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Abstract 
Deep learning models have shown remarkable performance in electrocardiogram (ECG) analysis, but 

their success has been constrained by the limited availability and size of ECG datasets, resulting in 

systems that are more task specialists than versatile generalists. In this work, we introduce HuBERT-

ECG, a foundation ECG model pre-trained in a self-supervised manner on a large and diverse dataset 

of 9.1 million 12-lead ECGs encompassing 164 cardiovascular conditions. By simply adding an 

output layer, HuBERT-ECG can be fine-tuned for a wide array of downstream tasks, from diagnosing 

diseases to predicting future cardiovascular events. Across diverse real-world scenarios, HuBERT-

ECG achieves AUROCs from 84.3% in low-data settings to 99% in large-scale setups. When trained 

to detect 164 overlapping conditions simultaneously, our model delivers AUROCs above 90% and 

95% for 140 and 94 diseases, respectively. HuBERT-ECG also predicts death events within a 2-year 

follow-up with an AUROC of 93.4%. We release models and code. 

Introduction 
 

The electrocardiogram (ECG) has long been a cornerstone of cardiovascular diagnostics, serving as 

a non-invasive, cost-effective, and widely available tool for assessing cardiac and noncardiac 

diseases1. Through its recurring waveforms, the ECG captures a unique “language of the heart”, 

encoding both physiological and pathological vital information through distinctive 

electrophysiological “fingerprints”2. This language, although seemingly simple in its structure, 

reveals complex and meaningful patterns that allow deviations from expected cardiac function to be 

identified. By examining these signals, we gain valuable insights into the heart's health, making the 

study of its language both scientifically essential and clinically transformative. 

 

Although the widespread use of the ECG, integrating deep learning (DL) into its analysis represents 

a transformational opportunity to significantly improve its clinical utility3,4. In fact, DL algorithms 

can transform the raw ECG traces into powerful digital biomarkers, enabling early detection, risk 

stratification, and intervention across a wide range of cardiovascular conditions. Previous studies 

have demonstrated the robust potential of DL in specific areas of ECG interpretation. For example, 

DL models have consistently shown solid performance in the detection of conditions where the ECG 

is the gold standard for diagnosis (e.g. atrial fibrillation, tachycardia, and bradycardia), leading to 

validated algorithms5. In contrast, DL applications in the diagnosis of morphological conditions, such 

as heart failure, pulmonary thromboembolism and aortic stenosis, are less widespread but growing6. 

Although these conditions rely primarily on imaging modalities, there is valuable work demonstrating 

that DL can successfully use ECG data to predict cardiovascular conditions beyond those traditionally 
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associated with ECG patterns, providing a valuable complement to conventional imaging 

approaches7. Finally, the use of DL to predict future cardiovascular events (CVE), such as myocardial 

infarction and stroke, represents the most ambitious application of this technology. While early results 

are promising, this area presents greater challenges due to the complexity of predicting outcomes 

from ECG patterns, making it an active and exciting field of research8. 

From a machine learning perspective, existing limitations in terms of size of available ECG datasets, 

range of clinical conditions, patient numerosity and demographic diversity have led to the 

development of ECG models that are more task specialists9 rather than competent and versatile 

generalists, traits that typically characterise foundation models10. In fact, specialised models often 

struggle to adapt to new domains or even different distributions within the same task11,12. For 

example, if an ECG model is trained on a dataset in which every recording has been labelled as 

positive or negative for atrial fibrillation, such model can only detect atrial fibrillation and is not able 

to diagnose other conditions without being retrained on the new dataset and its cardiac abnormalities.  

Similarly, if the ECGs were all taken from people aged over 65, i.e., where the condition is most 

common, the model might struggle to detect the same condition in a dataset of younger patients. In 

stark contrast, by self-supervised pre-training on large and diverse unlabelled datasets, foundation 

models can learn robust and generalised data representations that are transferable to a wide variety of 

downstream tasks, requiring minimal fine-tuning for specific domains or distributions13. 

Unimodal foundation models have achieved significant success across traditional domains—

including natural language processing (e.g., the GPT series14–17, BERT18, RoBERTa19, T520), 

computer vision (e.g., DINO21, MAE22), and audio processing (e.g., Wav2Vec223, HuBERT24)—by 

leveraging large-scale self-supervised pre-training on extensive unannotated datasets. More recently, 

these advancements have also facilitated multimodal learning, where models integrate multiple data 

modalities to achieve a more holistic understanding of information within data (e.g., Google Geminia, 

GPT-4ob). In the medical domain, progress has been slower due to the limited availability of large 

medical datasets13,25. However, this trend has begun to shift, leading to the emergence of foundation 

medical models such as CONCH26, Prov-GigaPath27 and Virchow28 for computational pathology; 

KAD29 and CheXzero30 for radiology; MedSAM31, for medical image segmentation; EchoCLIP32 for 

echocardiography; and BiomedGPT33 for various biomedical tasks. However, despite these advances, 

there remains a significant gap: the lack of a foundation model for electrocardiography that is pre-

trained on a truly large-scale dataset using self-supervision. Such a model would need to be (1) 

versatile and adaptable to various use cases, especially where data is scarce; (2) capable of achieving 

high performance with minimal fine-tuning; and (3) designed to support research in underexplored 

areas. 

 

In this work, inspired by HuBERT24 architecture, we present HuBERT-ECG, a new ECG foundation 

model capable of performing a wide range of tasks, from diagnosing diseases to predicting future 

CVEs. Unlike most ECG models, HuBERT-ECG is pre-trained in a self-supervised manner on an 

extensive dataset of 9.1 million ECGs measured from a large and diverse population across four 

countries. The annotated instances in our dataset, which are more than 2.4 million ECGs, are labelled 

with one or more conditions from a comprehensive set of 164 diagnoses, allowing our model to learn 

and generalise over a wide spectrum of cardiac pathologies. We evaluate the proposed model on 16 

datasets and their aggregation, simulating real-world scenarios and use cases of varying complexity. 

HuBERT-ECG demonstrates both efficiency and accuracy across all datasets, showing the potential 

to address three key areas of clinical practice: 1) identification of cardiac conditions where the ECG 

 
a https://gemini.google.com/ 
b https://openai.com/index/hello-gpt-4o/ 
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is the primary diagnostic tool; 2) diagnosis of morphological conditions where the ECG plays a 

supportive diagnostic role; and 3) prediction of future CVEs.  

 

Finally, to support ongoing research on cardiovascular diseases, we release HuBERT-ECG models 

and code to the community. HuBERT-ECG is available in three model sizes or configurations—

SMALL, BASE, and LARGE—allowing researchers to choose the configuration that best meets the 

unique requirements of their specific use cases. This range in model size is designed to accommodate 

different levels of complexity across applications, from datasets with limited examples and simple 

conditions to those requiring nuanced recognition of challenging, multifaceted cardiac issues. By 

providing insights from our dataset evaluations, aimed at simulating diversified real-world scenarios, 

we intend to guide the effective adoption and customisation of HuBERT-ECG for a variety of clinical 

and research applications. 

Results 

ECG Representation Learning through Self-supervised Pre-training 

To learn robust and transferable 12-lead ECG representations, we draw inspiration from HuBERT24, 

a powerful self-supervised foundation model for speech representation learning. HuBERT's pre-

training approach involves predicting predetermined cluster assignments for masked continuous 

speech embeddings through multiple pre-training iterations, effectively capturing both acoustic and 

linguistic information in an increasingly refined manner. After collecting, pre-processing and 

assembling multiple data sources into a large and diverse dataset of 9.1 million ECG instances 

covering four countries (Fig. 1a-d, Fig. 2a), as described in “Methods” (Data and Pre-processing), 

we follow a similar approach to pre-train HuBERT-ECG (Fig. 2b), as outlined in “Methods” 

(HuBERT-ECG Architecture and Theoretical Framework). In particular, as detailed in “Methods” 

(Unsupervised Label Discovery), clustering models are fitted offline on feature descriptors of raw 

ECG fragments to generate cluster assignments for masked ECG embeddings. These feature 

descriptors, along with the clustering models built upon them, evolve between pre-training iterations. 

The BASE model configuration undergoes two pre-training iterations: we use Mel Frequency 

Cepstral Coefficients34 as feature descriptor during the first iteration, while we employ latent ECG 

representations from intermediate model layers during the second one. Finally, to assess scalability, 

we also pre-train a SMALL and a LARGE configuration, both in a single iteration, using the latent 

representation extracted from the intermediate layers of the BASE model. The specifications and 

implementation details of the pre-training are provided in “Methods” (Implementation and Self-

supervised Pre-training), while a summary of the architecture of the three model configurations is 

given in Table 1. 
 

Supervised fine-tuning on downstream data and evaluation 

To evaluate the performance of HuBERT-ECG in different real-world settings of varying complexity, 

we compile 16 downstream datasets that simulate a range of situations and use cases, including large 

and small ECG collections, labelled with many or few possible conditions, often unevenly distributed. 

These data sources (Fig. 1a) include: the labelled partition of Ribeiro35 (also known as CODE); CPSC 

and CPSC-Extra36; PTB37; PTB-XL38 which, with 6 different sets of conditions, gives rise to 6 

different datasets; the publicly available partition of Georgia39; Chapman-Shaoxing40 (Chapman); 

Ningbo First Hospital41 (Ningbo); part of the dataset used in Tianchi Arrhythmia Competitionc 

(Hefei); Shandong Provincial Hospital42 (SPH); and SaMi-Trop43. HuBERT-ECG is evaluated on 

extracted hold-out test sets after fine-tuning procedures requiring only a small fraction of the pre-

 
c https://tianchi.aliyun.com/competition/entrance/231754/introduction 
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training time. Additionally, to mirror the real-world clinical settings that cardiologists navigate 

daily—managing a diverse spectrum of cardiovascular diseases across patients with varying health 

backgrounds and complexities—we combine all annotated datasets into a new, comprehensive 

dataset, which we name Cardio-Learning. This dataset consists of 2.4 million ECGs from four 

countries labelled with one or more conditions from a comprehensive, highly imbalanced set of 164 

conditions. We present HuBERT-ECG’s results on these 16+1 datasets and compare them with those 

achieved by training the same model from scratch. We also benchmark our performance against the 

state-of-the-art wherever possible. To maintain evaluation consistency, address label distribution 

imbalances, and apply a robust, threshold-invariant metric, we report performance using the area 

under the receiver operating characteristic curve (AUROC). Fine-tuning procedures are detailed in 

“Methods” (Supervised Fine-tuning). We present HuBERT-ECG results, organized across diverse 

application scenarios, to highlight its potential as a versatile tool for supporting cardiologists in 

various clinical contexts. 
 

HuBERT-ECG is efficient in low-data diagnostic settings. In diagnostic low-data scenarios, such as 

those simulated by PTB, CPSC and CPSC-Extra datasets, HuBERT-ECG exhibits distinct macro 

trends. For PTB (Fig. 3a), featuring 515 instances and 17 possible conditions, even co-occurring, the 

SMALL and BASE configurations perform comparably well, with fine-tuned models achieving 

AUROCs of 84.3% (± 2.9%) and 84.8% (± 3.0%), respectively, while the LARGE one lags behind 

with a score of 82.2% (±2.6%). In CPSC (Fig. 3b), characterised by 6,878 examples and 9 possibly 

concurrent conditions, the SMALL size model achieves an AUROC of 94.5% (± 0.2%), while the 

BASE and LARGE models outperform the former with scores of 95% (± 0.2%) and 94.9% (± 0.6%), 

respectively. On this dataset, our best model is 3 points behind that of Na et al.44, which is specifically 

pre-trained and fine-tuned for arrhythmia detection only. On CPSC-Extra (Fig. 3c), a much more 

difficult context characterised by 3,453 ECGs and 52 possibly co-existing conditions, HuBERT-ECG 

SMALL delivers the best performance, reaching an AUROC of 89.4% (± 7.6%), whereas the BASE 

and LARGE variants are likely to overfit and provide inferior results of 75.6% (± 2.0%) and 77.4% 

(± 2.3%), respectively. Fine-tuned models also provide 3-5.8% improvements in AUROC over their 

randomly initialised counterparts, with the minimal exception of the BASE configuration in CPSC-

Extra. 
 

HuBERT-ECG remains efficient in increasingly difficult contexts. The difficulty of solving 

diagnostic tasks by learning from examples in a dataset certainly depends on both the number of 

examples and the number of the diagnostic classes. However, such numbers are not sufficient to 

provide a good complexity estimate as some classes may be intrinsically harder to detect than others. 

In general, a small number of instances per class increases complexity, as does a large number of 

possible conditions, but augmenting the number of instances only for a few classes can skew the label 

distribution and complicate the learning process. These challenges are evident in the Georgia and 

Chapman datasets, where the 62 conditions represented in the former and the 54 in the latter are far 

from being evenly distributed across the 10,345 and 10,247 examples in the respective data sources. 

In these complex diagnostic scenarios, fine-tuning HuBERT-ECG consistently leads to better 

performance than training from scratch, yielding improvements of 6.5-7.8% on Georgia and 3.9-6.1% 

on Chapman. Specifically, for Georgia (Fig. 3d), HuBERT-ECG SMALL achieves an AUROC of 

81.9% (±0.5%), which increases to 83.2% (± 0.7%) with the BASE model, but decreases slightly to 

82.1% (± 0.6%) with the LARGE configuration. On Chapman (Fig. 3e), the SMALL size model 

reaches an AUROC of 85.9% (± 0.8%), with a slight dip to 85.5% (± 0.7%) for the BASE version, 

before rising again to 85.7% (± 0.7%) with the LARGE one. 
 

HuBERT-ECG enables accurate diagnostics in large-scale, complicated scenarios. Since they are 

pre-trained on an extensive dataset, diagnostic foundation models are expected to guarantee high 

performance in large-scale, complicated scenarios. In these situations, a model is expected to identify 
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a disease among many possible conditions even when it has not seen a large number of significant 

examples to learn that disease, or when it must account for significant variations between patients, 

which can heavily influence its predictions. To explore these scenarios, we leverage large datasets 

with a few to tens of possible conditions including Ribeiro, PTB-XL, Hefei, SPH and Ningbo. On 

Ribeiro (Fig. 3f), which is a large-scale dataset with more than 2.3 million labelled ECGs and 6 

possible conditions, every HuBERT-ECG configuration performs excellently, regardless of weights 

initialization. The BASE model performs best, achieving an AUROC of 99.89% with fine-tuned 

weights and a score of 99.84% with randomly initialised ones (i.e., trained from scratch). The SMALL 

and LARGE configurations perform similarly, obtaining AUROCs of 99.72% and 99.74%, in the 

former case, and 99.82% and 99.83% in the latter. On this dataset, with an abundance of examples to 

learn from, pre-training does not show much advantage over training from scratch. Nonetheless, our 

best model, i.e., the fine-tuned HuBERT-ECG BASE, outperforms the model developed by Ribeiro 

et al.35 in terms of sensitivity, specificity, AUROC and area under precision and recall curve 

(AUPRC), while other model configurations are better only according to certain metrics (Table 2). 

PTB-XL features 21,837 instances annotated with 71 possible labels covering diagnostic, form and 

rhythm conditions. The authors also state that 44 diagnostic conditions can be aggregated into 23 

diagnostic subclasses and 5 more coarse diagnostic superclasses, while there are 12 possible rhythm 

statements and 19 different form abnormalities. Therefore, one can evaluate a model on 6 different 

datasets, referred to as PTB-XL All, Form, Rhythm, Diagnostic (Diag.), Diag. Subclass, Diag. 

Superclass, that differ from each other in the reported labels. On these data sources, fine-tuning pre-

trained models shows its advantages for almost each model configuration when compared to its 

randomly initialised counterpart (Fig. 3g-l). Our fine-tuned models show good performance, with 

HuBERT-ECG BASE achieving an AUROC greater than 90% in 5 out of 6 datasets. Noteworthy, 

these results are close to some of the best models from the literature (Table 3) that are optimized for 

the PTB-XL benchmark, i.e., pre-trained on datasets where PTB-XL is the predominant component 

and specifically fine-tuned on it. In our case, PTB-XL is a very small fraction of the pre-training set 

and represents one of many different scenarios HuBERT-ECG can handle. On Hefei, which is 

characterised by 20,036 samples and 29 conditions, all fine-tuned models surpass the respective 

randomly initialized versions. When fine-tuned, HuBERT-ECG SMALL achieves an AUROC of 

96.05% (± 0.36%), while the BASE and LARGE fine-tuned variants perform slightly better and 

marginally worse, respectively, with AUROCs of 96.61% (± 0.25%) and 95.36% (± 0.63%) (Fig. 

3m). In SPH, a novel dataset of 25,770 ECGs annotated with 44 primary diagnostic statements, all 

our models achieve similar AUROCs that increase with the model size. In particular, the fine-tuned 

HuBERT-ECG LARGE obtains the highest AUROC with a score of 94.3%, followed by the BASE 

and SMALL configurations with 93.8% and 93.5%, respectively (Fig. 3n). To our knowledge, we are 

the first to address this dataset in its full complexity. Finally, on Ningbo (Fig. 3o), a dataset with 

34,905 examples and 76 possibly co-existing conditions, the fine-tuned SMALL model achieves an 

AUROC of 93.25% (± 0.52%), while the randomly initialised variant achieves 92.95% (± 0.68%). 

When fine-tuned, the BASE model performs slightly better, achieving an AUROC of 94.39% (± 

0.53%), compared to 91.76% (± 1.26%) when trained from scratch. The LARGE model performs 

marginally worse, reaching 93.96% (± 0.55%) with fine-tuned weights and 91.80% (± 0.78%) with 

random initialisation. 
 

HuBERT-ECG can be a good predictor of future cardiovascular events. Although ECG-based 

works on the prediction of future CVEs have shown promising results, this field is still underexplored 

and the number of publicly available datasets is limited. The SaMi-Trop43 dataset provides an 

opportunity to evaluate HuBERT-ECG in this domain. It includes 1632 ECGs from patients with 

Chagas disease monitored during a 2-year follow-up period, 268 of which are normal recordings and 

104 are marked as “death events”. Interestingly, there are two trends in the prediction of mortality 

events within the follow-up period that seem to be at odds with the results presented so far: 1) 

randomly initialised models outperform fine-tuned counterparts; 2) their performance improves as 
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their size increases (Fig. 3p). In fact, HuBERT-ECG SMALL with random initialisation achieves an 

AUROC of 82.9% (± 6.6%), compared to 74.5% (± 4.3%) with fine-tuned weights, while the LARGE 

size obtains AUROCs of 83.6% (± 7.0%) and 73.6% (± 15.1%) with and without a random 

initialisation, respectively. In contrast, the BASE configuration achieves AUROCs of 82.5% (± 6.8%) 

with randomly initialised weights and 78.7% (± 5.6%) with fine-tuned parameters. The seemingly 

paradoxical finding of larger models performing better with limited data can be attributed to the 

intrinsic complexity of predicting future CVEs—a task that evidently benefits from models with more 

trainable parameters. In parallel, the inferior adaptability of the pre-trained HuBERT-ECG to this 

context is only apparent, as we show in the next section that a different fine-tuning strategy can 

provide enormous improvements in this task. For comparison purposes, we benchmark our 

performance against that by Ferreira et al.45, representing the state-of-the-art on this dataset. Unlike 

us, they used a Random Forest estimator fitted on a combination of handcrafted ECG features, 

sociodemographic variables and self-reported symptoms. Rather than using a more robust, threshold-

independent metric, they evaluated their model in terms of G-mean score, where the G-

mean=√𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. In terms of G-mean, our best model surpasses theirs, reporting a 

score of 77.8% against one of 77%, while, in terms of AUROC, no comparison is possible due to the 

lack of predictions and code. 
 

HuBERT-ECG navigates extremely complex scenarios. In real-world clinical practice, cardiologists 

are expected to diagnose a wide spectrum of heart-related conditions, adapting to the nuances of each 

patient's presentation and health profile, regardless of how frequently a condition appears. To emulate 

this complexity, we employ newly assembled, comprehensive Cardio-Learning dataset, which 

contains more than 2.4 million examples and 164 potentially overlapping conditions, where ECG is 

the primary diagnostic tool, a non-primary supportive diagnostic tool, or used to estimate the risk of 

future CVEs. The fine-tuned HuBERT-ECG BASE provides a macro-averaged AUROC of 86.64%, 

while HuBERT-ECG SMALL and LARGE follow approximately at the same distance with scores of 

84.43% and 84.52%, respectively (Fig. 4a-c). When the conditions are grouped according to the ECG 

diagnostic role—primary diagnostic tool or supportive—the BASE model configuration achieves 

AUROCs of 86.21% and 88.67%, respectively. In contrast, the SMALL and LARGE models lag 

behind, with AUROCs of 84.33% and 85.02% for the SMALL model, and 84.24% and 85.98% for 

the LARGE model.  In particular, as mentioned in the previous paragraph, we observe a huge 

improvement in the prediction of death events in SaMi-Trop cases, where the SMALL, BASE and 

LARGE configurations reach new AUROC values of 83.4%, 93.4%, and 87.5%, respectively. 

 

Discussion 
 

In this paper, we present HuBERT-ECG, a new foundation model for ECG analysis available in three 

scalable configurations (SMALL, BASE, and LARGE) to meet different deployment needs. Pre-

trained in a self-supervised manner on a massive dataset of 9.1 million ECGs from diverse 

populations in four countries, HuBERT-ECG demonstrates strong performance across 164 

cardiovascular conditions, as validated on 16+1 datasets. When fine-tuned, the model configurations 

achieve AUROCs above 90% for 135, 140, and 134 conditions, respectively, and exceed 95% 

AUROC for 95, 94, and 94 conditions, respectively (Fig. 4a-c), highlighting the generalisability of 

its self-supervised representations across highly different contexts. These contexts are reflected in the 

16+1 data sources used, ranging from small to very large ECG collections, each annotated with either 

small or large sets of possibly overlapping conditions. By analysing the model performance, 

concerning the future use of HuBERT-ECG, we aim to (1) shed light on the data requirements 

necessary for effective fine-tuning, and (2) guide performance optimisation on new datasets.  
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In low-data diagnostic settings, which are common and require reduced data collection effort, 

HuBERT-ECG shows both efficiency and accuracy, even when the number of conditions grows faster 

than the number of examples, resulting in highly imbalanced label distributions. In these scenarios, 

the SMALL and BASE configurations are the most suitable options, demonstrating superior 

generalisation capabilities, while the LARGE configuration is less recommended. As the size of the 

dataset increases in terms of patients, examples and conditions, the diagnostic scenarios we simulate 

become more reflective of the real world. In these contexts, although requiring appropriate collection 

efforts for fine-tuning, HuBERT-ECG delivers remarkable results regardless of label quality and 

granularity. Scaling up the model size is also beneficial, although smaller configurations maintain 

competitive performance, thus providing flexibility for complicated diagnostic settings. Notably, on 

Ribeiro, the largest dataset we use, HuBERT-ECG demonstrates the ability to achieve excellent 

precision-sensitivity and specificity-sensitivity trade-offs (Table 2). 

 

Furthermore, HuBERT-ECG demonstrates robust performance in highly complex scenarios, such as 

those well represented by Cardio-Learning, which aggregates ECGs from multiple sources and 

countries without task-specific separation. In this setup, HuBERT-ECG effectively identifies 

conditions where the ECG serves as a primary or supportive diagnostic tool. Interestingly, fine-tuning 

on Cardio-Learning allows HuBERT-ECG to leverage inter-relationships between conditions, 

resulting in marked improvements in AUROC for conditions that appear only in single subsets of 

Cardio-Learning. For example, when the BASE model is fine-tuned on the PTB dataset, the AUROCs 

for coronary heart disease (CHD) and heart failure (HF), conditions that appear only in this dataset, 

are 76.56% and 75.14%, respectively. At the same time, fine-tuning on the larger Cardio-Learning 

dataset raises these values significantly to 97.33% for CHD and 99.62% for HF. Similarly, in 

classifying death events among SaMi-Trop patients, the model achieves AUROCs of 83.4%, 93.4%, 

and 87.5% in the SMALL, BASE, and LARGE configurations, respectively. These findings suggest 

that learning to recognise a wide range of cardiovascular conditions simultaneously may improve the 

model’s predictive accuracy for future CVEs or when the ECG is not the primary diagnostic tool.  

 

While HuBERT-ECG is currently focused on predicting a variety of cardiovascular events, there is 

considerable potential to expand its application toward more personalised clinical insights, including 

predicting patient response to therapies. For example, in the management of heart failure, HuBERT-

ECG could be fine-tuned to predict which patients are likely to benefit from resynchronisation 

therapy, thereby refining patient selection criteria46. This capability would support a more 

personalised approach to therapy, aimed not only at predicting adverse events but also at improving 

outcomes, reducing hospitalisations, and improving quality of life. Such advancements could pave 

the way for a new era of personalised cardiovascular care, where ECG-based foundation models help 

clinicians tailor therapies with greater precision47. 

 

Despite its highly promising results, our approach has certain limitations. First, the countries from 

which the data is collected, although more than in previous studies, do not include large and populated 

regions (e.g. Africa and India), which we aim to cover in future versions. Second, the scarcity of 

accessible ECG datasets for predicting future CVEs partially limits our ability to fully assess the 

model's potential in this still underexplored area. A wider availability of suitable datasets to test the 

model in this challenging field is desirable to advance research. Third, making direct comparisons 

with previous studies is challenging, as many focus on limited subsets of available datasets—often 

reducing the actual number of conditions—, do not open-source their implementations, or do not 

follow standard practices in metric computation, thereby hampering reproducibility and fair 

benchmarking. Finally, we note that while some conditions are better classified in Cardio-Learning 

than in their original datasets, others show lower performance. Further investigation into the reasons 

for this decrease is crucial to determine whether the limitations stem from confounding factors that 

may arise when predicting numerous co-occurring conditions with possibly overlapping patterns 
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simultaneously, or from potential inaccuracies in the ECG ground-truth labels, as is the case, for 

instance, with PTB-XL38. 

Methods 

Data and Preprocessing 

Most ECG-related studies not focused on specific clinical questions rely on datasets from the 

Physionet Challenges48–50 and overlook other large, valid sources. In contrast, for HuBERT-ECG pre-

training and fine-tuning, we use both public and access-on-demand 12-lead ECG datasets, including 

the labelled and unlabelled partitions from Ribeiro35, CPSC and CPSC-Extra36, PTB37 and PTB-XL38, 

the publicly available partition from Georgia39, Chapman-Shaoxing40 and Ningbo First Hospital41, 

the partition from the Tianchi Arrhythmia Competitiond, Shandong Provincial Hospital42, MIMIC-IV 

ECG51, and SaMi-Trop43. For each collected labelled dataset, we homogenise the names of all the 

conditions to avoid having the same labels under different names in different sources. For self-

supervised pre-training, we remove all labels and clinical annotations from the aforementioned 

datasets, excluding SaMi-Trop, creating an unlabelled dataset of 9.1 million ECGs (Fig. 2a – 

Pretrain). The effectiveness of the data selection in capturing ECG signal diversity is illustrated 

through a UMAP52 projection of the ECG embeddings (Fig. 1e). To assess HuBERT-ECG 

downstream utility, we fine-tune and test it on every collected dataset, with PTB-XL generating 6 

different datasets that differ from each other in the presented conditions. In addition, we create a 

challenging new dataset, which we name Cardio-Learning, by merging all the above sources into 

one, comprising over 2.4 million ECGs with 164 potentially co-occurring conditions that can be 

grouped into three categories based on the diagnostic role of the ECG, as shown in Fig. 1f. 

Remarkably, as shown in Figs. 1b and 1d, the ECGs used in this study were measured from patients 

with a broad age distribution and diverse geographical backgrounds spanning four countries. To our 

knowledge, this is the largest and possibly one of the most diverse dataset ever assembled in terms of 

the number of conditions, demographics, and geographic origin of the individuals.  

As pre-processing, similar to Natarajan et al.53, we first apply a finite impulse response bandpass filter 

to exclude frequencies outside the range [0.05, 47] Hz, which is reported to contain the dominant 

components of P waves, T waves and QRS complexes54. Secondly, we investigate how sampling rate, 

which has no standard value and regulates the degree of dilution of the information content, affects 

both the upstream and downstream performance. We experimentally find that resampling the ECGs 

at 100 Hz provides the optimal trade-off between downstream performance and training time, while 

preserving all the meaningful physiological information content according to the Nyquist-Shannon 

theorem (Supplementary Information – Sec. 1.2). We then rescale our signal to the [-1, 1] range, 

analogously to what was done by Natarajan et al.53. Finally, unlike other works, we use 5-second 12-

lead ECGs instead of 10-second recordings, hence halving memory consumption and speeding up 

both training and inference. In addition, the selected temporal and spectral parameters are compatible 

with those derived in Mehari & Strodthoff55. 

HuBERT-ECG Architecture and Theoretical Framework 

A schematic illustration of the HuBERT-ECG architecture, its pre-training phases and its fine-tuning 

are shown in Fig. 2b. 
 

Discovering fine labels for ECG fragments. We consider HuBERT-ECG to operate as a masked 

prediction model, henceforth denoted by the letter h. First, standard 12-lead ECGs are flattened into 

1D signals and then split into non-overlapping fragments. This fragmentation is necessary to frame 

 
d https://tianchi.aliyun.com/competition/entrance/231754/introduction 
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short portions of the ECG signal from which we can extract feature descriptors to fit a clustering 

model. Its purpose is to discover and provide the fragments with cluster assignments (i.e., labels) that 

are finer than the coarse wave-based ones used by Choi et al.56. Conceptually, let X = [x1, x2, …, xN] 

be a flattened 12-lead ECG composed of N non-overlapping fragments xi, F = [[f1, f2, … fd]1, [f1, f2, 

… fd]2, …, [f1, f2, …,fd]N] the set of d-dimensional features fi extracted from each fragment, and K a 

clustering model fitted to F that finds C different clusters. Then, for each index i = 1, 2, …, N, under 

the hypothesis that fi is a good descriptor of xi, we can claim that K(fi) = zi ∈ {1, 2, …, C} is the label 

assignment of xi and construct Z = [z1, z2, …, zN], the sequence of such assignments for each ECG 

fragment. For the sake of both terminological flexibility and clarity, we will henceforth use the terms 

labels and cluster assignments interchangeably. 

 

Representation learning by predicting labels for masked embeddings. Subsequently, the reshaped 

ECG is fed into a convolutional waveform embedder that captures local contextual information and 

generates E = [e1, e2, …, eN], a sequence of continuous ECG embeddings. A set of random indices M 

= {j | j ∈ {1, 2, …, N}}, such that |M| < N, is then generated to determine which embeddings are to 

be masked, i.e., replaced by a special learnable embedding eMASK. After masking, a Transformer 

encoder57, which, instead, learns global contextual information, consumes the new masked sequence 

of embeddings E’ and produces, for all the N indices, a probability distribution over the C possible 

labels: 𝑝ℎ( 𝐸′, 𝑖 ) ∀𝑖 ∈  {1, 2, . . . , 𝑁}. Such a distribution is eventually used in a standard cross-entropy 

loss that, however, considers only the indices of M: 𝐿(ℎ;  𝐸, 𝑀, 𝑍)  =  ∑ 𝑙𝑜𝑔(𝑝ℎ(𝐸′, 𝑗)𝑗 ∈ 𝑀 . By 

training the model h to predict cluster assignments of masked embeddings E’j, j ∈ M, which 

correspond to fragments of the input ECG not seen by the encoder, we force it to learn the most from 

the visible ones.  

 

Multi-task learning via cluster ensembles. To increase the granularity of the representations being 

learned during the pre-training, one can use labels generated by an ensemble of clustering models 

characterised by an increasing number of clusters. This is equivalent to a multi-task learning 

framework where tasks are generated as clusters are being discovered. The rationale for this design 

choice is that, while a single clustering model may introduce imprecise or coarse cluster assignments, 

an ensemble of models with an increasing number of clusters may mitigate the introduction of noisy 

targets and provide useful complementary information to the model. Denoting by 𝛤 the number of 

clustering models composing the ensemble, which is equal to the number of tasks being solved, we 

can rewrite the loss function as 𝐿(ℎ;  𝐸, 𝑀, {𝑍𝛾})  =  ∑ ∑ l𝑜𝑔(𝑝ℎ
𝛾(𝐸′, 𝑗) 𝑗∈𝑀𝛾𝜖 𝛤 , where 𝑍𝛾 is the 

sequence of cluster assignments generated by the 𝛾-th clustering model and {𝑍𝛾} is the set of 

cardinality 𝛤 comprising all such sequences.  

 

Refining cluster assignments. As in the work of Hsu et al.24, it is possible to improve the quality of 

the learned representations by generating an even more refined cluster assignment of the ECG 

fragments for subsequent pre-training iterations. However, this “finer” mapping does not refer to a 

temporal refinement, but rather to a more nuanced clustering of the fragments. To generate it, we can 

cluster latent representations extracted from intermediate layers of the partially pre-trained model h. 

Therefore, even though the cluster assignments remain aligned with the original fragments in input 

X, their higher quality after this refinement impacts positively on downstream performance. 

Implementation 

While the design of HuBERT-ECG follows that proposed by Hsu et al.24, we make two modifications: 

1) the initial convolutional embedder and 2) the masking strategy. First, since ECG signals are 

sampled rather sparsely compared to audio signals, we do not need high-stride convolutions with 

large filters and observe that a shallower convolutional block with narrower filters works equally 

well. In our model, the convolutional embedder generates embeddings at a 0.64 second framerate 
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from a flattened 5-second 12-lead ECG sampled at 100 Hz (the downsampling factor is 64x). Second, 

instead of randomly selecting p% of the embeddings as starting points for masked spans, we choose 

to mask only the selected embeddings without spanning over adjacent ones. This approach avoids the 

imprecision caused by overlapping spans, which makes it difficult to determine the exact number of 

masked embeddings. Our method is equivalent to constructing singleton spans and provides more 

accurate control over the masking process, allowing us to tune the optimal value of p to use during 

the self-supervised pre-training (Supplementary Information – Sec. 2.1). Additionally, masking single 

embeddings rather than spans has also been shown to be effective in the work of Hu et al.58 

 

After masking, the Transformer encoder consumes the masked sequence of embeddings and produces 

an output sequence O = [o1, o2, …, oN]. The probability distribution over the cluster assignments from 

a generic clustering model of the ensemble is parameterised by a look-up embedding matrix 𝐴𝛾 with 

shape 𝐶𝛾  ×  𝑊 according to the following formula: 

𝑝ℎ
𝛾(𝐸′, 𝑖) =

𝑒𝑥𝑝(𝑐𝑜𝑠_𝑠𝑖𝑚(𝐵𝛾 · 𝑜𝑖 , 𝐴𝑘
𝛾

)/𝜏)

∑ 𝑒𝑥𝑝(𝑐𝑜𝑠_𝑠𝑖𝑚(𝐵𝛾 · 𝑜𝑐′ , 𝐴𝑐′
𝛾

)/𝜏)𝐶
𝑐′=1

, ∀𝑘 ∈  {1, . . . 𝐶𝛾}  

where 𝐶𝛾 is the number of clusters found by the 𝛾-th clustering model, B is a projection matrix to 

make O match the embedding dimension W, 𝐴𝑘 is the look-up embedding for the k-th cluster 

assignment, 𝑐𝑜𝑠_𝑠𝑖𝑚(∙,∙) is the cosine similarity between two vectors, and τ is the temperature that 

scales the logits. The superscript 𝛾 denotes the 𝛾-th task being solved when using an ensemble of 

𝛤 clustering models. In particular, there are as many projection and look-up embedding matrices as 

there are tasks in the ensemble. 

 

Since we have a large and diverse dataset, we propose HuBERT-ECG in the SMALL, BASE and 

LARGE model sizes. As we scale the size, we keep the same convolutional embedder and increase 

the encoder depth and width, as well as the label embedding dimension W. Table 1 summarises the 

architecture of these three versions of our model. After pre-training, to fine-tune HuBERT-ECG for 

specific downstream tasks, we delete the look-up embedding and projection matrices and attach a 

randomly initialised linear layer atop the encoder to map the pooled output sequence into logits. 

Specifically, we exploit the Pytorch59 implementation provided by Hugging Face and modify its 

source code to suit our needs. All models are trained on a node equipped with NVIDIA A100 GPUs. 

Unsupervised label discovery 

We pre-train HuBERT-ECG BASE for two consecutive iterations. To generate target labels for the 

first one, we perform a k-means clustering60 with 100 clusters on feature descriptors consisting of 39-

dimensional vectors of Mel Frequency Cepstral Coefficients61 (MFCCs) (13 coefficients with first 

and second-order derivatives). Such features have already been successfully used in ECG analysis62–

64, as we confirm in Supplementary Information – Sec. 1.1 where we compare various feature 

descriptors. Additionally, although we do not see any significant benefit from using a cluster 

ensemble (Supplementary Information – Sec. 2.2), when we situate HuBERT-ECG in a multitask 

framework we add the labels generated by two additional MFCC-based k-means models with 200 

and 300 clusters, respectively. 

 

For the second iteration, to produce better and finer labels, we run the k-means algorithm again,  

increasing the number of clusters. We use 500 clusters of latent representations extracted from the 8th 

encoding layer of HuBERT-ECG BASE after the first iteration. At the end of the second iteration, 

we pre-train the SMALL and LARGE model configurations for one iteration using labels generated 

by clustering representations extracted from the 9th encoding layer into 500 and 1000 clusters, 

respectively (Supplementary Information – Sec. 1.4). Due to memory constraints, we cannot load the 

entire dataset into memory and, therefore, we opt for a batched version of k-means provided by scikit-

learn65, in which we yield batches of MFCC descriptors, or latent representations, and perform 
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incremental updates of centroid positions. We set a batch size of 9300, obtained by yielding 93 

descriptors from 100 ECGs, and use k-means++66 with 20 random restarts for a better initialisation. 

Self-supervised pre-training 

For each pre-training iteration we reserve 90% of the unlabelled dataset as the training set and the 

remaining 10% as the internal validation set. We set a batch size of 448 instances and an optimal 

masking percentage p of 33%. The first iteration consists of 80k steps, while the second iteration 

counts 770k steps. The third iteration, instead, consists of 362.5k and 422.5k steps for the SMALL 

and LARGE model sizes, respectively. We use Adam67 optimiser with β = (0.9,0.98), an initial weight 

decay68 of 0.01 and a dropout probability69 of 0.1, and a learning rate scheduler that ramps up for the 

first 8% of the training steps and then decays linearly to zero. Peak learning rates are 5e-5/5e-5/2.5e-

5 for the BASE, SMALL and LARGE model configurations, respectively. In addition, we find 

benefits from exploiting a dynamic regularisation during pre-training (Supplementary Information – 

Sec. 1.3). This technique “penalises” the model by increasing its dropout probability and weight decay 

if it does not improve its performance on the internal validation set for penalty-count consecutive 

times. Otherwise, if it improves its performance on the internal validation set, with respect to the best 

validation loss or the best validation accuracy, the model is “rewarded” by reversing the effects of 

the last penalty, i.e., decreasing its dropout probability and weight decay. It is important to note that 

the initial weight decay and dropout probability are the minimum achievable values, while penalty-

count emerges as a significant hyperparameter to be tuned according to the frequency with which 

validations are performed. During the first and third iterations, with randomly initialised models, we 

set the penalty-count to 4 and perform an internal validation every 2500 steps. For the second 

iteration, the internal validation is performed every 5000 steps, while keeping the same value of 

penalty-count. 

Supervised fine-tuning 

In order to assess the capabilities of HuBERT-ECG on clinically relevant datasets simulating real-

world scenarios, we fine-tune it on every labelled dataset we consider, each one being characterised 

by a possibly very different number of instances (Fig. 1a), patients’ age distribution (Fig. 1d), and 

possible conditions, each of which belonging to one of the three classes mentioned in Fig. 1f. When 

training-validation-test splits are predefined, or when at least the test set is known and fixed, as in the 

case of PTB-XL, SPH or Ribeiro, we perform the same split in order to allow fair comparisons with 

previous works. However, for datasets where no such split is known or applicable (i.e., Hefei, Ningbo, 

Chapman, CPSC, Georgia), we first extract a fixed hold-out test set in a stratified fashion containing 

10% of the dataset instances, ensuring that all the dataset classes are represented. We then perform a 

4-fold cross-validation to tune the hyperparameters of the four models on the remaining instances, 

selecting the best candidate from each fold for the evaluation on the test set. Finally, we average the 

four sets of results obtained from inference. When the cardinality of the dataset is extremely low 

compared to the model size, as in the case of PTB, CPSC-Extra and SaMi-Trop, we split the dataset 

four times in a stratified manner into four <training, test> folds. Then, for each fold, we skip any 

hyperparameter tuning, train four models until we reach near-zero training error and run inference 

directly on the corresponding test set with the last model checkpoint. During each fine-tuning, we 

optimise both the loss function and a macro-averaged AUROC on the validation set, selecting for 

inference at test time the model candidate that achieves the highest AUROC. Lastly, to generate 

Cardio-Learning, we merge the training, validation, and test sets from each dataset to form the 

corresponding overall training, validation, and test sets, taking care to ensure no data leakage between 

them. Notably, before any fine-tuning, we analyse the label distribution of each dataset and drop the 

instances labelled with conditions that occur only once. We do so because these conditions are either 

unlearnable or untestable, as their single instances cannot be included in both the training and test 

sets. However, if a condition occurs twice in the dataset, we assign one instance to the training set 
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and one to the test set, allowing the model to attempt to learn the condition while providing a way to 

assess its generalisability within the limits of this setup. We consider the performance on the 

validation set as a lower bound on the true test performance. Eventually, when a condition occurs 

three times, we place one example per split. 

 

To fine-tune HuBERT-ECG we follow a simple protocol: we attach atop the pre-trained model a 

randomly initialized linear layer and fine-tune all the weights of the resulting model, except those of 

the convolutional embedder. In contrast to Chen et al.70 and Hsu et al.24, we do not use the freezing-

steps hyperparameter, as we did not see any efficacy in keeping the encoder’s parameters fixed while 

training only the last linear layer. Inspired by Devlin et al.18, we reduce the batch size to 64 instances 

and decrease the learning rate to 1e-5. Also, to gain more control over the search for a good candidate, 

we validate our models every 50 or 500 steps, depending on the dataset size, hence more frequently 

than what we do during the pre-training. Due to the high number of trainable parameters and the 

limited number of instances of most datasets, HuBERT-ECG overfits easily and we find no 

effectiveness in using either a strong dropout (up to 0.5) or a high weight decay (up to 0.1), nor in 

some freezing encoding layers. However, experiments with LayerDrop72 ([0.0, 0.1, 0.15, 0.2]) show 

that it can help contain the validation loss divergence and metrics degradation. In addition, we see 

improvements when using a time-aligned random crop as data augmentation, a strategy that we also 

replicate at test time when we take the most confident prediction among those made on multiple crops 

of the same instance. In summary, we observe the best performance when fine-tuning the entire 

Transformer encoder, zeroing the dropout probability, keeping the weight decay at 0.01, and 

sweeping over the LayerDrop probability. We track experiments using Weights and Biasese.  

Data availability  

All datasets supporting the findings described in this manuscript are public, except for Ribeiro. This 

dataset, the test set of which is publicly available, is accessible for scientific research upon request to 

the respective owner. 
 

Code availability 

The full pipeline utilised in this study is available at https://github.com/Edoar-do/HuBERT-ECG. 

This includes: (1) code for data preprocessing, starting from raw data to creating the train-validation-

test splits used in our research; (2) scripts for replicating the training and inference of every model 

developed across all datasets; and (3) code for reproducing our performance validation. Eventually, 

to both facilitate reproducibility and enable rapid implementation, we make available on Hugging 

Facef (4) the pre-trained weights for all model configurations, as well as (5) the fine-tuned weights 

on the Cardio-Learning dataset.  
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  SMALL BASE LARGE 

Convolutional 

embedder 

strides 4, 2, 2, 2, 2 

10, 3, 3, 2, 2 

512 
kernels width 

channels 

Transformer encoder 

layers 8 12 16 

internal dimension 512 768 960 

feed-forward 

dimension 

2048 3072 3840 

attention heads 8 8 12 

Embedding dimension W 256 256 512 

Number of parameters 30M 93M 188M 

Table 1 | HuBERT-ECG architecture summary.  
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Condition Models Sensitivity Specificity AUROC AUPRC 

Atrial Fibrillation 

Ribeiro et al. 0.769 1.000 0.885 0.773 

HuBERT-ECG SMALL 1.000 0.977 1.000 0.9774 

HuBERT-ECG BASE 1.000 1.000 1.000 1.000 

HuBERT-ECG LARGE 1.000 0.975 0.998 0.924 

Atrio-ventricular Block type I 

Ribeiro et al. 0.929 0.995 0.962 0.807 

HuBERT-ECG SMALL 0.929 0.952 0.989 0.8309 

HuBERT-ECG BASE 0.750 0.999 0.998 0.956 

HuBERT-ECG LARGE 1.000 0.949 0.996 0.875 

Left bundle branch block 

Ribeiro et al. 1.000 1.000 1.000 1.000 

HuBERT-ECG SMALL 1.000 0.994 1.000 0.995 

HuBERT-ECG BASE 0.900 1.000 1.000 1.000 

HuBERT-ECG LARGE 0.933 0.995 0.999 0.976 

Right bundle branch block 

Ribeiro et al. 1.000 0.995 0.997 0.895 

HuBERT-ECG SMALL 1.000 0.985 0.999 0.980 

HuBERT-ECG BASE 0.940 0.995 0.999 0.974 

HuBERT-ECG LARGE 0.971 0.987 0.998 0.969 

Sinus bradycardia 

Ribeiro et al. 0.938 0.996 0.967 0.782 

HuBERT-ECG SMALL 1.000 0.981 0.998 0.880 

HuBERT-ECG BASE 1.000 0.993 0.998 0.886 

HuBERT-ECG LARGE 1.000 0.980 0.998 0.895 

Sinus Tachycardia 

Ribeiro et al. 0.937 0.997 0.985 0.923 

HuBERT-ECG SMALL 0.973 0.982 0.997 0.935 

HuBERT-ECG BASE 0.973 0.995 0.999 0.964 

HuBERT-ECG LARGE 0.973 0.984 0.996 0.948 

MACRO-AVERAGED 

Ribeiro et al. 0.935 0.997 0.966 0.863 

HuBERT-ECG SMALL 0.984 0.979 0.997 0.933 

HuBERT-ECG BASE 0.927 0.999 0.999 0.963 

HuBERT-ECG LARGE 0.979 0.978 0.997 0.931 

Table 2 | Fine-tuned HuBERT-ECG performance on Ribeiro benchmarked against that from Ribeiro 

et al.35 according to multiple metrics. 

 

Models 

PTB-XL 

All 

PTB-XL 

Form 

PTB-XL 

Rhythm 

PTB-XL 

Diag. 

PTB-XL Diag. 

Subclass 

PTB-XL Diag. 

Superclass 

Macro-averaged AUROC 

HuBERT-ECG SMALL 0.900 0.838 0.941 0.919 0.913 0.907 

HuBERT-ECG BASE 0.902 0.855 0.953 0.917 0.917 0.911 

HuBERT-ECG LARGE 0.896 0.828 0.935 0.905 0.919 0.903 

Hu et al.58(*) 0.947 ~ 0.895 ~ 0.980 ~ 0.950 ~ 0.940 ~ 0.938 

Mehari & Strodthoff 73(**) 0.942 N.A. N.A. N.A. N.A. N.A. 

Strodthoff et al.74(***) 0.925 0.896 0.957 0.937 0.929 0.928 

Na et al.44(***) N.A. N.A. N.A. N.A. N.A. 0.933 

Table 3 | Fine-tuned HuBERT-ECG performance on PTB-XL datasets against the state-of-the-art. 

“N.A.” stands for “Not Available”. (*) Code not available. Results preceded by ‘~’ symbol are 

estimated by looking at paper graphs. (**) Based on the available code, the AUROC is calculated on 

individual batches and then averaged—introducing batch-size dependency—with custom handling 

for any NaN values that arise due to class imbalances within batches. (***) Based on the available code, 

the AUROC is computed after aggregating predictions and corresponding ground-truth labels across 

all batches—a standard approach we also adopt. 
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Fig 1. (a) Used dataset and their sizes. The blue bar highlights the dataset used for the pre-training 

while the red one is the testing one. (b) Geographical origin of the considered datasets. (c) ECG length 

in seconds. (d) Age distribution. (e) UMAP projection (uniform sample of 30% of all the dataset for 

the sake of visualisation). (f) Label distribution and grouping according to 3 classes (see the coloured 

bar below the distribution): Class 0: Green colour for "The ECG is the primary diagnostic tool"; Class 

1: Blue colour for "The ECG is a supportive, not primary, diagnostic tool"; Class 2: Red colour for 

"ECG is used to predict future CVEs". Label abbreviations and corresponding diagnosis are reported 

in Supplementary Table 1. 
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Fig 2. An overview of the proposed deep learning pipeline. (a) Datasets: The model is pre-trained on 

11 datasets comprising over 9.1 million samples. Then, the model is fine-tuned and tested on 16 

datasets and their aggregation covering 164 heart-related conditions. (b) Pre-training and Testing 

Pipeline: The pipeline begins with Mel feature extraction, followed by k-means clustering, and 

includes two training phases with masked cross-entropy loss and softmax classification. A 

convolutional embedder and a Transformer encoder process the data, culminating in a linear output 

layer for classification. (c) Transfer Learning and Provided Models: Three model variants 

(SMALL, BASE, LARGE) with increasing parameter counts (30M, 93M, and 188M) are pre-trained, 

tested and, eventually, provided to enable transfer learning for many downstream tasks such as 

diagnosis, survival analysis, and prognosis. Fine-tuning can be performed by simply adding a task-

specific linear layer. 
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Fig. 3. HuBERT-ECG performance across 16 downstream datasets varying weights initialization and 

model size. Performance assessed through 4-fold cross-validation are reported with standard 

deviations. 
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Fig. 4. Hubert-ECG (a) SMALL, (b) BASE, (c) LARGE label-wise performance on every dataset, 

including Cardio-Learning. Label backgrounds are coloured based on the diagnostic role of the ECG. 

Supplementary Table 1 reports label abbreviations and corresponding diagnosis. 
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Supplementary Information 

 

1. Pre-training analyses 
This section presents an analysis of the impact of pre-training with different ECG feature descriptors and sampling rates 

on downstream performance. We then investigate the interesting effects that follow the application of the dynamic 

regularisation during pre-training. Finally, we examine the clustering quality across both HuBERT-ECG encoding layers 

and pre-training iterations to measure the downstream impact of these factors. For these purposes, we pre-train HuBERT-

ECG BASE for one iteration with fixed hyperparameters and running configurations described in each of the following 

sections. Then, to evaluate the impact of different choices, we simply perform linear evaluations, i.e., training of a 

randomly initialised linear layer atop a frozen backbone, on a development set that we extract from the dataset used by 

Ribeiro et al.1. We build such a set, hereafter referred to as Ribeiro-dev, by deliberately excluding all normal ECGs, as 

we are more interested in assessing the ability to detect cardiac abnormalities rather than normal ECGs. We avoid a full 

fine-tuning due to limited computational resources, but we are confident that the linear evaluation results serve as lower 

bound since they are obtained considering fewer trainable parameters and using a development set that is three times 

larger than all public ECG sources combined. 

 

1.1 Exploring feature descriptors for ECG fragments 
In order to identify the most appropriate ECG fragment descriptor to use in the initial pre-training iteration, we perform 

k-means clustering on the entire training set with 3 different feature descriptors extracted from the ECG fragments. The 

first descriptor takes into account 16 simple time-frequency features, the second one, is based on 39 Mel Frequency 

Cepstral coefficients3 (MFCCs) following Hsu et al.2, and the third one combines the first 13 MFCCs and all the time-

frequency features. For each descriptor, we run k-means with 10, 30, 50, 100, 150, 200 and 300 clusters and compute the 

corresponding sum of squared errors, or inertia (Supplementary Fig. 1). We observe that MFCC- and time-frequency 

based descriptors provide comparable inertia and a global mean squared error in the order of 1e-5, and thus appear as 

promising candidates.  Following the elbow method4, and driven by the intuition that more clusters capture too fine and 

specific ECG patterns for the first pre-training iteration, we set C = 100 as the best number of clusters to use irrespective 

of the descriptor. Given this number of clusters, we compute the Davies-Bouldin5 index to have an additional selection 

criterion and obtain extremely low scores. Interestingly, while clustering on MFCCs yields higher inertia than clustering 

on time-frequency features, clusters on the former are slightly more compact, as suggested by a marginally lower Davies-

Bouldin score. Therefore, we experiment with the use of both MFCC- and time-frequency based k-means models during 

pre-training and, then, linearly evaluate the resulting models on Ribeiro-dev until performance plateau or a maximum 

number of 80k training steps is reached. The linear evaluation results, presented in Supplementary Table 1, show that pre-

training with labels generated by an MFCC-based k-means model yields better downstream performance.  

 

1.2 How the sampling rate affects downstream performance 
The sampling rate of an ECG depends on the specific settings of the machine recording the electrical activity of the heart 

and there is no standard practice in this regard. For example, ECGs from the Ribeiro et al.1 dataset are sampled at 400 Hz, 

while ECGs from PTB-XL6 and SPH7 are sampled at 400 and 500 Hz, respectively. We investigate the effect that the 

ECGs sampling rate has on downstream performance. This parameter is important as it regulates the dimensionality of 

the data, therefore the computation speed, and the degree of dilution of the information content. While it is true that 

training with ECGs sampled at lower frequencies is computationally less expensive, it is also true that sampling ECGs at 

lower frequencies may not provide enough samples to capture significant features and nuances in the input signal. 

Increasing the sampling rate may remedy this issue, at the cost of slower training and higher memory occupation. 

However, an oversampled ECG may contain redundant samples that overly dilute the information content and may be 

perceived as noise by a deep learning model. For these reasons, after band-pass filtering our ECGs to exclude frequencies 

outside [0.05, 47] Hz, which is reported to contain the dominant components of P waves, T waves and QRS complexes8, 

we investigate the effects that sampling a 12-lead ECG at 50 and 100 Hz on linear evaluation performance over Ribeiro-

dev. For these experiments, we linearly evaluate pre-trained models until the performance plateau or 80k training steps 

are performed in order to determine the optimal sampling rate to work with. To always have the same number of 

embeddings being processed by the Transformer encoder, we design waveform convolutional embedders that become 

increasingly shallow as the sampling rate decreases, while also maintaining the same number of ECG fragments. All the 

other design choices and running configurations are fixed across the experiments, as shown in Supplementary Table 2. 

Supplementary Fig. 2a illustrates the validation loss curves observed during pre-training at 50 and 100 Hz while 

Supplementary Fig. 2b shows the corresponding linear evaluation performance on Ribeiro-dev. Two discernible trends 
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are evident from the former: as the sampling rate decreases, the validation loss curves start at lower values than those 

corresponding to higher sampling rates; furthermore, as the sampling rate decreases, the models tend to show earlier 

overfitting to the training data. We suspect that at lower sampling rates, the information needed to solve the upstream task 

becomes more readily accessible, thereby facilitating the learning process. However, when clinical downstream labels are 

introduced, there is a noticeable performance discrepancy between models operating at 50 Hz and those operating at twice 

this sampling rate (Supplementary Fig. 2b and Supplementary Table 3). We attribute this discrepancy to the insufficient 

number of samples available to capture label-related patterns.  In summary, sampling at 100 Hz captures all the 

meaningful physiological information, satisfies the Nyquist-Shannon theorem, and represents a desirable trade-off 

between computational cost and accurate downstream performance.  All results are shown in Supplementary Table 3. 

 

1.3 The effects of the dynamic regularisation 
In order to gain a deeper insight into the impact of dynamic regularisation on training time and the time required to tune 

regularisation terms, including weight decay and dropout probabilities, we consider four different pre-training setups, 

each followed by a linear evaluation to assess the actual benefit on downstream performance. The first and the second 

one consist in performing the entire first pre-training iteration (260k steps with no early stopping) with a weight decay of 

0.01 and a dropout probability of 0.1 (referred to as default), with and without dynamic regularisation, respectively, The 

last two setups, instead, consist in performing the same pre-training iteration, with and without dynamic regularisation, 

but setting the initial weight decay and dropout probability to the maximum values found by the dynamic regularisation. 

All experiments consider the BASE architecture, ECGs sampled at 100 Hz, a MFCC-based k-means as label generator 

(C = 100), a batch size of 448 instances and a masking percentage 𝑝 =  33%. The results of our experiments, presented 

in Supplementary Table 4 and labelled with letters for clarity, reveal interesting insights. When using dynamic 

regularisation with default weight decay and dropout probability (setup A), HuBERT-ECG converges in 80k steps, 

resulting in the best macro-averaged AUROC of 0.933 during linear evaluation. In contrast, disabling the dynamic 

regularisation while keeping the default regularisation terms (setup B), significantly slows down the convergence and 

leads to inferior downstream results. Instead, when comparing setups C and D, we observe two opposite behaviours: setup 

C shows faster convergence but worse upstream performance, while setup D shows slower convergence but better 

upstream performance. Despite these discordant trends, both setups produce close downstream results, both surpassing 

those from setup B, but still falling short of those of setup A. This suggests that pre-training with the dynamic 

regularisation, or the maximum regularisation terms it finds, speeds up pre-training and allows the model to adapt itself 

to avoid overfitting, resulting in improved linear evaluation when compared to scenarios where the dynamic regularisation 

is not used at all. Nevertheless, we hypothesise that initiating pre-training with already high regularising terms, 

irrespective of whether dynamic regularisation is employed or not (setups C and D), may impair the model's learning 

capability at the most crucial stage, resulting in inferior, albeit marginal, downstream performance. To investigate into 

the source of these benefits, it seems plausible to suggest that a dynamic dropout rate encourages the model to assign 

greater importance to alternative hidden paths when necessary, without permanently excluding the dropped ones. In such 

cases, when also the weight decay increases, this complementary form of regularisation prevents significant changes to 

the weights of those paths, thereby maintaining training stability. 

 

1.4 The downstream impact of clustering quality across encoding layers and 
iterations 
In the work of Hsu et al.2, prior to the second and third pre-training iterations, the most suitable number of clusters was 

determined, as well as the layer from which latent features had to be extracted. This was achieved through the analysis of  

the quality of clusters of hidden representations extracted from each model layer. In particular, an automatic-speech-

recognition model was used to produce frame-level phonetic labels that served as targets to measure the correctness of 

forced-aligned cluster assignments. The same approach is not applicable to our case as, to the best of our knowledge, 

there is no powerful open-source ECG model that can produce frame-level forced-aligned cluster assignments. 

Consequently, to determine which layer’s latent features should be clustered and how many clusters are to be found, we 

make use once again of traditional compactness and separability metrics. In addition, in order to limit the set of layers to 

explore, we combine such metrics with findings from the NLP domain regarding layers transferability9. After sampling 

10% of pre-training ECGs, we cluster their fragments’ latent representations from the 5th – 10th Transformer layer and 

measure the clustering quality in terms of inertia, Davies-Bouldin index and Calinsky-Harabasz10 index. We exclude from 

consideration shallower layers on the grounds that they would produce too coarse representations to be of use in clustering. 

Similarly, deeper layers are excluded on the grounds that they would generate representations that would lead to too task-

specific labels for a generic pre-training based on pseudo-labels. Upon completion of the first iteration, we identify 500 

and 1000 clusters of latent features from each of these layers, since we consider that setting a higher number of clusters 

than that used in the first iteration is necessary for two reasons: 1) to try to generate much finer cluster assignments; 2) to 

avoid measuring, through clustering, the degree of separability of the classes learnt during the previous iteration. The 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.14.24317328doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.14.24317328
http://creativecommons.org/licenses/by-nc/4.0/


24 

 

results of this final analysis are presented in Supplementary Fig. 3. As can be seen, each metric shows a monotonic trend, 

regardless of the representations being clustered. Therefore, they do not provide an unequivocal indication of the best 

encoding layer to extract features from. To continue the pre-training of the BASE configuration, we then choose to cluster 

latent representations from the 8th layer into 500 clusters, as this point seems to mark a non-negligible change in the 

metrics we are considering. After completing the second iteration, we perform a linear evaluation with the same running 

configurations reported in previous paragraphs to quantify the relative improvement with respect to previous evaluations. 

As shown in Supplementary Fig. 4, when the first-iteration model saturates, the second-iteration one achieves results that 

are approximately 5 AUROC points better and still has room for improvement. 

Once HuBERT-ECG BASE completes the second iteration, we repeat the clustering step described above and report the 

results in Supplementary Fig. 3. Once again, the metrics we consider show a monotonic trend that does not facilitate the 

choice of an acceptable number of clusters (500 or 1000) nor which layer the latent representations should be extracted 

from. For these reasons, to start pre-training the SMALL and LARGE model configurations, we decide to extract latent 

features from the 9th layer and to cluster them into 500 and 1000 clusters, respectively. We believe that pre-training these 

third-iteration models requires, for any configuration, selecting a deeper layer than those selected for the previous 

iterations. Furthermore, we believe that increasing the quantity and fineness of cluster assignments is beneficial for a 

more complex model such as HuBERT-ECG LARGE. Conversely, for the SMALL model size, maintaining the same 

number and granularity of cluster assignments can facilitate the task of mimicking the BASE model without significant 

loss of performance. The benefits of these choices are also displayed in Supplementary Fig. 4. Upon completion of 362.5k- 

and 422.5k-step pre-trainings, the SMALL and LARGE configurations perform similarly when linearly evaluated on 

Ribeiro-dev for 80k steps: both achieve a macro-averaged AUROC slightly lower than that of the BASE configuration, 

but show signs of saturation within this linear evaluation training time. 

 

2 Ablation Study 
In this section, we present a short sequence of ablation studies to investigate the effects of specific architectural choices 

and the impact of important hyperparameters. In particular, we study (1)  the impact of our masking strategy, and (2) the 

effects of multi-task learning experimenting with multiple cluster ensembles. To do so we perform multiple pre-trainings 

of HuBER-ECG BASE (first iteration only) followed by linear evaluations on Ribeiro-dev with fixed hyperparameters. 

If not otherwise mentioned, the experimental configurations are the same of the previous section. 

 

2.1 Impacts of the Masking Strategy 
We consider setting the value of the masking percentage 𝑝 of crucial importance to make HuBERT-ECG learn high 

quality representations of 12-lead ECGs. An excessively low value would generate a trivial upstream task, while an 

exaggeratedly high value would result into a nearly impossible one. For this reason, we experiment with multiple values 

of this hyperparameter in order to see how it impacts on downstream performance and plot the results of these experiments 

in Figure 4. For the sake of comparison, we also plot the exact percentage of embeddings that are masked when we use 

the masking strategy proposed by Hsu et al.2. Beyond some statistical and label noise, what emerges clearly is that setting 

𝑝 = 33%  guarantees the best results, while following the masking strategy used to pre-train HuBERT leads to suboptimal 

performance. We believe this finding is due to the more regular patterns and high information redundancy of ECGs 

compared to audio signals. 

2.2 The Effects Of Multi-Task Learning 
To observe the downstream effects of pre-training HuBERT-ECG in a multi-task learning framework, we perform three 

pre-trainings with an increasing number of tasks to solve. Initially, we pre-train HuBERT-ECG using labels generated by 

a single MFCC-based k-means model with 100 clusters. Then, we pre-train again with an additional clustering model 

with 200 clusters and, eventually, we consider an ensemble of three k-means models with 100, 200 and 300 clusters. 

Supplementary Table 5 reports the attained results. Interestingly, adding just a new clustering model does not change pre-

training nor affects downstream performance. In contrast, although marginal, we see an improvement when considering 

an ensemble of three k-means models providing much more granular labels. Since solving three tasks at once is harder 

than solving just one of them, we are not surprised in seeing that such performance gains follow a much longer pre-

training. We also believe that the cardinality of the ensemble is not as relevant as the maximum number of clusters, which 

we think is more useful to the model to capture label-specific patterns in downstream data. This is analogous to the 

refinement of the cluster assignments that is performed prior to the second iteration, except for how such refinement is 

achieved, since both aim to generate finer and more granular labels for the ECG fragments. Considering both the longer 

pre-training time and the marginal improvement obtained on the results reached after training with labels generated by a 

single clustering model, we do not proceed in pre-training with cluster ensembles. 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Supplementary Fig. 1 | Performance comparison of multiple k-means clustering runs in terms of Sum 

of Squared Errors (SSE). Once fixed the optimal number of clusters (C = 100), the Davies-Bouldin index 

(DB) is computed and reported as “DB_C100”. Lower DB values indicate better clustering. 
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Supplementary Fig. 2 | (a) Validation loss curves obtained when pre-training HuBERT-ECG with ECGs sampled 

at 50 and 100 Hz. (b) Downstream performance obtained when HuBERT-ECG is linearly evaluated on Ribeiro-

dev after being pre-trained with ECGs sampled at 50 and 100 Hz. 
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Supplementary Fig. 3 | Clustering quality metrics (inertia, Davies-Bouldin index, Calisky-Harabasz index) across 

HuBERT-ECG BASE encoding layers after the first (it1) and second (it2) pre-training iterations. Symbols ↑and ↓ indicate 

whether a metric needs to be maximised or minimised, respectively. Gray-shaded regions refer to encoding layers not 

considered in this analysis. 

  

Supplementary Fig. 4 | Linear evaluation performance of HuBERT-ECG BASE, after 

first and second pre-training iteration, HuBERT-ECG SMALL and HuBERT-ECG 

LARGE on Ribeiro-dev. 
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Supplementary Tables 
 

Supplementary Table 1: Diagnoses and corresponding abbreviations used. 

Diagnosis Abbreviation 

2nd Degree Av Block 2AVB 
Second Av Block Mobitx Type I 2AVB1 
Mobitz Type II Atrioventricular Block 2AVB2 
Av Block Varying Conduction AVBVC 
Av Block Advanced (High Grade) AVBHG 
Av Block Complete (Third Degree) 3AVB 
1st Degree Av Block 1AVB 
Anterior Myocardial Infarction ANMI 
Extensive Anterior Myocardial Infarction EAMI 
St Elevation STE_ 
Inferoposterolateral Myocardial Infarction IPLMI 
Posterior Myocardial Infarction PMI 
Inferolateral Myocardial Infarction ILMI 
Inferoposterior Myocardial Infarction IPMI 
Anterolateral Myocardial Infarction ALMI 
Lateral Myocardial Infarction  LMI 
Acute Myocardial Infarction AMI 
Anteroseptal Myocardial Infarction ASMI 
Inferior Myocardial Infarction IMI 

Supplementary Fig. 5 | HuBERT-ECG BASE linear 

evaluation performance after pre-training with different 

values of the hyper-parameter p (i.e. the percentage of 

ECG embeddings to mask). The red dashed line indicates 

the percentage of ECG embeddings that would be masked 

if we followed the masking strategy used to pre-train 

HuBERT3. 
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Ischemic In Anterior Leads (Subclass) ISCA 
Anterior Ischemia ANMIS 
Inferior Ischaemia IIS 
Subendocardial Injury In Inferior Leads INJIN 
Ischemic In Inferior Leads ISCI 
Subendocardial Injury In Inferolateral Leads INJIL 
Ischemic In Inferolateral ISCIL 
Subendocardial Injury In Lateral Leads INJLA 
Ischemic In Lateral Leads ISCLA 
Lateral Ischaemia LIS 
Subendocardial Injury In Anteroseptal Leads INJAS 
Ischemic In Anteroseptal Leads ISCAS 
Subendocardial Injury In Anterolateral Leads INJAL 
Ischemic In Anterolateral Leads ISCAL 
Left Atrial Abnormality LAA 
Left Atrial Hypertrophy LAH 
Right Atrial Abnormality RAAB 
Right Atrial Hypertrophy RAH 
Left Ventricular Hypertrophy LVH 
Voltage Criteria (QRS) For Left Ventricular Hypertrophy VCLVH 
Septal Hypertrophy SEHYP 
Right Ventricular Hypertrophy RVH 
ST-T Change Due To Ventricular Hypertropy STTVH 
Incomplete Right Bundle Branch Block IRBBB 
Complete Left Bundle Branch Block | Left Bundle Branch Block CLBBB|LBBB 
Incomplete Left Bundle Branch Block ILBBB 
Complete Right Bundle Branch Block | Right Bundle Branch Block CRBBB|RBBB 
Transient Ischemic Attack TIA 
Atrial Hypertrophy AH 
Myocardial Infarction MI 
Myocardial Ischemia MIS 
Ventricular Hypertrophy VH 
Coronary Heart Disease CHD 
Chronic Myocardial Ischemia CMIS 
Heart Failure HF 
Heart Valve Disorder HVD 
Left Ventricular Strain LVS 
Countercolockwise Rotation -ROT 
Clockwise Rotation +ROT 
Accelerated Atrial Escape Rhythm AAR 
Atrial Bigeminy AB 
Abnormal QRS ABQRS 
Atrial Escape Beat AED 
Atrial Fibrillation AF 
Atrial Fibrillation And Flutter AFAFL 
Atrial Flutter AFL 
Accelerated Idioventricular Rhythm AIVR 
Accelerated Junctional Rhythm AJR 
Suspect Arm Ecg Leads Reversed ALR 
Atrial Pacing Pattern AP 
Atrial Rhythm ARH 
Atrial Tachycardia ATACH 
Av Block AVB 
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Atrioventricular Dissociation AVD 
Atrioventricular Junctional Rhythm AVJR 
Atrioventricular  Node Reentrant Tachycardia AVNRT 
Atrioventricular Reentrant Tachycardia AVRT 
Bundle Branch Block BBB 
Blocked Premature Atrial Contraction BPAC 
Bradycardia BRADY 
Brugada BRU 
Brady Tachy Syndrome BTS 
Cardiac Dysrhythmia CD 
Congenital Incomplete Atrioventricular Heart Block CIAHB 
Clockwise Or Counterclockwise Vectorcardiographic Loop CVCL/CCVCL 
Diffuse Intraventricular Block DIB 
Early Repolarization ERE 
Fusion Beats FB 
Fqrs Wave FQRS 
High T-Voltage HTV 
Indeterminate Cardiac Axis ICA 
Idioventricular Rhythm IR 
Junctional Escape JE 
Junctional Premature Complex JPC 
Junctional Tachycardia JTACH 
Left Axis Deviation LAD 
Left Posterior Fascicular Block LPFB 
Prolonged Pr Interval LPR 
Low Qrs Voltages LQRSV 
Prolonged Qt Interval LNGQT 
Left Ventricular High Voltage LVHV 
Nonspecific Intraventricular Conduction Disorder NSIVCB 
Sinus Rhythm NORM 
Nonspecific St T Abnormality NSSTTA 
Old Myocardial Infarction OLDMI 
Premature Atrial Contraction | Supraventricular Premature Beats PAC|SVPB 
Prolonged P Wave PPW 
Pacing Rhythm PR 
Poor R Wave Progression PRWP 
Paroxysmal Supraventricular Tachycardia PSVT 
Paroxysmal Ventricular Tachycardia PVT 
P Wave Change PWC 
Qwave Abnormal QAB 
R Wave Abnormal RAB 
Right Axis Deviation RAD 
Rapid Atrial Fibrillation RAF 
Right Atrial  High Voltage RAHV 
Sinus Arrhythmia SARRH 
Sinus Atrium To Atrial Wandering Rhythm SAAWR 
Sinoatrial Block SAB 
Sinus Arrest SARR 
Sinus Bradycardia SBRAD 
Sinus Node Dysfunction SND 
Shortened Pr Interval SPRI 
Decreased Qt Interval SQT 
Sinus Tachycardia STACH 
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S T Changes STC 
St Depression STD_ 
St Interval Abnormal STIAB 
Supraventricular Bigeminy SVB 
Supraventricular Tachycardia SVT 
T Wave Abnormal TAB 
T Wave Inversion TINV 
Tall P Wave TPW 
U Wave Abnormal UAB 
Ventricular Bigeminy VBIG 
Ventricular Ectopics VEB 
Ventricular Escape Beat VESB 
Ventricular Escape Rhythm VESR 
Ventricular Fibrillation VF 
Ventricular Flutter VFL 
Premature Ventricular Contractions | Ventricular Premature Beats VPC|VPB 
Ventricular Pre Excitation VPEX 
Ventricular Pacing Pattern VPP 
Paired Ventricular Premature Complexes VPVC 
Ventricular Tachycardia VTACH 
Ventricular Trigeminy VTRIG 
Wandering Atrial Pacemaker WAP 
Wolff-Parkinson-White Pattern WPW 
Low Voltage LVOLT 
TU fusion TUF 
atrial premature complexes non-conducted PAC_NC 
av conduction ration N:D AVCR 
left anterior fascicular block LAFB 
junctional escape complex(es) JEC 
ST deviation with T-wave change STTC 
left anterior/posterior fascicular block LAFB/LPFB 
non specific intraventricular conduction disturbance IVCD 
non specific t wave changes NT_ 
sinus rhythm SR 
digitalis effect DIG 
premature complex(es) PRC(S) 
supraventricular arrhythmia SVARR 
trigeminal pattern (unknown origin SV or Ventricular) TRIGU 
low amplitude t waves LOWT 
electrolytic disturbance or drug (former EDIS) EL 
bigeminal pattern (unknown origin SV or Ventricular) BIGU 
normal functionning artificial pacemaker PACE 
non-diagnostic t abnormalities NDT 
ST-T changes compatible with ventricular aneurysm ANEUR 
non specific ST changes NST_ 
non specific ischemic ISC_ 
hypertrophy HYP 
high qrs voltage HVOLT 
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Supplementary Table 2: Linear evaluation performance of pre-trained HuBERT-ECG BASE models when using 

labels generated by MFCC- and time-frequency based k-means models. 

 

Label generator Macro-averaged AUROC 

MFCC-based k-means – C = 100 0.933 

Time-frequency based k-means – C = 100 0.913 

 
Supplementary Table 3: Architecture design and running configuration when experimenting with ECGs sampled at 50 

and 100 Hz. 

 

Architectural outline 
Sampling rate 

50 Hz 100 Hz 

Convolutional 

embedder 

kernels = (10, 3, 3, 2) 

strides= (4, 2, 2, 2) 

channels = 512 

kernels = (10, 3, 3, 2, 2) 

strides= (4, 2, 2, 2, 2) 

channels = 512 

Transformer encoder BASE 

k-means MFCC, C = 100 

Pre-training steps 

Linear evaluation steps 

Batch size 

P 

LayerDrop 

Dropout 

Weight decay 

130k 

80k 

448 

33% 

0.1 

0.1 

0.01 

 

Supplementary Table 4: Linear evaluation performance of HuBERT-ECG on Ribeiro-dev after being pre-trained at 50 

and 100 Hz. Linear evaluation steps necessary to let validation AUROC plateau are also reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECG sampling rate macro-averaged AUROC Linear evaluation steps at plateau 

50 Hz 0.9176 
65k 

100 Hz 0.9330 
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Supplementary Table 5: Effects of the use of dynamic regularisation when pre-training HuBERT-ECG in terms of 

pre-training steps and upstream performance under the form of validation loss and validation accuracy. For each setup, 

linear evaluation performance on Ribeiro-dev is also reported. 

 

Supplementary Table 6: Linear evaluation performance of HuBERT-ECG BASE after being pre-trained in a multi-

task learning framework in which tasks are represented by multiple k-means models composing an ensemble of label 

generators. The corresponding number of pre-training steps is reported for every task/cluster ensemble.  
 

K-means ensemble Macro-averaged AUROC Pre-training steps 

MFCC-based k-means, C = 100 0.933 80k 

MFCC-based k-means, C = 100, 200 0.930 75k 

MFCC-based k-means, C = 100, 200, 300 0.943 135k 

 

 

 

 

 

 

 

 

 

 

 

Setups Pre-training steps 
Pre-training 

(validation loss, validation accuracy) 
macro-averaged AUROC 

Dynamic 

regularisation 

& 

Default regularisation 

Terms 

80k 0.6379, 0.8205 0.933 

No Dynamic 

regularisation 

& 

Default regularisation 

Terms 

235k 0.6493, 0.8182 0.921 

(C) Dynamic 

regularisation 

& 

Maximum 

regularisation Terms 

72.5k 0.6775, 0.8111 0.9263 

No Dynamic 

regularisation 

& 

Maximum 

regularisation Terms 

90k 0.5860, 0.8312 0.9244 
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