CMBRS and stratified TCGA-COAD patients into 

three risk groups (High: top third; Intermediate: middle third; and Low: bottom third) based on 

CMBRS values. We found that these three groups explain significant differences in OS values (P< 

0.0001, Figure 2B, top panel). Importantly, in the multivariate model to compare CMBRS with 

clinical factors, CMBRS showed independent of clinical factors (Hazard Ratio (HR)=2.08, P= 

0.001, Figure 2B, bottom panel). Unsurprisingly, we showed that the integration of CMBRS with 

clinical factors significantly improved the prognostic power compared to clinical factors or 

CMBRS only (P<0.05; Supplementary Figure S7A, Supplementary Figure S8A, Supplementary 

Figure S9A). And the calibration curves confirmed the predictive power on prognosis of the 

nomogram constructed on the CMBRS and clinical factors, enabling convenient and robust clinical 

application (Supplementary Figure S9B). 

 

Evaluation and validation of 13-CMB signature as a tissue-agnostic biomarker for different 

GI cancer types 

To test whether the 13-CMB signature developed in TCGA-COAD is a tissue agnostic biomarker 

for other GI cancer types, we profiled CMBs landscape from WSI of diagnostic slides of TCGA 

patients with rectal (TCGA-READ), gastric (TCGA-STAD) and esophageal (TCGA-ESCA) 

cancer and calculated CMBRS based on the pre-built model in TCGA-COAD. Similar to our 

findings in TCGA-COAD cohort, we found that the CMBRS is a significant prognostic factor 
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independent of clinical factors in these three cancer types (P < 0.0001; HR =4.414 in TCGA-

READ; HR = 2.385 in TCGA-STAD; and HR = 2.693 in TCGA-ESCA; Figure 2C, D and E). 

Consistently, the integration of CMBRS with clinical factors significantly improved the prognostic 

power compared to unimodal systems across cancer types (Supplementary Figure S7B, C and D, 

Supplementary Figure S8B, C and D, Supplementary Figure S9C, E and G; P < 0.05; Justified by 

AUC and C-Index), and the corresponding multimodal nomogram (Supplementary Figure S9D, F 

and H) enabled convenient and robust (Supplementary Figure S9D, F and H, justified by 

calibration curves) clinical application.    

To validate the 13-CMB signature as a tissue-agnostic biomarker, we assessed its 

prognostic value in two independent DT hospital cohorts of 208 patients with stomach 

adenocarcinomas and 307 patients with CRC (Supplementary Figures S1 and S2). We revealed 

that the CMBRS was a significant prognostic factor independent of clinical factors in both cohorts 

(P = 0.01, P < 0.001; Figures 2F, G, Supplementary Figure S5E, F, Supplementary Figure S6I, L). 

The generalizability and reproducibility of the CMBRS indicate that the 13-CMB signature is a 

tissue-agnostic biomarker for pan-GI cancer.  

 

CMB-related biological function 

To decipher the CMB-related biological functions, we identified genes transcriptionally correlated 

to each CMB in the four TCGA datasets (Supplementary Table S13). We then constructed 

enrichment networks of Gene Ontology (GO) on biological process (Figure 3A), Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways, Cellular Component and Molecular 

Function (Supplementary Figure S10) significantly correlated with each of the 13 CMBs in our 

signature. These analyses revealed that 11 of the 13 CMBs were significantly enriched for five 
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biological functions including: cellular proliferation, immune microenvironment, DNA repair etc. 

CMB12, CMB67, CMB76, CMB56, CMB97 and CMB120 were associated with the formation of 

cell junction, cytoskeleton and extracellular matrix. CMB9 and CMB85 were associated with the 

process of cell replication and DNA repair.  CMB29 was associated with the function of innate and 

adaptive immunity. CMB47 was associated with the regulation of adaptive immunity. 

To further understand the biological relevance of the 13 CMBs, we conducted CMB profiling in 

combination with single-cell RNA-sequencing of colon cancers prospectively collected from 17 

patients in a double-blinded manner and assessed relationships between CMBs and the 

composition of different cell types. Among these patients, none of them were diagnosed with 

Hereditary nonpolyposis colorectal cancer or has the family history of colon cancer, and only one 

patient was identified as Microsatellite Instable (i.e., MLH1 & PMS2 deficiency) using IHC 

analysis. After quality control procedure, we clustered 106,515 cells into 11 cell groups, and found 

a significant difference in the composition of different cell types (P < 0.001, Figure 3B, 

Supplementary Figure S11). Next, we estimated the genes transcriptionally correlated to each 

CMB in these cell types (Figure 3C-G, Supplementary Figure S12). The genes associated with 

CMB9, CMB85 and CMB104 were predominantly expressed in tumor cells (Figure 3G, 

Supplementary Figure S12B,F), where CMB9 captured proliferation of tumor cells (Figure 3H-I); 

the genes associated with CMB12, CMB67, CMB76, CMB86, CMB87, CMB97 and CMB120 

were predominantly expressed in fibroblasts (Figure 3C,D, Supplementary Figure S12 A,C,D,E 

and G) ; the genes associated with CMB29, CMB86, CMB87, CMB97 and CMB120 were 

predominantly expressed in T lymphocytes (Figure 3E, Supplementary Figure S12 C,D,E and G) ; 

the genes associated with CMB29 and CMB87 were predominantly expressed in monocytes and 

macrophages (Figure 3E, Supplementary Figure S12D); the genes associated with CMB29, 
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CMB97 and CMB120 were predominantly expressed in B cells (Figure 3E, Supplementary Figure 

S12E and G) ; the genes associated with CMB47 were predominantly expressed in plasma cells 

(Figure 3F) ; and the genes associated with CMB12, CMB67, CMB86, CMB87, CMB 97 and 

CMB120 were predominantly expressed in mast cells (Figure 3C and D, Supplementary Figure 

S12C, D, E and G). Moreover, using CellChat, we revealed the CMB-specific association with cell 

type interactions (Supplementary Figure S13). For example, CMB29 is positively associated with 

the interactions among different type immune cells. Furthermore, we verified the association 

between CMBs and immune cell types by multiplexed IHC staining on FFPE samples from DT-

COAD-scRNASeq cohort (Figure 3J-K). Notably, the biological interpretation of CMBs by 

scRNA-seq and multiplex IHC staining are highly consistent with pathologic interpretation by 

pathologists (Figure 4), including the CMBs that captured distinct cell types such as tumor cells 

(e.g., CMB12, CMB85, CMB104), fibroblasts (e.g., CMB67, CMB76, CMB86, CMB87, CMB9), 

immune cells (e.g., CMB29, CMB47), and immune- and stroma-rich microenvironments (e.g., 

CMB97, CMB76, CMB120). 

 

Taking all the findings from bulk RNAseq, scRNAseq, Opal staining, and pathologic 

interpretation, we conclude that CMBs pose consistent biological and functional interpretability.  

 

Clinical application of 13-CMB signature to risk stratification of precancerous lesions and 

early-stage cancer 

Risk stratification of early-stage cancer is essential for guiding clinical decisions. Thus, we 

conducted evaluation of the 13-CMB signature for risk stratification in two common clinical 

scenarios: colon adenoma and early esophageal neoplastic lesion (Figure 5A, Supplementary 
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Figures S4 and S5). The KM-plot with log-rank test exhibited that the CMBRG was significantly 

associated with recurrence-free survival, where the median recurrence-free survival in low 

CMBRG is 42.5 months while it is 23.7 months in high CMBRG (Figure 5B). Importantly, 

CMBRS is an independent factor for risk stratification by adjusting for the clinical factors, 

including age, gender, location, number of adenomas, etc. (Figure 5C). In addition, CMBRS 

significantly outperforms clinical recurrent factors in risk prediction and further enhances the 

predictive power through the integration of multimodal factors (e.g., clinical recurrent factors and 

CMBRS) (Figure 5D). A nomogram (Figure 5E top panel), integrating CMBRG and other 

recurrent factors, including gender, age, advanced adenoma, lesion site and total number of 

adenomas, enables accurate (Figure 5E bottom panel, justified by calibration curve) and 

convenient clinical deployment. All these findings were further validated in an independent DT-

CAP-Validation cohort (Figure 5F-I).  

Similarly, CMBRG could also stratify patients with early esophageal neoplastic lesion into 

risk groups that predict diseases progression independent of clinical factors (Figure 5J-M). 

Specifically, over 95% of the patients with esophageal inflammation in low CMBRG never 

progressed with nearly 70% recover rate (e.g., from inflammation to normal) (Figure 5J, middle 

panel); while 100% of the patients with esophageal inflammation in high CMBRG have disease 

progression (Figure 5J). Same observations were found in patients with esophageal LGIN. 

Specifically, none of the patients with LGIN in low CMBRG progressed, while 100% of the 

patients with LGIN in high CMBRG have disease progression (Figure 5J, right panel). 

Taking all together, these findings suggest clinical utility of the 13-CMB signature for 

personalized management for patients with early-stage cancerous lesions. 

 

Integration of CMB and gene signature to improve predictive accuracy 
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Lastly, we investigated whether integration of multimodal biomarker signatures, i.e., CMB and 

gene signatures, could improve the predictive accuracy of clinical outcomes. In our previous 

studies, we developed a 15-gene expression signature for colon adenocarcinoma29 and a 53-gene 

signature for gastric adenocarcinoma30. A multivariate Cox regression analysis revealed that CMB 

and gene signatures were independent prognostic factors even after adjusting for clinical factors 

in both TCGA and independent hospital cohorts (Figure 6A-D). The C-Index showed that 

integration of clinical stage, CMB signature and gene signature significantly improved prognostic 

prediction (Figure 6E-H). To further assess the clinical value of the integration of CMB and gene 

signatures, we established a nomogram model, a valuable clinical tool for prognosis prediction, to 

predict the 3- and 5-year OS probability of patients. In DT-STAD cohort model, we included gender, 

age, stage, 53-gene prognostic score and CMBRG. Similarly, we included gender, age, stage, 15-

gene prognostic score and CMBRG in the nomogram model in DT−COAD & READ cohort 

(Figure 6I-L). The calibration curves showed that the predicted value of the 3- and 5-year OS rate 

by the nomogram was in good agreement with the actual observed value of the 3- and 5-year OS 

rate (Supplementary Figure S14). 

Collectively, we conclude that integration of multimodal biomarkers such as CMB and 

gene expression signatures identified in our own studies can serve as promising tools and future 

directions to enhance prognostic predictions. 

 

Discussion 

Tissue-agnostic classification of cancers according to their molecular and/or pathologic 

characteristics not only helps expedite the access of millions of people to effective treatments, but 

also facilitates a deeper biological understanding of cancer biology with the potential to restructure 
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oncology. As an essential component of tissue-agnostic precision oncology, tissue-agnostic 

biomarkers, yet underdeveloped, are transformative tools that have the potential to revolutionize 

cancer care. In this proof-of-concept study, we utilized our previously established AI-pipeline 17-19 

to discover tissue-agnostic biomarkers characterizing cellular morphometric heterogeneity and 

commonality from the WSIs. Our comprehensive findings on different clinical risk assessments 

strongly demonstrated the clinical value of this AI-empowered 13-CMB signature as a tissue 

agnostic biomarker for management of pan-GI pre-cancer and cancer patients. Also, we presented 

evidence that CMBs are synergistic to the existing molecular biomarkers identified by our 

researchers, i.e., the multi-gene prognostic signatures in colon cancer 29 and gastric cancer 30. 

Moreover, we provided biological insights into CMBs using bulk RNA-seq and validated them 

using both scRNA-seq and Opal Multiplex IHC, which leads to our understanding of therapeutic 

mechanisms and strategies by utility of CMBs. Our study lays the foundation for future 

implementation of AI-powered CMBs in tissue-agnostic precision oncology research and clinical 

practice and provides a more cost-effective and accessible option for cancer patients and clinicians. 

Development of biomarkers from H&E-stained tissue sections benefits greatly from recent 

advancements in AI and has rapidly expanded. From a technical point of view, these works have 

largely focused on end-to-end prediction of clinical outcomes and/or molecular characteristics, 

leaving the biomedical understanding and justification of these AI-derived biomarkers, especially 

at both single cell transcriptome and protein levels, insufficient addressed.  In contrast, in this 

study, we also provided biological interpretability of CMBs, which reveals that CMBs are in line 

with previous molecular knowledge of cancer prognosis and explain the robustness and 

effectiveness of AI-discovered CMBs in prognosis prediction of cancer patients. Moreover, 

consistent with previous reports, we found that CMB signature is an independent prognostic factor 
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compared with gene signatures and clinical factors, suggesting that CMBs can provide additional 

clinical value complementary to that provided by the current clinical and molecular techniques. 

This also led us to test the possibility of improving prognostic predictions by integration of multi-

modal biomarkers such as CMB and multi-gene signatures. Indeed, our results demonstrated the 

superiority of multi-modal biomarker integration for prognostic prediction as compared with 

unimodal biomarkers alone. In future studies, we plan to link CMBs to treatment responses of 

different therapeutic agents and evaluate/establish the role of CMBs in clinical decision-making 

for an effective cancer treatment. 

Biotechnological advancement enables early detection of cancer, significantly improves 

the chances of successful treatment, and reduces mortality. However, the guideline for clinical 

management of early-stage cancer has not yet been fully established which leads to overtreatment 

of cancer patients 31. For example, in current clinical practice, patients with adenomas are all 

suggested to undergo excessive colonoscopy surveillance post-polypectomy, among whom only 

6% develop CRC, which imposes big challenges in clinical management 32-34. Therefore, precision 

risk assessment of early-stage cancer is an urgent need. To this end, we developed the CMBRS to 

assess the recurrence risk of colorectal adenoma, where the median recurrence-free survival in low 

CMBRG (around 40 months) is significantly longer than that in high CMBRG (around 25 months), 

suggesting the possibility of precision clinical management of patients per CMBRG. Specifically, 

by refining the surveillance schedule based on individual risk assessments, the scoring system can 

help prevent unnecessary, overly frequent follow-ups for patients with low-risk adenomas, thereby 

optimizing healthcare resources and minimizing patient burden. Importantly, this scoring system 

enables robust, cost-effective and rapid clinical implementation worldwide.  
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The AI-powered CMB predictive model in this study also offers a new tool for early 

detection of esophageal squamous cell carcinoma (ESCC) and therefore personalized management 

of early esophageal lesions (EELs). Unlike traditional diagnostic methods that primarily assess the 

current state of the disease 35-37, our model provides valuable foresight into the potential 

progression of EEL, including whether the lesion is more likely to evolve into curative or non-

curative cancer. By assessing the risk of progression from initial diagnosis, the CMBRS model 

revealed that in the low CMBRG, over 95% of patients never progressed, among whom over 60% 

of patients recovered from diseases. In contrast, 100% of the patients in the high CMBRG had 

disease progression. This allows more targeted and proactive management. For patients in low 

CMBRG, our findings suggest conservative monitoring without the need for immediate invasive 

procedures, but patients in higher CMBRG require more intensive monitoring and early 

intervention even before the lesion progresses to invasive carcinoma, such as endoscopic 

submucosal dissection (ESD). Overall, the AI-powered CMBRS model provides a significant step 

forward in the personalized care of patients with EEL, offering a tool to improve survival rates 

while minimizing overtreatment. 

Our study brings valuable insights and significant contributions to the AI-based biomarker 

field, but we are also aware of some limitations of this study. For example, retrospective cohort 

studies were used for training and validation, so the future studies should pursue prospective 

multicenter clinical evaluation of the 13-CMB signature. Secondly, we primarily focused on 

prognostic evaluation of the CMBs, although such information is very useful for clinical 

management of cancer patients, we will also evaluate the predictive power of CMBRS model on 

therapeutic/interventional outcomes in future studies.  
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In summary, we for the first time developed, extensively validated and biologically 

interpreted an AI-powered tissue-agnostic CMB signature from WSIs that highlights the untapped 

potential of its clinical application in management of patients with GI precancerous lesions or 

cancers. Furthermore, we showed that integrating multimodal biomarkers, e.g., CMB signature 

and multi-gene signature, facilitates better stratification of cancer patients for precision oncology, 

suggesting the independent clinical value of both molecular and pathological profiling. Finally, we 

demonstrated that CMBs can capture commonalities across different types of precancerous lesions 

and cancers in GI tract, which potentially provides a new avenue for tissue-agnostic precision care. 
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Figure 1. Pan-GI Study Design and Model Performance. 

Figure 2. (A) The composition of learning and validation cohort. (B-G) K-Mplots illustrated the 

predictive effect of CMBRG and forest plots illustrated the independency of CMBRG on 6 cohorts. 

Statistics performed by log-rank test. 

Figure 3. (A) KEGG pathways significantly enriched by the correlated genes of eight CMBs. (B-

I) UMAP visualization of single-cell sequencing results, highlighting cell clusters and 

prognostically representative CMBs marker expression.  (J) Multiplex immunofluorescence 

illustrated the 5 known marker of tumor associated immune cells, CD8+T(CD3+/CD8+), 

CD4+T(CD3+/CD4+), M1 macrophage (CD68+/CD80+) and M2 macrophage (CD68+/CD206+). 

(K) Heatmap illustrated the correlation between CMBRS and cellular composition from the 

multiplex immunofluorescence. Box with a circle indicated that these two methods have consistent 

results. Statistics performed by spearman's correlation (* P < 0.05) 

Figure 4. Representative pathological images of 13 prognostically significant CMBs, along with 

their pathological and single-cell sequencing interpretations (highlighted with yellow arrows). 

Figure 5. (A) The composition of learning and validation cohort. (B, F, J) K-Mplots illustrated the 

predictive effect of CMBRG and (C, G, K) forest plots illustrated the result of the multivariate cox 

regression on CMBRG and prognostic factors. Statistics performed by log-rank test. (J) The 

Sankey Plot visualization of the different progression of the inflammation and LGIN patients from 

DT-EEL cohort, among three CMBRGs. Boxplots illustrated the C-index of different combinations 

of prognostic factors after 1000-step bootstrap and nomograms with calibration curve predicted 
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the 3-year and 5-year survival probability among (D, E) DT-CAP-Discovery, (H, I) DT-CAP-

Validation, (L, M) DT-EEL cohorts. Statistics performed by t-test.  

Figure 6. Forest plots illustrated the result of the multivariate cox regression on CMBRG and 

prognostic factors, boxplots illustrated the C-index of different combinations of prognostic factors 

after 1000-step bootstrap and nomograms predicted the 3-year and 5-year survival probability, 

among (A, B, C) TCGA-COAD, (D, E, F) TCGA-STAD, (G, H, I) DT-STAD, (J, K, L) DT-COAD 

& READ cohorts. Statistics performed by t-test. 
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Pan-GI Study Design (Four types of  tumors and two types of pre-cancerous lesions in GI tract;  
2,666 patients from multiple hospitals/medical centers) 
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P value
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HR (95% CI) 
P value
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Variable

Male vs. Female

Age

Stage II vs. Stage I

Stage III vs. Stage I

Stage IV vs. Stage I

15−gene Prognostic Score

CMBRS

HR (95% CI) 
P value

0.905 (0.586−1.396)
P=0.652

1.021 (1.001−1.042)
P=0.041
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P=0.823
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TCGA−STAD cohort

Variable

Male vs. Female

Age

Stage II vs. Stage I

Stage III vs. Stage I

Stage IV vs. Stage I

53−gene Prognostic Score

CMBRS

HR (95% CI) 
P value

0.983 (0.678−1.423)
P=0.926

1.048 (1.028−1.07)
P<0.001

1.704 (0.759−3.826)
P=0.197
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DT−STAD cohort

Variable

Male vs. Female

Age

Stage II vs. Stage I

Stage III vs. Stage I

Stage IV vs. Stage I

53−gene Prognostic Score

CMBRS

HR (95% CI) 
P value
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P=0.452
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P=0.014
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 cohort

Variable

Male vs. Female

Age

Stage II vs. Stage I

Stage IV vs. Stage I

15−gene Prognostic Score

CMBRS

HR (95% CI) 
P value

1.124 (0.596−2.121)
P=0.718

1.013 (0.987−1.039)
P=0.318
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P=0.483
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