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Abstract 13 

The COVID-19 pandemic has raised concerns about antimicrobial resistance (AMR), especially 14 

in the context of secondary bacterial infections. This study investigates the impact of SARS-15 

CoV-2 infection on the resistome of the upper respiratory tract (URT) using a metagenomic 16 

next-generation sequencing (mNGS) approach. Samples from 48 SARS-CoV-2-infected 17 

individuals and 47 healthy individuals from Central India were analyzed to assess variations in 18 

AMR gene profiles. Our results revealed significant differences in AMR gene diversity and 19 

abundance between the two groups. SARS-CoV-2 samples exhibited greater alpha diversity 20 

(Chao1 index) and higher variability, as evidenced by PCA and PCoA analyses, which showed 21 

distinct clustering. Additionally, 24 AMR gene families were significantly more abundant in the 22 

SARS-CoV-2 group. These gene families conferred resistance against 20 different drug classes, 23 

including macrolides, beta-lactams, and aminoglycosides. Notably, AMR genes linked to 24 

ESKAPE pathogens were more prevalent in the SARS-CoV-2 group. These findings highlight 25 

the potential role of SARS-CoV-2 in driving changes in the URT resistome, with implications for 26 

managing secondary infections and guiding antibiotic stewardship in future pandemics. 27 

 28 
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1. Introduction 1 

 2 

The global pandemic caused by SARS-CoV-2 has prompted extensive research on its effects 3 

beyond the immediate viral infection, particularly in the context of microbial communities and 4 

their resistomes. Understanding the resistome is crucial in understanding the broader 5 

implications of infections like COVID-19. This study focuses on the upper respiratory tract (URT) 6 

resistome and its alterations specific to SARS-CoV-2. As the URT is the primary entry point for 7 

the virus, the virus predisposes in the URT before subsequent lower respiratory tract infection, 8 

making URT an important site for exploring potential changes in antimicrobial resistance 9 

patterns among the SARS-CoV-2 infected individuals. 10 

The URT harbors a diverse microbiome, including bacteria, fungi, and viruses; studies show that 11 

disruptions in the microbiome can lead to dysbiosis, creating an environment conducive to the 12 

selection and spread of AMR genes 1,2,3. Several studies have demonstrated that viral 13 

infections, including those caused by influenza and other respiratory viruses, can alter microbial 14 

diversity in the respiratory tract. For example, Hanada et al. (2018) showed that Respiratory 15 

viral infections like influenza could disrupt host microbial communities and host defense, 16 

contributing to the pathogenesis of secondary bacterial infections 4. Similarly, Tan et al. (2020) 17 

demonstrated that viral infections could induce changes in the microbiota that favor the 18 

selection of pathogenic bacteria capable of acquiring resistance 5. 19 

AMR in the URT was a growing concern due to widespread antibiotic use in treating respiratory 20 

infections even before the COVID-19 pandemic. It was observed that antibiotic treatment can 21 

disrupt the natural balance of microbial communities, leading to the proliferation of resistant 22 

organisms 6. Research has shown that the resistomes can serve as a reservoir for resistance 23 

factors, which could be transferred to pathogenic bacteria through horizontal gene transfer 7. 24 

Since the onset of the COVID-19 pandemic, researchers have explored how SARS-CoV-2 25 

infection impacts microbial communities and resistance patterns 8. A review by Sender & 26 

Hentrich (2021) highlighted the influence of COVID-19 on the microbiome, noting that the virus-27 

induced inflammation and immune suppression may promote bacterial growth and AMR 28 

development 9. Furthermore, high rates of antibiotic use in COVID-19 patients have raised 29 

concerns about further promoting resistance. A World Health Organisation (WHO) statement 30 

noted that although bacterial co-infections in COVID-19 patients were relatively uncommon 31 
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(only 8%), antibiotics were widely prescribed, likely contributing to increasing AMR among 1 

affected populations 10. 2 

Studies investigating the URT microbiome in COVID-19 patients have shown significant 3 

changes in microbial composition. Fazel et al. (2023) reported a reduction in bacterial diversity 4 

in SARS-CoV-2-infected individuals, with an increased abundance of opportunistic pathogens 5 

such as Staphylococcus aureus and Pseudomonas aeruginosa, both of which are known for 6 

their ability to acquire resistance against commonly used antibiotics11. A comprehensive review 7 

by Rehman (2023) concluded that the AMR genes such as blaKPC, blaNDM, blaOXA-48 8 

(carbapenem resistance), mecA (methicillin resistance), and blaCTX-M, blaTEM, blaSHV (ESBL 9 

production) are consistently being reported in the studies involving COVID-19 patients. These 10 

ARGs are responsible for resistance to pathogens like Klebsiella pneumoniae, Acinetobacter 11 

baumannii, Staphylococcus aureus, and E. coli.12. 12 

Despite the growing evidence linking SARS-CoV-2 to changes in the resistome, more research 13 

is needed to understand these interactions fully. Studies using metagenomic sequencing to 14 

profile the resistome are powerful tools for identifying AMR gene profile variations during 15 

COVID-19 infection13. The relationship between SARS-CoV-2 and the resistome has 16 

implications not only for COVID-19 treatment but also for broader pandemic preparedness. 17 

Understanding how viral infections influence AMR patterns will be critical for managing future 18 

outbreaks, as co-infections with resistant bacteria could complicate treatment strategies and 19 

worsen patient outcomes. 20 

The literature review also highlights the lack of studies investigating the relationship between 21 

COVID-19 disease and changes in upper respiratory tract resistome in the Indian context. There 22 

is a comprehensive study by Nath et al. (2023) in which the authors have metagenomically 23 

investigated the changes in URT microbiome in SARS-CoV-2 infected individuals to ascertain 24 

the infection-specific signatures that may be used for developing nasal prebiotic therapies14. 25 

However, the authors have not investigated the paradigm of AMR alterations among the URT of 26 

SARS-CoV-2 patients.  27 

Overall, while current research indicates that SARS-CoV-2 infection may influence microbial 28 

diversity and AMR patterns in the URT, the specific changes in the URT resistome of COVID-19 29 

patients remain underexplored, particularly in the Indian population. This study aims to fill this 30 

gap by using a whole genome metagenomic approach to characterize the URT AMR gene 31 
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profiles within the context of SARS-CoV-2 infection. Understanding these changes could 1 

enhance the clinical management of secondary infections in COVID-19 and inform antibiotic 2 

stewardship strategies for future pandemics. 3 

2. Materials and methods 4 

2.1. Study Population 5 

The samples used in the study were collected during March-April 2023. The study population 6 

belongs to the Vidarbha region of Central India, with samples collected from participants across 7 

five districts: Nagpur, Wardha, Gadchiroli, Chandrapur, and Bhandara. For the SARS-CoV-2 8 

Negative Group (Control), the median age (interquartile range [IQR]) is 29 years (22 to 37 ). For 9 

the SARS-CoV-2 Positive Group, the median age (IQR) is 36 years (19 to 67). Participants from 10 

the SARS-CoV-2 group presented with severe acute respiratory infection (SARI) and/or 11 

influenza-like illness (ILI) symptoms. While the participants from the control group were 12 

asymptomatic and RTPCR negative.   13 

 14 

2.2. Sample Collection and processing 15 

In total, 96 URT swab samples in Viral Transport Medium (VTM) were collected for this study, 16 

out of which 48 were from SARS-CoV-2 positive patients (SARS-CoV-2 group) and 48 samples 17 

were collected from Healthy control (RTPCR negative). These samples were collected by expert 18 

healthcare professionals while following the standard sample collection guidelines. The 19 

collected samples were maintained at 4 °C ≤ 5 days (Short-term storage)  and at -80 °C for the 20 

long term. Aliquots of these collected samples were then processed for SARS-CoV-2 RTPCR 21 

testing under Biosafety level-II conditions. Samples with  ≤ 25 cycle threshold value of SARS-22 

CoV-2 target genes were considered as positive samples. 23 

 24 

2.3. DNA Extraction, Library Preparation, and Metagenomic Sequencing 25 

DNA extraction was performed using the QIAamp DNA Microbiome Kit (Catalog No. 51704) 26 

according to the manufacturer's protocol. Following extraction, the DNA concentration was 27 

assessed with a Qubit fluorometer (ng/μL), and purity was evaluated using a Nanodrop 28 

spectrophotometer (A260/280 and A260/230 ratios). Library preparation was conducted using 29 
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the QIAseq FX DNA Library Preparation Kit15. Metagenomic next-generation sequencing 1 

(mNGS) was performed on the NextSeq550 platform using a 2x150 bp high-output kit, providing 2 

paired-end reads across 300 cycles. 3 

 4 

 5 

2.4. Metagenomic Data Analysis 6 

Metagenomic data analysis was conducted using the Chan Zuckerberg ID (CZID) web-based 7 

platform. The initial Sequencing quality control involved removing External RNA Controls 8 

Consortium (ERCC) sequences with Bowtie2 Version 2.5.416 and filtering out sequencing 9 

adapters, short reads, low-quality sequences, and low-complexity regions using a customized 10 

version of fastp17. Specifically, bases with quality scores below 17, reads shorter than 35 base 11 

pairs (bp), low-complexity sequences exceeding 40%, and sequences with more than 15 12 

undetermined bases (Ns) were excluded. 13 

 14 

Human sequences were filtered out through alignments with Bowtie2 and HISAT218 against 15 

reference human genomes. For sequences 100% identical for the first 70 bp, only one 16 

representative read was retained using CZID-dedup. The Spliced Transcripts Alignment to a 17 

Reference (STAR) algorithm19 was also employed to remove duplicate, low-quality, and low-18 

complexity host reads. The remaining non-human reads were aligned to the NCBI nucleotide 19 

and protein databases (NCBI Index Date: 06-02-2024) using GSNAPL and RAPSearch. After 20 

host read filtering, the remaining sequences were aligned to the NCBI nucleotide (NT) database 21 

with Minimap220 and the NCBI protein (NR) database with Diamond21. The hits from these 22 

alignments were annotated with corresponding accession numbers, and taxon counts were 23 

generated by combining results from GSNAP and RAPSearch. 24 

 25 

Reads were de novo assembled into longer contigs using SPADES. Bowtie2 was then used to 26 

map original reads back to these contigs, restoring the link between reads and contigs. BLAST 27 

analysis was subsequently performed on the contigs against the NT-BLAST database (GSNAP) 28 

and the NR database (RAPSearch2). 29 

 30 

 2.5. AMR pipeline 31 

CZID’s AMR Pipeline v1.4.2 22 was used for AMR analysis. AMR gene detection is performed 32 

using the Resistance Gene Identifier (RGI) tool, which aligns reads to the Comprehensive 33 

Antibiotic Resistance Database (CARD) v3.2.6 23 to identify AMR genes and pathogen species 34 
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are determined based on these matches. Contigs are assembled using SPAdes and aligned 1 

with CARD via BLAST for further species identification. The results are reported, including 2 

detailed information on AMR genes (such as gene family and resistance mechanism), quality 3 

control metrics (e.g., the number of reads or contigs matching an AMR gene, average identity, 4 

and coverage), and pathogen-of-origin determination. Outputs from CZID’s AMR Pipeline 5 

include the AMR sample report, quality-filtered reads, and contig sequences, along with raw or 6 

intermediate files for further analysis. 7 

 8 

2.6. Statistical Analysis and Visualisation 9 

Statistical tests and visualization of results were performed using Python 3.10.12. The analysis 10 

utilized several packages, including scipy (version 1.13.1) for t-tests and ANOVA. statsmodels 11 

(version 0.14.4) for regression models and hypothesis testing. scikit-learn (version 1.5.2) was 12 

used for PCA, PCoA, Multiple regression and additional statistical analysis. For data 13 

visualization, matplotlib (version 3.7.1) was employed, while seaborn (version 0.13.2) was used 14 

for statistical visualizations with heatmaps and violin plots. Interactive visualizations like the 15 

Sankey diagram were created using Plotly (version 5.24.1), and Data transformation tasks such 16 

as pivoting and log transformation were handled with Pandas (version 2.2.2). Basic statistical 17 

calculations were performed using numpy (version 1.26.4). The abundance metric of reads per 18 

million (RPM) was used for statistical analysis and data visualisation to normalize variations in 19 

sequencing depth across different samples. 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

3. Results 9 

3.1. Summary of Sequencing Results 10 

The SARS-CoV-2 and Control groups were subjected to metagenomic next-generation 11 

sequencing using the Illumina NextSeq550 platform. The SARS-CoV-2 sample set consists of 12 

48 samples, with an average of 7.26 ± 1.52 million reads generated per sample. After applying 13 

Human filters (host read filters) to remove host reads, an average of 1.78 ± 0.56 million reads 14 

(25%) passed the filters. However, the control sample set consists of 47 samples, as one 15 

sample failed the quality check before sequencing, so that sample was not included in further 16 

analysis. The control group comprises 47 samples, generating an average of 6.52 ± 3.47 million 17 

reads. After applying human filters (host read filters), an average of 0.78 ± 0.37 million reads 18 

(15%) passed the filters, reflecting a considerable reduction in microbial reads post-filtering in 19 

the control data set.  20 

 21 

3.2. Comparison of AMR Gene Alpha Diversity between SARS-CoV-2 and Control Groups 22 

The alpha diversity analysis revealed differences in species richness between the Control and 23 

SARS-CoV-2 groups. The Chao1 index was notably higher in the SARS-CoV-2 group for 24 

p<0.05 (Stat = 841.00, p = 0.0327), indicating a broader diversity of antimicrobial resistance 25 

(AMR) genes in this group. However, the Shannon index, which accounts for both richness and 26 

evenness, showed no significant difference in alpha diversity between the groups (Stat = 27 

1174.00, p = 0.735). Similarly, the Simpson index did not differ significantly (Stat = 1262.00, p = 28 

0.325), suggesting that while the SARS-CoV-2 group exhibited higher species richness, the 29 

evenness of the distribution of AMR genes remained comparable to the Control group. (Figure 30 

1) 31 

 32 

3.3. PCA and PCoA Reveal Distinct Variability Between SARS-CoV-2 and Control Groups 33 
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PCA and PCoA analyses used the distance matrix the Bray-Curtis distance method generated 1 

to examine the variance and separation between SARS-CoV-2 and control groups. The first two 2 

components in the PCA explained 60.79% and 20.88% of the variance, respectively. The 3 

SARS-CoV-2 samples exhibited greater spread, indicating higher variability, while the control 4 

samples were more tightly clustered near zero, suggesting lower variance (Figure 2). Similarly, 5 

PCoA revealed distinct clustering, with PCoA Component 1 and Component 2 accounting for 6 

34.50% and 15.63% of the variance (Figure 2). PCA and PCoA showed significant differences 7 

between the two groups, with SARS-CoV-2 samples displaying more variability and distinct 8 

characteristics than the controls. 9 

 10 

3.4. Bray-Curtis Dissimilarity Analysis 11 

The Bray-Curtis dissimilarity heatmap (Figure 3) highlights the compositional differences 12 

between the SARS-CoV-2 samples (Sample IDs in red) and control samples (Sample IDs in 13 

blue) based on AMR gene profiles. The heatmap shows distinct clustering patterns, with SARS-14 

CoV-2 samples exhibiting higher internal diversity (alpha diversity), as seen by the broader 15 

range of red shades. Meanwhile, control samples display more uniform blue clustering, 16 

indicating comparatively significant similarity within the group. The overall higher dissimilarity 17 

between the two groups (beta diversity) shows substantial differences in AMR gene profiles, 18 

aligning with the trends observed in the PCA and PCoA analyses. 19 

 20 

3.5. Variations in AMR Gene Abundance Between SARS-CoV-2 and Control Groups 21 

The Shapiro-Wilk test is used to assess whether the datasets follow a normal distribution. The 22 

results of the Shapiro-Wilk test show extremely low p-values, 4.87x10-111 and  2.70x10-93, for the 23 

Control and SARS-CoV-2 groups, respectively. For Shapiro-Wilk test (p > 0.05) indicates normal 24 

distribution. (Figure 4) As the data was not normally distributed, a non-parametric test such as 25 

the Mann-Whitney was used instead of ANOVA. A total of 203 AMR gene families were 26 

analyzed; the Mann-Whitney (p < 0.05) indicated that the aggregated abundances of these 27 

certain gene families varied significantly between the two groups. However, when the thresholds 28 

for log2 fold change of ±1 along with p < 0.05 (Mann-Whitney) were used to visualise the 29 

relative change in average abundance of the AMR gene between two conditions (e.g., SARS-30 

CoV-2 versus control), out of 24 genes passing the thresholds 23 AMR genes showed higher 31 

abundances in SARS-CoV-2 group, and one gene (lsa-type ABC-F protein) was more abundant 32 

in Control Group. Table 1 Genes with a log2 fold change > 1 or < -1 and a p-value below 0.05 33 

(above the dashed line) were marked in red. (Figure 5)  34 
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AMR Gene Family log2
FC 

P 
value 

Control 
Aggregated 
Abundance 

SARS-CoV-2 
Aggregated 
Abundance 

Sample Group 
with higher 
Abundance 

TEM beta-lactamase 3.78 0.0001 328.95 4557.86 SARS-CoV-2 

rifamycin-resistant beta-subunit of RNA polymerase (rpoB) 2.40 0.0001 303.66 1613.45 SARS-CoV-2 

resistance-nodulation-cell division (RND) antibiotic efflux 
pump 1.91 0.0001 81.04 307.56 SARS-CoV-2 
major facilitator superfamily (MFS) antibiotic efflux pump; 
resistance-nodulation-cell division (RND) antibiotic efflux 
pump 2.34 0.0001 3.77 23.23 SARS-CoV-2 

major facilitator superfamily (MFS) antibiotic efflux pump 3.32 0.0001 88.76 895.84 SARS-CoV-2 
ATP-binding cassette (ABC) antibiotic efflux pump; major 
facilitator superfamily (MFS) antibiotic efflux pump 6.74 0.0021 0.42 150.93 SARS-CoV-2 

AAC(3) 5.87 0.0031 2.94 229.76 SARS-CoV-2 

APH(6) 2.88 0.0091 158.33 1176.23 SARS-CoV-2 

pmr phosphoethanolamine transferase 3.07 0.0101 6.56 62.86 SARS-CoV-2 

kdpDE 8.56 0.0111 1.00 757.01 SARS-CoV-2 

chloramphenicol acetyltransferase (CAT) 1.86 0.0121 22.92 86.08 SARS-CoV-2 

fosfomycin thiol transferase 6.02 0.0131 0.78 115.19 SARS-CoV-2 

ANT(4') 2.48 0.0141 0.22 5.83 SARS-CoV-2 

tetracycline inactivation enzyme 2.84 0.0151 3.35 30.18 SARS-CoV-2 

quinolone resistance protein (qnr) 2.65 0.0151 0.67 9.48 SARS-CoV-2 

ANT(2'') 2.39 0.0201 85.68 455.26 SARS-CoV-2 

ANT(3'') 4.68 0.0221 2.43 87.09 SARS-CoV-2 

multidrug and toxic compound extrusion (MATE) transporter 5.79 0.0251 5.07 336.15 SARS-CoV-2 

trimethoprim resistant dihydrofolate reductase dfr 3.53 0.0251 19.46 236.34 SARS-CoV-2 

APH(3'') 2.73 0.0271 195.22 1304.21 SARS-CoV-2 

antibiotic-resistant isoleucyl-tRNA synthetase (ileS) 2.75 0.0281 68.53 469.04 SARS-CoV-2 

vga-type ABC-F protein 2.23 0.0301 1.14 9.08 SARS-CoV-2 
undecaprenyl pyrophosphate related proteins 2.13 0.0301 0.59 5.96 SARS-CoV-2 
lsa-type ABC-F protein -1.49 0.0441 954.94 338.00 Control 

 1 

Table 1: Overview of AMR gene families with notable abundance differences between SARS-CoV-2 and 2 

control samples. Each entry includes the AMR gene family, log2 fold change (logFC), p-value (Mann-3 

Whitney), aggregated abundances in both SARS-CoV-2 and Control groups and the sample group in 4 

which the gene is more abundant. Genes with logFC > 1 and p-value < 0.05 are considered significantly 5 

more abundant in SARS-CoV-2, while genes with logFC < -1 and p-value < 0.05 are considerably more 6 

abundant in controls. 7 

 8 

Gene families with a p-value < 0.05 (Mann-Whitney) were selected for further analysis and used 9 

to generate comparative abundance heatmaps (Figure 6). The abundance values were log-10 
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transformed (natural log) for proper visualization. The heatmaps reveal distinct AMR gene family 1 

distribution patterns, with the SARS-CoV-2 group showing a higher abundance of several AMR 2 

gene families, such as 16S rRNA methyltransferases (rmtC), ADC beta-lactamases, and 3 

General Bacterial Porins. The control group showed a lower abundance of these gene families. 4 

Some gene families, such as the MFS antibiotic efflux pump, exhibited overall moderate 5 

abundance in both groups but were still higher in the SARS-CoV-2 group. 6 

 7 

Violin plots were used to visualize further the difference in abundance and distribution of 8 

significantly varying AMR gene families (Figure 7). The SARS-CoV-2 group demonstrated 9 

higher abundances of AMR gene families such as non-erm 23S ribosomal RNA 10 

methyltransferase (G748), vga-type ABCF protein, ANT(2''), and APH(3') and APH(6) 11 

aminoglycoside resistance genes. Also, the MFS antibiotic efflux pump and TEM beta-12 

lactamase genes were more prominent in the SARS-CoV-2 group. 13 

 14 

When the significant AMR Gene families were further analysed for the corresponding drug class 15 

to which they may confer resistance, it was observed that these gene families were conferring 16 

resistance against the following 20 distinct drug classes, including macrolides, streptogramin, 17 

lincosamide, aminocoumarin, fluoroquinolone, tetracycline, peptide antibiotic, nitroimidazole, 18 

rifamycin, beta-lactams, pleuromutilin, aminoglycoside, disinfecting agents and antiseptics, 19 

sulfonamide, phenicol, diaminopyrimidine, nitrofuran, glycopeptides and phosphonic acid 20 

antibiotics.  21 

 22 

3.6. Evaluation of Factors Influencing AMR Gene Abundance Using Poisson and Zero-23 

Inflated Poisson Models 24 

The abundance data for AMR genes was positively skewed with multiple zero values. 25 

Therefore, both Poisson regression and Zero-Inflated Poisson (ZIP) regression models were 26 

used to account for this distribution. RPM values below one were filtered out before executing 27 

the models to normalize the data and reduce noise from low-abundance observations. The 28 

Poisson model demonstrated a strong fit, with a high Pseudo R-squared of 0.9976, indicating it 29 

explained nearly all variance in AMR abundance. In contrast, the ZIP model, intended to handle 30 

excess zeros, produced a much lower Pseudo R-squared of 0.04787, with a non-significant 31 

zero-inflation component, suggesting that zero inflation did not enhance model performance for 32 

this dataset. In terms of variable effects, Sample_Type (SARS-CoV-2 vs. control) had a positive 33 
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and highly significant association with AMR abundance (coef = 0.2697, p < 0.001), indicating 1 

that AMR gene abundance is notably higher in the SARS-CoV-2 group. Collection_location 2 

showed a negative and significant association with AMR abundance (coef = -0.1619, p < 0.001), 3 

indicating that AMR gene presence varies by geographic location, with certain areas having 4 

lower levels. Host_sex was also significantly associated with the abundance of AMR genes, with 5 

a negative coefficient (coef = -0.527, p < 0.001), suggesting males have lower AMR gene 6 

abundance. The variable of Host_age had a small but significant negative association with AMR 7 

abundance (coef = -0.0054, p < 0.001), indicating a decrease in abundance with increasing age. 8 

These associations were consistent across both models, reinforcing the significance of each 9 

factor. However, the Poisson model provided a more robust fit for the data. Table 2 10 

Poisson Model Summary: 
Dep. Variable: Abundance No. Observations: 1459    

Model: GLM Df Residuals: 1459    

Model Family: Poisson Df Model: 4    

Link Function: Log Scale: 1     

Method: IRLS Log-Likelihood: -8.77E+04    

Deviance: 1.69E+05      

No. Iterations: 6 
Pseudo R-squ. 

(CS): 0.9976    

Covariance Type: nonrobust      

Variable coef std err z P>|z| [0.025 0.975] 
const 4.5128 0.019 239.696 0.001 4.476 4.55 

Sample_Type 0.2697 0.009 28.513 0.001 0.251 0.288 

collection_location -0.1619 0.005 -32.345 0.001 -0.172 -0.152 

host_sex -0.527 0.008 -63.693 0.001 -0.543 -0.511 

host_age -0.0054 0 -28.815 0.001 -0.006 -0.005 
       

Zero-Inflated Poisson Model Summary: 
Dep. Variable: Abundance No. Observations: 1459    

Model: ZeroInflatedPoisson Df Residuals: 1459    

Method: MLE Df Model: 4    

Log-Likelihood: -8.77E+04 Pseudo R-squ. 0.04787    

Converged: True LL-Null: -9.21E+04    

Covariance Type: nonrobust LLR p-value: 0    

Variable coef std err z P>|z| [0.025 0.975] 
inflate_const -20.5375 754.455 -0.027 0.981 -1499.142 1458.167 

const 4.5128 0.019 239.696 0.001 4.476 4.55 

Sample_Type 0.2697 0.009 28.519 0.001 0.251 0.288 

collection_location -0.1619 0.005 -32.338 0.001 -0.172 -0.152 

host_sex -0.5269 0.008 -63.682 0.001 -0.543 -0.511 
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host_age -0.0054 0 -28.815 0.001 -0.006 -0.005 
Table 2: Results of the Poisson Generalized Linear Model (GLM) and the Zero-Inflated Poisson model, 1 

analyzing 1459 observations of abundance post >1 RPM filter. Key statistics include coefficients (coef), 2 

standard errors (std err), z-values, p-values (P>|z|), and confidence intervals for various independent 3 

variables (predictors), including sample type, collection location, host sex, and host age.  4 

 5 

 6 

3.7. The SARS-CoV-2 group showed a higher abundance of ESKAPE-associated AMR 7 

genes 8 

The CZID AMR pipeline links AMR gene reads to their corresponding bacterial taxa, enabling 9 

visualization of variations in particular bacterial taxa and associated AMR genes. A comparative 10 

analysis of specific taxa-associated AMR genes between the SARS-CoV-2 and control groups 11 

was performed, with log-transformed abundance values of species and gene families to 12 

facilitate comparisons (Figure 8). This data also facilitates the comparative analysis of the 13 

abundance of ESKAPE-associated AMR genes among the datasets. It was observed that the 14 

SARS-CoV-2 group exhibited a higher prevalence and abundance of several ESKAPE 15 

pathogens and associated AMR gene families than the control group. Abundant gene families in 16 

the SARS-CoV-2 group included 16S rRNA methyltransferases (rmtC), ADC beta-lactamases, 17 

and MFS antibiotic efflux pumps linked to pathogens such as Klebsiella pneumoniae, 18 

Acinetobacter baumannii, and Pseudomonas aeruginosa. In contrast, the control group showed 19 

lower abundances of these AMR genes across most ESKAPE pathogens. A Sankey diagram 20 

illustrates the relationship between ESKAPE pathogens and AMR gene families, with 21 

connection thickness representing RPM values (Figure 9). 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
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 1 

 2 

 3 

 4 

 5 

 6 

4. Discussion 7 

Several studies around the globe have investigated the compositional and functional dynamics 8 

of URT microbiome in SARS-CoV-2 patients; these studies tried to explain the relationships 9 

between the URT microbiome composition and factors like disease severity, risk of developing 10 

secondary infections and utility of URT microbiome as a marker to predict disease 11 

outcomes.24,25,26 The SARS-CoV-2 infection plays a vital role in altering the URT microbiome. 12 

However, the impact of infection on the AMR dynamics in the URT needs to be explored.  13 

Understanding the changes in AMR profiles in context with SARS-CoV-2 infection is significant 14 

for predicting secondary bacterial infection outcomes and devising effective therapeutics and 15 

management strategies for COVID-19 patients.  16 

  17 

Stefanini et al. (2021)27 (Hoque et al., 2021)28 reported that SARS-CoV-2 infection is associated 18 

with higher diversity and abundance of AMR genes, suggesting a more complex microbial 19 

ecosystem or dysbiosis. Our findings also suggest that SARS-CoV-2 infection could be linked 20 

with a higher diversity and abundance of AMR genes, which could have important implications 21 

for treatment strategies and public health. The sequencing results indicated a substantial 22 

number of reads generated for both groups. However, post-filtering for human reads 23 

significantly reduced microbial reads, particularly in the control group, which may indicate a less 24 

diverse microbial community than the SARS-CoV-2 group. Post-filtering, The higher number of 25 

microbial reads in the SARS-CoV-2 samples might suggest a more complex microbial 26 

ecosystem or a potential dysbiosis due to the viral infection. 27 

The Chao1 index demonstrated that the SARS-CoV-2 group had a greater richness of AMR 28 

gene families than the control group. This finding aligns with previous studies indicating that 29 

viral infections can influence the composition and diversity in the context of gut29 and URT30 30 

microbiomes. The lack of significant differences in the Shannon and Simpson indices suggests 31 

that while the SARS-CoV-2 group have a wider variety of AMR genes, the evenness of these 32 
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distributions is similar to that of the control group, implying that the higher richness in the SARS-1 

CoV-2 group is not associated with the skewed abundance of a few gene families. 2 

The PCA and PCoA analysis further established the variations in AMR gene abundances 3 

between the two groups. The distinct clustering in the PCA plots indicates that the microbial 4 

communities in SARS-CoV-2 patients differ markedly from those in the control group. The 5 

tighter clustering of control samples suggests a more homogenous microbial profile, while the 6 

greater spread of the SARS-CoV-2 samples implies a wider range of microbial interactions or 7 

influences, potentially driven by the viral infection itself or subsequent antibiotic treatments. 8 

The Bray-Curtis dissimilarity heatmap also showed internal variability in the SARS-CoV-2 9 

samples, suggesting diverse AMR gene profiles that could be reflective of varied underlying 10 

health conditions, prior antibiotic exposure, or different environmental exposures among the 11 

patients. In contrast, the more uniform distribution among control samples highlights a less 12 

varied AMR gene landscape. 13 

Given the non-normal distribution of the data, the Mann-Whitney test was appropriate for 14 

identifying significant variations in AMR gene families. Identifying 25 significantly varying gene 15 

families underscores the diversity in resistance mechanisms between the two groups, further 16 

implicating potential treatment challenges in the context of SARS-CoV-2 infection. A positive 17 

Log2 Fold Change indicates that a gene is more abundant or highly expressed in SARS-CoV-2 18 

compared to control, while a negative Log2 Fold Change suggests the gene is less abundant in 19 

SARS-CoV-2 than in control. A Log2 Fold Change of 1 represents a 2-fold increase in gene 20 

abundance, whereas a Log2 Fold Change of -1 corresponds to a 2-fold decrease in abundance. 21 

After using thresholds of log2 fold change ±1 and p < 0.05 (Mann-Whitney), 24 AMR genes 22 

passed the applied thresholds, out of which 23 AMR genes showed higher abundance in SARS-23 

CoV-2 samples, indicative of a potential link between SARS-CoV-2 infection and increased 24 

abundance of certain AMR genes. Only one gene, lsa-type ABC-F protein, was more abundant 25 

in the control group than the SARS-CoV-2 group. This finding points to potential changes in the 26 

resistance gene profile associated with SARS-CoV-2, potentially affecting the AMR dynamics in 27 

COVID-19 patients suffering from secondary bacterial infections. These gene families warrant 28 

further investigation, as they may contribute to the better clinical management of co-infections in 29 

COVID-19 patients. 30 
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The analysis of antimicrobial resistance (AMR) gene abundance using Poisson and Zero-1 

Inflated Poisson (ZIP) regression models provided insights into covariates influencing AMR. The 2 

Poisson model demonstrated a high Pseudo R-squared of 0.9976, indicating it effectively 3 

explained the variance in AMR abundance, while the ZIP model's low Pseudo R-squared of 4 

0.04787 suggested it was less suitable for this dataset. A positive association between Sample 5 

Type (SARS-CoV-2 vs. control) and AMR abundance was observed, implying that viral 6 

infections may promote certain AMR genes. Additionally, the negative association with 7 

collection location highlighted geographic variability in AMR distribution, which is indicative of 8 

higher AMR abundances linked to certain locations (Districts of Vidarbha). Gender differences 9 

and a slight decline in AMR abundance with age were also noted. Further research is needed to 10 

explore the mechanisms behind these associations and their implications for antimicrobial 11 

stewardship. 12 

Mann-Whitney U test also revealed several AMR gene families with significantly higher 13 

abundances in the SARS-CoV-2 group. These gene families encompass diverse antimicrobial 14 

resistance (AMR) mechanisms, including ribosomal modifications by 16S rRNA 15 

methyltransferases31 and 23S rRNA methyltransferases32, conferring resistance to 16 

aminoglycosides and macrolides. Beta-lactamases like NDM, OCH, SHV, and TEM degrade 17 

beta-lactam antibiotics, including carbapenems33-36. Efflux pumps such as ABC, MFS, and RND 18 

actively expel antibiotics, promoting multidrug resistance37-39. Porins reduce drug permeability, 19 

while genes like qnr and rpoB provide resistance to quinolones and rifamycins40-42. Resistance 20 

to tetracyclines, fosfomycin, and other antibiotics is mediated by ribosomal protection proteins, 21 

inactivation enzymes, and transferases, highlighting the complexity of AMR mechanisms43-45.  22 

The presence of ESKAPE-associated AMR genes in the URT microbiome showed that the 23 

SARS-CoV-2 group harboured a higher prevalence and abundance of these clinically relevant 24 

pathogens. The enrichment of AMR genes linked to ESKAPE pathogens, known for their high 25 

resistance and clinical significance, underscores the urgent need for effective antimicrobial 26 

stewardship and infection control measures, particularly in SARS-CoV-2 patients who may be at 27 

higher risk for secondary infections.  28 

The analysis of AMR genes in the SARS-CoV-2 samples reveals significant resistance across 29 

multiple antibiotic drug classes. Resistance to macrolides, streptogramins, and lincosamides, 30 

which are commonly used for treating gram-positive infections46, could complicate treatment 31 

strategies for commonly occurring respiratory gram-positive infections. The detection of 32 
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resistance genes to broad-spectrum antibiotics, such as fluoroquinolones, tetracyclines, and 1 

beta-lactams, raises concerns about their limited efficacy, particularly in hospital settings where 2 

multidrug-resistant organisms are prevalent. The presence of peptide and glycopeptide 3 

resistance genes in the URT resistome, which includes resistance to last-resort antibiotics like 4 

colistin and vancomycin, was also observed among the samples. Additionally, resistance to 5 

nitroimidazoles, rifamycins, aminoglycosides, and pleuromutilins suggests that even alternative 6 

therapies may face reduced effectiveness in case of drug-resistant infection47. The identification 7 

of resistance to sulfonamides, phenicols, and nitrofurans points towards continuous and 8 

indiscriminate antibiotics, leading to reduced efficacy of these drug classes among the studied 9 

population. Moreover, resistance genes related to disinfecting agents and antiseptics highlight 10 

potential challenges in infection control within healthcare environments. Overall, these findings 11 

emphasize the need for robust AMR surveillance and antibiotic stewardship in the context of the 12 

COVID-19 pandemic, where bacterial co-infections in vulnerable patients may limit treatment 13 

options and contribute to the spread of resistant strains. 14 

The increased diversity and abundance of AMR genes in SARS-CoV-2 patients could have 15 

significant implications for treatment protocols, necessitating a reassessment of antibiotic usage 16 

protocols, especially during viral infections like Influenza or SARS-CoV-2. Moreover, the 17 

identified gene families could serve as a data point to develop decision support systems for 18 

treating AMR in the context of COVID-19. 19 

Further research is warranted to explore the clinical consequences of the observed AMR gene 20 

profiles, including the impact on treatment outcomes and the role of the URT microbiome in 21 

modulating host responses to SARS-CoV-2 infection. Longitudinal studies are needed to track 22 

changes in AMR gene abundance over time and assess the potential effects of various factors, 23 

including factors governing co-morbidities, degree of disease severity and antibiotic treatments. 24 

In conclusion, the distinct AMR gene profiles observed in the SARS-CoV-2 group emphasize 25 

the need for ongoing surveillance and targeted interventions to mitigate the risks associated 26 

with antimicrobial resistance in the context of viral infections. 27 

Limitations of the Study 28 

The cross-sectional study design limits the ability to understand temporal changes in AMR gene 29 

profiles. Additionally, the potential impacts of antibiotic usage on AMR profiles could not be 30 

assessed in this study, as this is a retrospective study and antibiotic usage data were not 31 
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collected when the samples were originally obtained for SARS-CoV-2 genome surveillance 1 

under the INSACOG mandate. Furthermore, the ZIP regression model explained only a small 2 

portion of the variance observed in the data, indicating the presence of some unmeasured 3 

confounders. Future research could enhance the robustness of the findings. 4 

*** 5 

 6 

 7 

Figure Legends 8 

 9 

Figure 1: Overall Chao1, Shannon, and Simpson Diversity of AMR Genes: Chao1 diversity 10 

(left), Shannon diversity (center), and Simpson diversity (right) all display a greater range of 11 

diversity in the SARS-CoV-2 group, with statistically significant differences in Chao1 diversity (p 12 

< 0.01) 13 

 14 

Figure 2: PCA and PCoA plots using the Bray-Curtis distance: The top plot represents the PCA 15 

(Principal Component Analysis) plot for SARS-CoV-2 and Control data, highlighting the variance 16 

explained by the first two components. SARS-CoV-2 samples are marked in red, and Control 17 

samples in blue. The bottom plot shows the PCoA (Principal Coordinates Analysis) of the same 18 

data, where the variation between the two groups is visualized across two primary axes, PC 1 19 

and PC 2. 20 

 21 

Figure 3: Bray-Curtis Dissimilarity Heatmap: This heatmap represents the pairwise dissimilarity 22 

between the SARS-CoV-2 samples (Sample IDs in red) and control samples (Sample IDs in 23 

blue) using the Bray-Curtis metric. Samples with similar microbial compositions are closer to 24 

blue, while highly dissimilar samples are represented in red. The diagonal represents perfect 25 

similarity (self-comparison), indicated in dark blue. 26 

 27 

Figure 4: Normality Distribution of SARS-CoV-2 and Control Group (Histogram and QQ plots): 28 

The figure shows the abundance distribution for two groups: a control group (top row) and a 29 

SARS-CoV-2 group (bottom row). The left panels are histograms illustrating the skewed 30 
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abundance data, while the right panels are Q-Q plots, highlighting deviations from normality, 1 

with significant tails on the right-hand side, indicating non-normal distributions in both groups. 2 

 3 

Figure 5: Volcano plot of AMR gene family abundance changes between SARS-CoV-2 and 4 

control samples, based on a Mann-Whitney U test. The x-axis represents log2 fold change 5 

(positive for SARS-CoV-2, negative for control), and the y-axis shows -log10 p-values, with 6 

higher values indicating statistical significance. Points above the dashed line at -log10(0.05) are 7 

significant (p < 0.05). Gene families with |log2 fold change| > 1 and p-value < 0.05 are 8 

highlighted in red, indicating significant abundance changes between the two groups. 9 

 10 

Figure 6: Compositional Variations in the abundance of AMR gene families among Control and 11 

SARS-CoV-2 groups (Log-Transformed Significant Genes): The heatmaps illustrate the log-12 

transformed abundance of significant AMR (antimicrobial resistance) genes across two groups: 13 

Control (top) and SARS-CoV-2 (bottom). Each row represents a distinct gene family, and each 14 

column represents a sample. The color intensity reflects gene abundance, with darker colors 15 

indicating higher abundance. The heatmaps provide a comparative visualization, highlighting 16 

compositional variations between the two groups. 17 

 18 

Figure 7: Violin Plots of Significant AMR Gene Families (p-value < 0.05) Violin plots display the 19 

distribution of abundance for various AMR gene families that show significant differences (p < 20 

0.05) between Control (blue) and SARS-CoV-2 (red) groups. Each plot corresponds to a 21 

specific gene family, with the y-axis representing abundance and the x-axis representing the 22 

sample group. The plots highlight the central tendency, variability, and distribution shape of 23 

gene abundance, emphasizing differences in AMR gene composition between the groups. 24 

 25 

Figure 8: Variations in the Abundance of ESKAPE-associated AMR Genes Among Control and 26 

SARS-CoV-2 Groups (Log-Transformed) The heatmaps display log-transformed read counts 27 

per million (RPM) of ESKAPE-associated species and AMR gene families in the Control (top) 28 

and SARS-CoV-2 (bottom) groups. The intensity of the color represents the abundance, with 29 

darker shades indicating the higher abundance of specific AMR gene families across species in 30 

each group. 31 

 32 

Figure 9: Sankey Diagram Showing the Relationship Between Read Species and AMR Gene 33 

Families in SARS-CoV-2 and Control Groups This Sankey diagram illustrates the connections 34 
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between bacterial species and their associated antimicrobial resistance (AMR) gene families in 1 

both SARS-CoV-2 and Control groups. The width of the flows between species and gene 2 

families indicates the abundance in RPM. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
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