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Abstract 13 

Objectives: 14 
To investigate the impact of SARS-CoV-2 infection on the antimicrobial resistance (AMR) gene profiles in 15 
the upper respiratory tract (URT) and To evaluate variations in AMR gene diversity, abundance, and 16 
ESKAPE-associated AMR in URT. By comparing SARS-CoV-2-positive patients to healthy controls. 17 
 18 
Methods: 19 
95 URT swab samples from SARS-CoV-2-positive (n=48) and RTPCR-negative control participants 20 
(n=47) collected from central India. Metagenomic DNA was extracted, and metagenomic sequencing was 21 
performed using the Illumina NextSeq550 platform. Sequencing data were analysed using the Chan 22 
Zuckerberg ID pipeline for Antimicrobial resistance (AMR) gene detection and taxonomic profiling. Chao1, 23 
Shannon and Simpson diversity indices, Bray-Curtis dissimilarity, and Bayesian regression, were used to 24 
identify significant differences in AMR gene abundance and microbial associations. 25 
 26 
Results: 27 
The Chao1 index (p=0.01651) of SARS-CoV-2 samples indicated significantly higher AMR gene richness 28 
than the controls. Resistance genes, such as mecA, blaOXA-48, and blaNDM-1, showed higher 29 
abundance in SARS-CoV-2 samples. These genes were found to be linked to high-priority pathogens like 30 
Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Bayesian regression demonstrated 31 
that SARS-CoV-2 infection is a significant factor in elevated AMR gene abundance (β = 1.549, HDI 32 
[1.409, 1.691]). Females showed higher AMR levels than males (β = 0.261, HDI [0.167, 0.350]), and the 33 
model outputs showed no significant age correlation. Sankey diagrams and heatmaps showed higher 34 
AMR gene diversity and abundance in the SARS-CoV-2 group. 35 
 36 
Conclusions: 37 
SARS-CoV-2 infection alters the URT's AMR gene profile and increases the resistance genes' abundance 38 
and diversity. The results indicate a requirement to enhance AMR surveillance of COVID-19 patients to 39 
adapt antimicrobial stewardship strategies and reduce the chances of secondary infections. It is, 40 
therefore, essential to carry out more extensive studies to analyze temporal variations and the effects of 41 
antibiotic overuse on AMR evolution. 42 
 43 
Keywords: SARS-CoV-2, antimicrobial resistance, resistome, upper respiratory tract, metagenomics, 44 
ESKAPE pathogens, antibiotic resistance. 45 
 46 
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Introduction 1 

The global SARS-CoV-2 pandemic has induced research into its broader effects. This study 2 

focuses on the Antimicrobial resistance (AMR) dynamics in the upper respiratory tract (URT) of 3 

SARS-CoV-2-infected individuals. The URT is the primary entry point and predisposition site for 4 

respiratory viruses. Therefore, URT is an important site for studying AMR diversity in SARS-5 

CoV-2-infected individuals. SARS-CoV-2 infection may contribute to dysbiosis of baseline URT 6 

flora and promote the spread of AMR genes¹, ²,³. Respiratory viral infections have been shown 7 

to alter microbial diversity and contribute to secondary bacterial infections� and favoring 8 

pathogenic bacteria capable of acquiring resistance�. 9 

AMR in respiratory infections is a growing concern due to widespread antibiotic use even before 10 

the SARS-CoV-2 pandemic. Indiscriminate antibiotic use disrupts the microbial balance and 11 

promotes the enrichment of resistant organisms�. Respiratory resistomes serve as reservoirs 12 

for resistance genes transferable to pathogenic bacteria�. Studies have shown that SARS-CoV-13 

2 infection influences microbial communities and resistomes of patients�. Virus-induced 14 

inflammation and immune suppression promote bacterial growth and enrichment of AMR genes 15 

in SARS-CoV-2-positive individuals. Recently, the World Health Organisation has also 16 

highlighted the overuse of antibiotics in COVID-19 patients contributing to increasing AMR¹�. 17 

Microbiome studies on COVID-19 patients reveal shifts in diversity and increased abundance of 18 

clinically important pathogens like Staphylococcus aureus and Pseudomonas aeruginosa. 19 

These pathogens can acquire resistance to common antibiotics¹¹. The AMR genes like blaKPC, 20 

blaNDM, and mecA in COVID-19 patients, responsible for resistance in ESKAPE pathogens, 21 

were detected in the resistomes of SARS-CoV-2 positive individuals12. Despite growing 22 

evidence of SARS-CoV-2's impact on the resistome, further research is required to fully 23 

understand the effects of viral infection on AMR abundance and diversity, for which 24 

metagenomic sequencing is a valuable tool¹³.  25 

Few studies have investigated the relationship between SARS-CoV-2 infection and changes in 26 

the URT resistome in the Indian context. Researchers investigated changes in the URT 27 

microbiome of SARS-CoV-2-infected individuals to identify infection-specific signatures for 28 

developing nasal prebiotic therapies¹�. However, they did not examine AMR alterations in the 29 

URT of SARS-CoV-2-positive individuals. This study uses a metagenomic approach to 30 
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understand the effect of SARS-CoV-2 infection on URT resistome and abundance of ESKAPE 1 

pathogens. 2 

2. Materials and methods 3 

2.1. Study Population 4 

The samples used for the study were collected during March-April 2023. The study population 5 

belongs to the Vidarbha region of Central India, with samples collected from participants across 6 

five districts: Nagpur, Wardha, Gadchiroli, Chandrapur, and Bhandara. For the SARS-CoV-2 7 

Negative Group (Control), the median age (interquartile range [IQR]) is 29 years (22 to 37). For 8 

the SARS-CoV-2 Positive Group, the median age (IQR) is 36 years (19 to 67). Participants from 9 

the SARS-CoV-2 group presented with severe acute respiratory infection (SARI) and/or 10 

influenza-like illness (ILI) symptoms. While the participants from the control group were 11 

asymptomatic and RTPCR negative. 12 

 13 

2.2. Sample Collection and Processing 14 

In total, 96 URT swab samples in Viral Transport Medium (VTM) were collected for this study, 15 

out of which 48 were from SARS-CoV-2 positive individuals (SARS-CoV-2 group) and 48 16 

samples were collected from Healthy control (RTPCR negative). These samples were collected 17 

by expert healthcare professionals while following the standard sample collection guidelines. 18 

The collected samples were maintained at 4 °C ≤ 5 days (Short-term storage)  and at -80 °C for 19 

the long term. Aliquots of these collected samples were then processed for SARS-CoV-2 20 

RTPCR testing under Biosafety level-II conditions. Samples with  ≤ 25 cycle threshold value of 21 

SARS-CoV-2 target genes were considered positive samples. 22 

 23 

2.3. Metagenomic DNA Extraction, Library Preparation, and Metagenomic Sequencing 24 

The metagenomic DNA extraction was done using the QIAamp DNA Microbiome Kit (Catalog 25 

No. 51704). The DNA concentration was measured using a Qubit fluorometer. DNA purity was 26 

assessed using a Nanodrop spectrophotometer by analyzing the A260/280 and A260/230 27 

ratios. DNA libraries were prepared with the QIAseq FX DNA Library Preparation Kit. 28 
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Metagenomic next-generation sequencing (mNGS) was performed on the NextSeq550 platform 1 

using a 2x150 bp high-output kit, generating paired-end reads over 300 cycles. 2 

 3 

 4 

 5 

2.4. Metagenomic Data Analysis 6 

Metagenomic data analysis was performed using the Chan Zuckerberg ID (CZID) web-based 7 

platform. Sequencing quality control was done by removing External RNA Controls Consortium 8 

(ERCC) sequences with Bowtie2 (Version 2.5.4)16. Sequencing adapters, short reads, low-9 

quality sequences, and low-complexity regions were filtered using a customized fastp tool17. 10 

DNA sequences with quality scores < 17, reads shorter than 35 bp, high-complexity sequences 11 

> 40%, and > 15 undetermined bases were excluded. 12 

 13 

The Host (Human) sequences were removed by aligning with Bowtie2 and HISAT2 against 14 

reference genomes18. CZID-dedup was used for 100% identical sequences till the first 70 base 15 

pairs. Only one representative read was retained. The STAR algorithm19 was also used to 16 

remove duplicate, low-quality, and low-complexity host reads. Non-human reads were aligned to 17 

the NCBI nucleotide and protein databases (NCBI Index Date: 06-02-2024) using GSNAPL and 18 

RAPSearch. Post-filtering, sequences were aligned to the NCBI nucleotide (NT) database with 19 

Minimap220 and the NCBI protein (NR) database with Diamond21. Hits were annotated with 20 

accession numbers, and taxon counts were generated from GSNAP and RAPSearch results. 21 

 22 

SPAdes was used for de novo (without reference) genome assembly. The original reads were 23 

mapped to assembled contigs with Bowtie2. BLAST analysis was then conducted on the contigs 24 

against the Nucleotide NT-BLAST database (GSNAP) and the Protein NR database 25 

(RAPSearch2). 26 

 27 

2.5. AMR pipeline 28 

For AMR analysis CZID’s AMR Pipeline v1.4.2 22 was used. AMR gene detection is performed 29 

using the Resistance Gene Identifier (RGI) tool.  The Comprehensive Antibiotic Resistance 30 

Database (CARD) v3.2.6 23 was used to identify AMR genes and pathogen species. Contigs of 31 

AMR genes are assembled using SPAdes and aligned with CARD through BLAST for species 32 

identification. The result files generated from this pipeline contain detailed information on AMR 33 

genes, quality control metrics, and pathogen-of-origin detection.  34 
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 1 

2.6. Statistical Analysis and Visualization 2 

Python 3.10.12 was used for statistical analysis and visualization. The analysis used the 3 

following Python packages: SciPy (version 1.13.1) for t-tests and ANOVA. statsmodels (version 4 

0.14.4) for regression models and hypothesis testing. scikit-learn (version 1.5.2) was used for 5 

PCA, PCoA, Multiple regression and additional statistical analysis. For data visualization, 6 

matplotlib (version 3.7.1) was used. Seaborn (version 0.13.2) was used for statistical 7 

visualizations with heatmaps and violin plots. Interactive visualizations like the Sankey diagram 8 

were created using Plotly (version 5.24.1). Data transformation tasks such as pivoting and log 9 

transformation were handled with Pandas (version 2.2.2). Statistical analysis was performed 10 

using numpy (version 1.26.4). The abundance metric of reads per million (RPM) was used for 11 

statistical analysis and data visualisation.  12 

 13 

3. Results 14 

3.1. Summary of Sequencing Results 15 

Metagenomic sequencing of SARS-CoV-2 (48 samples) and Control (47 samples) groups was 16 

done using the Illumina NextSeq550 platform. The SARS-CoV-2 group generated an average of 17 

7.26 ± 1.52 million reads, out of which 25% (1.78 ± 0.56 million reads) passed the human filter. 18 

The control group had generated average 6.52 ± 3.47 million reads out of which 15% (0.78 ± 19 

0.37 million reads) passed the human filter. One sample from the control group was not 20 

included in the study due to quality check failure before sequencing. 21 

 22 

3.2. AMR Gene Alpha Diversity Analysis 23 

The violin plots (Figure 1) show that the SARS-CoV-2 group has significantly higher species 24 

richness than the control group. This is reflected by the Chao diversity index (p = 0.01651), 25 

implying that the SARS-CoV-2 group harbors more distinct taxa. However, the Shannon and 26 

Simpson diversity indices show no significant differences between the groups (p = 0.98515 and 27 

p = 0.90225, respectively). This indicates that while the SARS-CoV-2 group has greater species 28 

richness, the overall distribution and balance of species abundances are similar to those in the 29 

control group. 30 

 31 

3.3. AMR Gene Beta Diversity: Bray-Curtis Dissimilarity and PCoA Analysis 32 

The Bray-Curtis dissimilarity heatmap (Figure 2) shows distinct clustering of SARS-CoV-2 (red 33 

sample tags) and control (blue sample tags) samples. Significant within-group similarity in both 34 
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groups was observed, as indicated by lighter shades. The higher dissimilarity between groups is 1 

seen in the off-diagonal regions. The diagonal line represents zero dissimilarity. The Bray-Curtis 2 

dissimilarity heatmap highlights clear within-group similarities and significant between-group 3 

differences in AMR profiles. 4 

 5 

(Figure 3) represents PCA (left) and PCoA (right) plots comparing SARS-CoV-2 (red) and 6 

Control (blue) groups. In the PCA plot, PC1 (77.90% variance) and PC2 (7.91% variance) 7 

reveal that the control group is tightly clustered near the origin. While, the SARS-CoV-2 group 8 

shows a greater spread along PC1. In the PCoA plot, Axis 1 (32.79% variance) and Axis 2 9 

(13.42% variance) show the control group forming a compact cluster. In contrast, the points in 10 

the SARS-CoV-2 group are more scattered. The groups are clearly distinct along Axis 1 in both 11 

plots, with SARS-CoV-2 exhibiting higher variations. 12 

 13 

3.4. Differences in Resistome and Pathogen profiles among SARS-CoV-2 and Control 14 
Groups 15 

Antimicrobial resistance (AMR) gene abundance and pathogen profiles were significantly 16 

differing among the SARS-CoV-2 and control groups. (Figure 4) presents a heatmap of 17 

statistically significant (p < 0.05, Mann-Whitney) AMR genes. It was observed that the SARS-18 

CoV-2 group exhibited a higher density and more consistent abundance of genes such as 19 

mecA, blaOXA-48, and blaNDM-1. Meanwhile, the control group showed sparse and less 20 

pronounced patterns of AMR gene abundance. 21 

(Figure 5) shows species-specific resistome profiles using a heatmap visualization. Significant 22 

associations between AMR genes and microbial species were observed in the SARS-CoV-2 23 

group. Higher abundances of resistance genes were found in species such as Klebsiella 24 

pneumoniae, Escherichia coli, and Staphylococcus aureus. The control group exhibited weaker 25 

associations and lower resistance gene abundances. The AMR genes in the control group were 26 

primarily linked to species like Acinetobacter baumannii and Pseudomonas aeruginosa. 27 

The Sankey diagram (Figure 6) showed the distribution of AMR genes within high-priority 28 

ESKAPE pathogens and their relative abundances among sample groups. Each ribbon 29 

represents an AMR gene, with the width proportional to its abundance (RPM). This reveals 30 

distinct differences in the distribution of AMR genes between the two groups. The SARS-CoV-2 31 

group showing a larger diversity and higher abundance of ESKAPE-associated AMR genes. 32 
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3.5. Differential Abundance of AMR Genes 1 

The volcano plot (Figure 7) displays the differential abundance of AMR (antimicrobial 2 

resistance) genes between the SARS-CoV-2 and Control groups. This representation is based 3 

on log2 fold change on (x-axis) and statistical significance (-log10 p-value), on y-axis). Genes 4 

with log2 fold change > 1 and Mann-Whitney p-values < 0.05 are highlighted in red as 5 

significant. Dashed lines in the figure represent thresholds for significance. Horizontal dashed 6 

line for the p-value (0.05) and vertical for log2 fold change (±1). The results show that most of 7 

the statistically significant genes are more abundant in the SARS-CoV-2 group. 8 

 9 

3.6. Bayesian Regression Analysis  10 

The Shapiro-Wilk test confirms that the data is not normally distributed in both groups. For 11 

Control, the statistic is 0.108 (p = 2.76x10-49), and for SARS-CoV-2 data, the statistic is 0.136 12 

with (p 2.74×10−43). For Shapiro-Wilk p<0.05 indicates a non-normal distribution of the data. 13 

These results align with the skewed distributions seen in the histograms and Q-Q plots (Figure 14 

8). Due to this non-normal distribution of data, the Bayesian regression model was used to 15 

examine the factors influencing antimicrobial resistance (AMR) gene abundance. The model 16 

has considered variables such as Sample Type (SARS-CoV-2 vs. Control), Collection Location, 17 

Host Sex, and Host Age. The model results showed that SARS-CoV-2 samples had significantly 18 

higher AMR gene abundance compared to control samples (β = 1.549, HDI [1.409, 1.691]). 19 

Females had significantly higher AMR gene abundance (β = 0.261, HDI [0.167, 0.350]) than 20 

males. The variable of host age showed no significant effect on AMR gene abundance. The 21 

model summary and categorical mappings are elaborated in (Table 1) Trace plots (Figure 9) 22 

showed good parameter mixing and no divergences. The posterior predictive checks confirmed 23 

the alignment between model predictions and observed data (Figure 10).  24 

 25 

Categories mean SD hdi_2.5% hdi_97.5% mcse_mean mcse_sd ess_bulk ess_tail r_hat 

Beta_Collection_Location[0] -0.157 0.091 -0.328 0.031 0.001 0.001 4719 2997 1 

Beta_Collection_Location[1] -0.182 0.104 -0.38 0.03 0.002 0.001 4634 3050 1 

Beta_Collection_Location[2] -1.316 0.421 -2.131 -0.489 0.005 0.004 6093 2935 1 

Beta_Collection_Location[3] -0.84 0.119 -1.07 -0.6 0.002 0.001 3881 2540 1 

Beta_Host_Age 0 0.001 -0.003 0.002 0 0 3115 2795 1 

Beta_Host_Sex[0] 0.26 0.048 0.168 0.353 0.001 0 4800 2561 1 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.11.14.24317312doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.14.24317312
http://creativecommons.org/licenses/by-nc-nd/4.0/


Beta_Sample_Type[0] 1.516 0.051 1.415 1.612 0.001 0.001 4036 2833 1 

Intercept -0.489 0.051 -0.584 -0.389 0.001 0.001 2892 2752 1 

Sigma 1.719 0.015 1.69 1.75 0 0 4898 2618 1 

          

Categorical Mappings          

Beta_Sample_Type 
Beta_Collection_
Location 

Beta_Host_
Sex        

Control (Reference) 
Nagpur 
(Reference) 

Male 
(Reference)        

SARS-CoV-2 [0] Chandrapur [0] Female [0]        

 Gadchiroli [1]         

 Wardha [2]         

 Bhandara [3]         

 1 

Table 1: Summary of Bayesian regression model results for the effect of age, location, sex, and sample 2 

type on AMR gene abundance. Along with categorical mappings. Summary metrics include mean effects, 3 

standard deviation (SD), highest density intervals (HDI), Monte Carlo standard errors (MCSE), effective 4 

sample sizes (ESS), and convergence diagnostic (R-hat) to evaluate model reliability and convergence. 5 

 6 

3.7. Antimicrobial Resistance Genes and Their Associated Drug Classes 7 

The significant resistance genes as per volcano plot threshold (log2FC > 1 and Mann-Whitney 8 

p-values < 0.05) were analysed for their associated drug classes. The CARD database was 9 

used to attribute drug classes to gene families. The data includes 38 drug classes and 60 10 

unique resistance genes. Some drug classes were linked to multiple genes, such as 11 

aminoglycoside antibiotics, which include AAC(3)-IIc, AAC(3)-IIe, ANT(2'')-Ia, ANT(4')-Ib, 12 

APH(3'')-Ib, APH(6)-Id, and acrD. In contrast, others, like fluoroquinolone antibiotics and 13 

macrolide antibiotics, also have several resistance genes. Fewer genes represent drug classes 14 

such as mupirocin-like antibiotics and peptide antibiotics. Genes like TolC and MexB contribute 15 

to resistance within specific classes. (Table 2) 16 

S. No. drug_class gene_name gene_count 

1 aminocoumarin antibiotic mdtA, mdtB, mdtC 3 

2 aminoglycoside antibiotic 
AAC(3)-IIc, AAC(3)-IIe, ANT(2'')-Ia, 
ANT(4')-Ib, APH(3'')-Ib, APH(6)-Id, acrD 7 

3 aminoglycoside antibiotic; aminocoumarin antibiotic baeS, cpxA 2 

4 disinfecting agents and antiseptics OpmH, qacJ 2 
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5 fluoroquinolone antibiotic emrA 1 

6 fluoroquinolone antibiotic; aminoglycoside antibiotic ceoB 1 

7 
fluoroquinolone antibiotic; aminoglycoside antibiotic; penam; tetracycline antibiotic; 
disinfecting agents and antiseptics mdeA 1 

8 
fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; 
rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics acrB 1 

9 
fluoroquinolone antibiotic; cephalosporin; penam; tetracycline antibiotic; peptide 
antibiotic; disinfecting agents and antiseptics mgrA 1 

10 fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic MexF 1 

11 fluoroquinolone antibiotic; disinfecting agents and antiseptics norA 1 

12 
fluoroquinolone antibiotic; glycylcycline; tetracycline antibiotic; diaminopyrimidine 
antibiotic; nitrofuran antibiotic oqxB 1 

13 fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics MexI 1 

14 glycylcycline; tetracycline antibiotic adeB 1 

15 lincosamide antibiotic; streptogramin antibiotic; pleuromutilin antibiotic lsaC 1 

16 macrolide antibiotic; disinfecting agents and antiseptics Acinetobacter baumannii AmvA 1 

17 

macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; carbapenem; 
cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; peptide 
antibiotic; aminocoumarin antibiotic; rifamycin antibiotic; phenicol antibiotic; penem; 
disinfecting agents and antiseptics TolC 1 

18 
macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; carbapenem; 
cephalosporin; penam; peptide antibiotic; penem Klebsiella pneumoniae KpnH 1 

19 

macrolide antibiotic; fluoroquinolone antibiotic; lincosamide antibiotic; carbapenem; 
cephalosporin; tetracycline antibiotic; rifamycin antibiotic; diaminopyrimidine antibiotic; 
phenicol antibiotic; penem adeJ, adeK 2 

20 

macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; 
carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; phenicol 
antibiotic; penem; disinfecting agents and antiseptics ParR 1 

21 

macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; 
cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; 
aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol 
antibiotic; penem MexB 1 

22 macrolide antibiotic; fluoroquinolone antibiotic; penam gadX, mdtE, mdtF 3 

23 macrolide antibiotic; fluoroquinolone antibiotic; penam; tetracycline antibiotic evgS 1 

24 
macrolide antibiotic; fluoroquinolone antibiotic; tetracycline antibiotic; phenicol 
antibiotic; disinfecting agents and antiseptics MexW 1 

25 
macrolide antibiotic; lincosamide antibiotic; streptogramin antibiotic; streptogramin A 
antibiotic; streptogramin B antibiotic ErmB, ErmC 2 

26 macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic MuxB 1 

27 macrolide antibiotic; streptogramin antibiotic msrE 1 

28 macrolide antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics MexK 1 

29 monobactam; cephalosporin; penam; penem TEM-116 1 

30 mupirocin-like antibiotic 
Bifidobacterium bifidum ileS conferring 
resistance to mupirocin 1 

31 nitroimidazole antibiotic msbA 1 

32 nucleoside antibiotic; disinfecting agents and antiseptics mdtO, mdtP 2 

33 peptide antibiotic YojI, bacA, ugd 3 

34 peptide antibiotic; aminocoumarin antibiotic; rifamycin antibiotic LptD 1 

35 phenicol antibiotic Agrobacterium fabrum chloramphenicol 3 
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acetyltransferase, cmlA9, floR 

36 phosphonic acid antibiotic mdtG 1 

37 rifamycin antibiotic 

Bifidobacterium adolescentis rpoB 
mutants conferring resistance to 
rifampicin, rpoB2 2 

38 tetracycline antibiotic emrY, tet(G), tet(Q) 3 

Table 2: Significant AMR genes and their associated drug classes, highlighting genes contributing to 1 

resistance across multiple drug classes. 2 

 3 

 4 

 5 

4. Discussion 6 

Multiple studies around the world have investigated the compositional dynamics of URT 7 

microbiome in SARS-CoV-2 infected individuals. These studies primarily focused on explaining 8 

the relationships between the URT microbiome composition and factors like disease severity, 9 

risk of developing secondary infections and utility of URT microbiome as a marker to predict 10 

disease outcomes.24,25,26 It is now widely agreed upon that the SARS-CoV-2 infection have a 11 

role in altering the URT microbiome. However, the impact of infection on the AMR dynamics in 12 

the URT needs to be further looked into.  Understanding the changes in AMR profiles in context 13 

with SARS-CoV-2 infection is significant for preventing secondary bacterial infection involving 14 

the lower respiratory tract and lungs. Understanding AMR dynamics could also be instrumental 15 

in devising effective therapeutics and management strategies for COVID-19 patients.  16 

  17 

Stefanini et al. (2021)27 (Hoque et al., 2021)28 reported that SARS-CoV-2 infection is associated 18 

with higher diversity and increased abundance of AMR genes, suggesting a more complex 19 

microbial ecosystem or dysbiosis. The findings of our study also suggest that SARS-CoV-2 20 

infection could be linked with a higher diversity and abundance of AMR genes. The sequencing 21 

results indicated a substantial number of reads generated for both groups. However, filtering for 22 

human reads significantly reduced microbial reads, particularly in the control group. This 23 

reduction of microbial reads may indicate a less abundant microbial community in the URT. The 24 

higher number of microbial reads in the SARS-CoV-2 samples indicates towards a relatively 25 

complex microbial ecosystem in the URT or a potential dysbiosis of the host microbiome due to 26 

the viral infection. 27 

The Chao1 index demonstrated that the SARS-CoV-2 group had a greater richness of AMR 28 

genes than the control group. This finding converges with previous studies indicating that viral 29 
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infections can influence the composition and diversity in the context of gut29 and URT30 1 

microbiomes. The non-significant differences in the Shannon and Simpson indices suggest that 2 

the SARS-CoV-2 group has a diverse resistome, but the evenness of these distributions is 3 

similar to that of the control group. This finding indicates that the higher AMR richness in the 4 

SARS-CoV-2 group is not due to the skewed abundance of a few AMR genes. 5 

Abundance of the antimicrobial resistance (AMR) genes substantially differed between SARS-6 

COV-2 infected patients and the control group. PCA and PCoA analyses revealed distinct 7 

clustering between these two groups. Control samples exhibited lower variability in clustering, 8 

which suggests the presence of a stable and uniform resistome. Meanwhile, the SARS-CoV-2 9 

group displayed higher variability, suggesting an active alteration of the microbial communities 10 

within the infected patients due to secondary infections, antibiotic therapies, or changes in the 11 

microbiome due to the infection. 12 

Bray-Curtis dissimilarity further indicated the separation between the two groups. The heatmap 13 

shows the significant impact of SARS-CoV-2 infection on microbial community composition and 14 

resistome profiles. The SARS-CoV-2 group exhibited a significantly higher abundance of critical 15 

AMR genes, such as mecA, blaOXA-48, and blaNDM-1. These genes confer resistance to key 16 

antibiotics like beta-lactams and carbapenems. Elevated abundance of these critical AMR 17 

genes raises concerns about potential multidrug-resistant secondary bacterial infections in 18 

COVID-19 patients. 19 

Pathogen-specific AMR analysis using CARD revealed stronger associations of these AMR 20 

genes with pathogens such as Klebsiella pneumoniae, Escherichia coli, and Staphylococcus 21 

aureus in the URT of SARS-CoV-2 patients. This finding underscores the increased risk of 22 

secondary infections, exacerbated by prolonged hospital stays, invasive procedures like 23 

intubation, or immune dysregulation during SARS-CoV-2 infections. Meanwhile, in the control 24 

group, AMR genes were primarily linked to Acinetobacter baumannii and Pseudomonas 25 

aeruginosa but at lower abundances than the SARS-CoV-2 group. 26 

Bayesian regression analysis showed that SARS-CoV-2 infection is an important factor 27 

contributing towards increased AMR gene abundance; this finding aligns with previous studies 28 

where SARS-CoV-2 patients showed elevated AMR profiles31,32,33. Intriguingly, the analysis 29 

identified higher AMR gene abundance in females than in males. This finding still leaves the 30 

scope for further validation through large-scale studies that incorporate the participants' 31 
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behavioural and socio-economic variables. It is also important to highlight that in India, females 1 

tend to self-medicate more as compared to males34,35. The observed higher prevalence of AMR 2 

in females could also be due to this behavioural pattern. In this study we did not observe 3 

significant age-associated variations in AMR abundance and diversity. Our findings diverge from 4 

previous studies where age is identified as a significant factor contributing to AMR diversity36,37. 5 

The age-related paradigms may further be explored in larger longitudinal studies specifically 6 

designed to ascertain these effects. 7 

The resistome analysis also revealed broad resistance across multiple antibiotic classes, 8 

including aminoglycosides, macrolides, and fluoroquinolones. These findings highlight the 9 

complexities of managing secondary bacterial infections in COVID-19 patients, particularly in 10 

the context of multidrug-resistant pathogens. 11 

 12 

Conclusion 13 

The findings of this study highlight the need for monitoring the dynamics of AMR in SARS-CoV-14 

2 patients. In clinical settings, secondary bacterial infections and multidrug-resistant pathogens 15 

make pandemics like COVID-19 difficult to manage. Policymakers should look forward to 16 

incorporate AMR surveillance into public health workflows. Sufficient resources must be 17 

allocated towards large-scale AMR surveillance in a populous and developing country like India. 18 

Collaboration among healthcare providers, researchers, and public health authorities is crucial 19 

to safeguarding the efficacy of antibiotic treatments and ensuring better patient outcomes. 20 

Limitations of the Study 21 

The cross-sectional study design limits the ability to understand temporal changes in AMR gene 22 

profiles. Additionally,  the potential impacts of antibiotic usage on AMR profiles could not be 23 

assessed in this study, as this is a retrospective study and antibiotic usage data were not 24 

collected when the samples were originally obtained for SARS-CoV-2 genome surveillance 25 

under the INSACOG mandate. 26 

 27 

 28 
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 2 

 3 

 4 

 5 

 6 

Figure Legends 7 

 8 

Figure 1: Chao1, Shannon, and Simpson Diversity of AMR Genes: Chao1 diversity (left), 9 

Shannon diversity (center), and Simpson diversity (right). Chao1 diversity (p=0.01651), 10 

Shannon (p = 0.98515), and Simpson (p = 0.90225)  11 

 12 

Figure 2: Bray-Curtis Dissimilarity Heatmap: The heatmap shows SARS-CoV-2 samples 13 

(Sample IDs in red) and control samples (Sample IDs in blue). Red shades of heatmap 14 

represent dissimilarity, while blue represents similarity. The diagonal represents perfect 15 

similarity (self-comparison), indicated in dark blue. 16 

 17 

Figure 3: PCA (left) and PCoA (right) plots showing the clustering of AMR gene profiles in 18 

control and SARS-CoV-2 groups. PCA (PC1: 77.90% variance) and PCoA (Axis 1: 32.79% 19 

variance) both show distinct separation between the groups. 20 

 21 

Figure 4: Compositional Variations in the abundance of AMR Genes Among Control and 22 

SARS-CoV-2 Groups (Log-Transformed Significant Genes). Each row represents a distinct 23 

AMR gene, and each column represents a sample. The color intensity reflects gene abundance, 24 

with darker colors indicating higher abundance. 25 

 26 

Figure 5: Variations in the Abundance of Species-associated AMR Genes Among Control and 27 

SARS-CoV-2 Groups (Log-Transformed) The heatmaps display log-transformed read counts 28 

per million (RPM). 29 

 30 
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Figure 6: Sankey Diagram Showing the Relationship Between High-Priority ESKAPE 1 

Pathogens and AMR Genes in SARS-CoV-2 and Control Groups. The width of the flows 2 

between species and AMR genes indicates the abundance in RPM. 3 

 4 

Figure 7: Volcano plot of AMR gene abundance changes between SARS-CoV-2 and control 5 

samples, based on a Mann-Whitney U test. The x-axis represents log2 fold change (positive for 6 

SARS-CoV-2, negative for control), and the y-axis shows -log10 p-values, with higher values 7 

indicating statistical significance. Points above the dashed line at -log10(0.05) are significant (p 8 

< 0.05). Gens with |log2 fold change| > 1 and p-value < 0.05 are highlighted in red. 9 

 10 

Figure 8: Distributions of antimicrobial resistance gene families in control (top) and SARS-CoV-11 

2 (bottom) groups. Histograms (left). Q-Q plots (right) reveal deviations from normality, with 12 

heavier tails in both groups. 13 

 14 

Figure 9: Left panels show posterior density estimates for coefficients: 15 

Beta_Collection_Location, Beta_Host_Age, Beta_Host_Sex, Beta_Sample_Type, Intercept, and 16 

Sigma. Solid lines indicate posterior densities, while dashed lines represent prior distributions. 17 

Right panels display corresponding trace plots of parameter values across iterations, 18 

demonstrating adequate mixing and convergence for all parameters. 19 

 20 

Figure 10: Posterior predictive check comparing observed data (black line) with the posterior 21 

predictive distribution (blue line) and its mean (orange dashed line). The alignment of the 22 

observed and predicted distributions indicates the model's ability to capture the underlying data 23 

trends. 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 
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