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Abstract 
 
Biological age reflects actual aging and overall health, but current aging clocks are often complex 

and difficult to interpret, limiting their clinical application. In this study, we introduced a Gompertz 

law-based biological age (GOLD BioAge) model that simplified aging assessment. We estimated 

GOLD BioAge using clinical biomarkers and found significant associations of the difference from 

chronological age (BioAgeDiff) with risks of morbidity and mortality in NHANES. Moreover, we 

developed GOLD ProtAge and MetAge using proteomics and metabolomics data, which 

outperformed the clinical-only model in predicting mortality and chronic disease risks in UK 

Biobank. Benchmark analysis illustrated that our models exceeded common aging clocks in 

predicting mortality across diverse age groups in both NHANES and UK Biobank. The results 

demonstrated that the GOLD BioAge algorithm effectively applied to both clinical and omics data, 

showing excellent performance in predicting age-related outcomes. Additionally, we created a 

simplified version called the Light BioAge, which used three biomarkers for aging assessment. 

The Light model reliably captured mortality risks in three validation cohorts (CHARLS, RuLAS, 

CLHLS). It significantly predicted the onset of frailty, stratified frail individuals, and collectively 

identified individuals at high risk of mortality. In summary, the algorithm of GOLD BioAge could 

provide a valuable framework for aging assessment in public health and clinical practice.  
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Highlights   
1. The algorithm of Gompertz law based biological age (GOLD BioAge) was proposed to construct 

biological aging clocks with convenient and interpretable calculations, which had better 

performance in predicting mortality risks. 

2. Our approach was applicable to proteomics and metabolomics, yielding ProtAge and MetAge 

with great clinical prospect to improve accuracy of aging assessment and prevent age-related 

diseases. 

3. The Light BioAge, a simplified version, was developed using age and three biomarkers, and it 

independently predicted mortality in three cohorts. 

4. The Light BioAgeDiff significantly predicted the onset of frailty, stratified frail individuals, and 

collectively identified individuals at high risk of mortality. 
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Introduction 
The human aging manifests as progressive physiological changes, physical and cognitive function 

decline, leading to an increased risk of mortality1. There is significant heterogeneity among 

individuals during aging process2, while chronological age may not accurately reflect the actual 

pace of aging. In addition, aging is the greatest risk factor for most chronic diseases, suggesting 

that targeting aging itself has the potential to delay multiple aging-associated disease processes3. 

Consequently, aging assessments and treatments have the potential to forecast and prevent 

functional decline and age-related chronic disease4. Some routine clinical biomarkers serve as 

biomarkers for aging, predicting the risks of functional decline and mortality after adjusting for 

chronological age5. In addition, integrating these biomarkers into composite panels could offer a 

more comprehensive and powerful assessment of aging compared to single biomarkers alone. 

Biological age measures an organism's biological functioning compared to the expected level for 

a specific chronological age, reflecting overall health status6,7. The Levine’s phenotypic age, which 

integrated nine biomarkers with chronological age, predicted mortality more accurately than 

chronological age alone8. Building on the concept of phenotypic age, Sheng et al. proposed PCAge 

to estimate biological age through linear dimensionality reduction; however they could be sensitive 

to outliers and thresholding effects9. Correspondingly, Wei et al presented ENABLAge, integrating 

machine-learning models with explainable artificial intelligence to ensure high prediction 

accuracy10. In addition to clinical aging clocks, omics-based aging clocks hold significant promises, 

as they capture more precise dynamic molecular interactions and pathways closely tied to the 

biological aging process11. Specially, the epigenetic biomarkers have been extensively utilized in 

the DNA methylation aging clocks, such as the Horvath Clock12 and GrimAge Clock13. 

Furthermore, multi-tissue aging clocks provide insights into how complex organisms undergo 

molecular changes with age, offering more detailed information about aging and disease 

states11,14,15. Recently, emerged proteomics and metabolomics data of large cohorts accelerated the 

development of plasma proteomic and metabolomic aging clocks16-19. These proteomics aging 

clocks showed promising accuracy in predicting mortality and multimorbidity14,16. Although these 

biological aging clocks had excellent performance in forcasting diseases and mortality, the clinical 

translation remained limited, due to the gap between the scientific research and its application in 

clinical translational settings20.  
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The complexity of aging clock models, along with issues of interpretability, required features, and 

generalization capacity, may impede their clinical application. For instance, while DNA 

methylation clocks are the widely used, biosamples collection and high-throughput sequencing 

can be both time-consuming and expensive. Therefore, the development of aging clocks should 

emphasize delivering clinically actionable insights while ensuring affordability, accessibility, and 

robustness across diverse populations. To tackle these challenges in clinical practice, it is essential 

to create a computational algorithm that can calculate simplified, robust, and practical biological 

aging clocks using a small number of effective biomarkers. 

The Gompertz law is one of the most widely used mathematical model for describing mortality, 

and it effectively captures the exponential increase in mortality hazard across adult ages, which 

strongly fits with empirical mortality data21. Also, the model’s simplicity and flexibility allow it to 

be applied across wide ranges. For example, the Levine’s phenotypic age was proposed based on 

10-years mortality risks using the Gompertz model8. Also, Kuo at al. proposed proteomic aging 

clock using proteomics data based on cumulative mortality risks of Gompertz model19. Therefore, 

the Gompertz model provided as a theoretical basis to optimize the phenotypic age for clinical 

practices. 

Here, we developed an algorithm framework for Gompertz law based biological age (GOLD 

BioAge). The GOLD BioAge constructed aging clocks with a linear combination of chronological 

age and biomarkers, and linked the its difference from chronological age to morbidity and 

mortality risks. Then, we applied the GOLD BioAge algorithm on metabolomics and proteomics 

data in the UKB, to investigate the algorithm validity on omics-based data. Moreover, we 

compared its prediction performances of mortality with common aging clocks using data from the 

National Health and Nutrition Examination Survey (NHANES) and UK Biobank (UKB). Finally, 

we refined and simplified GOLD BioAge as a Light model and validated it across three 

independent Chinese cohorts: the China Health and Retirement Longitudinal Study (CHARLS), 

the Chinese Longitudinal Healthy Longevity Survey (CLHLS), and the Rugao Longevity and 

Ageing Study (RuLAS). 
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Results 
Definition and development the GOLD BioAge model 

The biological age referred to the age that accurately reflected an individual's risk of mortality; a 

higher mortality risk corresponded to an older biological age. Based on the Gompertz law model, 

we linked chronological age and biomarkers to mortality hazard with the exponential distribution 

(Figure 1A). Consequently, the Gompertz law based biological age (GOLD BioAge) was 

estimated as the age that aligned with the joint mortality hazard derived from both chronological 

age and biomarkers. Thus, the Gold Biological Age (GOLD BioAge) was calculated as a linear 

combination of chronological age and biomarkers. 

𝐺𝑜𝑙𝑑	𝐵𝑖𝑜𝐴𝑔𝑒 = 𝐶𝐴 +.𝛽! ∗ 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟! + 𝛽" 

In the NHANES, 39,348 samples (49.5 ± 18.0 years old) with CBC and bioassay biomarkers were 

enrolled in the analysis. After feature selection implemented in LASSO Cox regression (Figure 

S1), we developed a clinical aging clock based on 10 biomarkers, referred as GOLD BioAge, 

which showed a strong correlation with chronological age (R = 0.969, Figure 1B). The GOLD 

BioAge was the linear combination of chronological age, red blood cell distribution width (RDW), 

albumin (ALB), creatinine, and etc (Figure 1C). This model provided an intuitive interpretation 

of how biomarker values relate to biological age. 

 

GOLD BioAgeDiff as a novel aging metric 

We then introduced GOLD Biological Age Difference (BioAgeDiff) as the difference between the 

BioAge and chronological age, to estimate the magnitude of how individuals’ biological age 

deviated from their chronological age (Figure 1A, S2). If the BioAgeDiff was greater/lower than 

0, it meant that the person was older/younger than the CA. The BioAgeDiff, as the linear 

combination of biomarkers, established a clear relationship between changes in biomarkers and 

shifts in biological age. This calculation of BioAgeDiff made it easy to understand how deviations 

in biomarkers from reference values affect biological age. For instance, if an individual’s blood 

glucose level increased by 1 mmol/L, the BioAge would rise by 0.58 years (Figure 1C). 

𝐺𝑜𝑙𝑑	𝐵𝑖𝑜𝐴𝑔𝑒𝐷𝑖𝑓𝑓	(∆𝐴𝑔𝑒) =.𝛽! ∗ (𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟! −𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟#$%	) + 𝛽"
‘ 

Figure 1D illustrated the distribution of the BioAgeDiff, which was close to the normal 

distribution (Mean: 0, SD: 5.707). By counting the major chronic diseases, participants with 
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comorbidity had higher BioAgeDiff compared to those without any diseases (Figure 1E). Notably, 

individuals with four diseases were approximately 5 years older in BioAge. Considering health 

status, a higher BioAgeDiff was found to be cross-sectionally associated with poorer self-rated 

health (Figure 1F). Additionally, unhealthy lifestyles, such as smoke and alcohol use, were 

associated with a higher BioAgeDiff (Figure 1G). These results of the BioAgeDiff were validated 

in the UKB (Figure S3). 

The BioAgeDiff was associated with risks of mortality in NHANES and UKB (Table 1), with the 

hazard ratios (HRs) of 1.155 and 1.133, respectively. Survival curve analysis (Figure 2) of 20 

years follow-ups revealed that participants in the highest 20% of BioAgeDiff showed a steeper 

decline in survival probability compared to those in the lowest 20%, especially among middle-

aged and older age groups. For instance, individuals aged 65-74 years, about 80% of those in the 

high-risk group had died after about 16 years, whereas only about 30% of those in the low-risk 

group had died. The BioAgeDiff could be considered as a measure through linear dimension 

reduction or projection. Thus, we also compared the performance of BioAgeDiff with those 

common metrics, including mahalanobis distance statistic22,23 (MDS) and principal component 

analysis24 (PCA). In middle-aged (45-64 years) and older age groups (65-85 years), BioAgeDiff 

outperformed other linear metrics in identifying individuals with high risks of mortality (Figure 

2). 

Application of GOLD BioAge on metabolomics and proteomics 

To further investigate the utility of GOLD BioAge with multi-omics biomarkers, we applied our 

algorithm to create the MetAge and ProtAge models based on blood NMR metabolomics and 

proteomics data in the UKB, respectively. Like the clinical-based BioAge, the omics-based aging 

clocks showed strong correlations with chronological age and age-related factors (Figure 3A, S4). 

The ProtAge exhibited significant abilities to capture mortality risks, surpassing MetAge, clinical 

BioAge and chronological age (Figure 3B). For all-cause mortality, ProtAge achieved a C-index 

of 0.790, while MetAge and BioAge reached 0.747 and 0.738, respectively. Additionally, these 

results were consistent across different age groups and causes-specific mortality (Table S11). 

Notably, among young adults (<45 years), ProtAge demonstrated a C-index of 0.793 in survival 

analysis, highlighting its effectiveness in predicting premature mortality risk (Figure 3C). For 

specific mortality, ProtAge recorded a C-index of 0.754 for cancer mortality and 0.850 for heart 

disease mortality, the highest among the three aging clocks. Individuals in the top 20% of 
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ProtAgeDiff exhibited the highest cumulative mortality incidence rates throughout the follow-up, 

compared to those with MetAgeDiff and BioAgeDiff (Figure S5). These findings further 

emphasized the superiority of proteomic biomarkers over metabolomics and clinical biomarkers 

in predicting mortality. 

Then, we decomposed the ProtAgeDiff into contributions from cardiometabolic (CardioDiff), 

inflammatory (InflamDiff), neurological (NeuroDiff), and oncological (OncoDiff) proteins 

(Figure 3D-E), which may reveal various aspects of aging mechanisms. CardioDiff and NeuroDiff 

emerged as the top two contributors to ProtAgeDiff, demonstrating the highest C-index in survival 

analysis (Figure 3F, S6). Within these proteins (Table 2), GDF15, NTproBNP, and EGFR have 

been identified as aging biomarkers, while NEFL is frequently highlighted among neurological 

proteins. Given the relative independence of the four ProtAgeDiff categories (Figure 3G), we took 

the counts within the high-risk group (top 20% of Cardio/Neuro/Inflamm/Onco Diff) into a risk 

score ranging from 0 to 4. This risk score effectively identified individuals at high risk of mortality 

(Figure 3H); for example, over 60% of those scoring 4 had died within approximately 16 years 

due to all-cause mortality. In summary, ProtAge and its ProtAgeDiff serve as exceptional aging 

clocks for predicting mortality risk, and the ProtAgeDiff calculation allows us to analyze the aging 

process across four distinct biological categories. 

 

GOLD BioAge and incident chronic diseases 

To investigate the potential of GOLD BioAge in predicting the incidence of common chronic 

diseases, we included cancer, myocardial infarction, heart failure, stroke, chronic obstructive 

pulmonary disease (COPD), and dementia in the association analysis. The cox proportional 

hazards model provided distinct insights into disease risk, showing that one 1-year increase in the 

biological age was associated with elevated disease risks (Figure 4A).  For instance, in the case of 

cancer, a 1-year increment in ProtAge, MetAge and BioAge was associated with a 2.7%, 1.8%, 

and 1.6% and increase of hazard ratios (HRs), respectively. This trend was consistent across other 

diseases, such as myocardial infraction and stroke. Moreover, the ProtAge model demonstrated 

slightly higher HRs and C-index values for most specific diseases compared to the BioAge model. 

In dementia, for example, the HR of ProtAge reached 1.078, while BioAge had an HR of 1.051. 

Similarly, the MetAge model exhibited robust performance across diseases like myocardial 
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infraction and stroke, with HRs of 1.081 and 1.066, respectively. These results highlighted the 

value of ProtAge and MetAge in predicting incident chronic diseases in large cohorts.  

Cumulative disease incidence trajectories were presented based on aging pace, measured by 

ProtAgeDiff, MetAgeDiff, and BioAgeDiff (Figure 4B). The differences between the highest and 

lowest ProtAgeDiff groups were most pronounced among the three metrics, indicating that 

ProtAge was particularly effective in predicting the onset of chronic diseases. Over a follow-up 

period of 16 years, cumulative mortality rates for cancer, myocardial infarction, heart failure, 

stroke, chronic obstructive pulmonary disease (COPD), and dementia in the high ProtAgeDiff 

group were 28.46%, 13.24%, 5.49%, 8.58%, 18.20%, and 9.49%. Overall, these findings 

underscore the significance of ProtAge and MetAge in forecasting age-relate chronic diseases. 

 

Comparison with other aging clocks 

To investigate the validity of our models, we compared the mortality prediction performance of 

the GOLD BioAge model with Levine phenotypic age, KDM biological age (KDM-BA), and 

chronological age in the NHANES (8,106 participants, aged 47.0 ± 16.3 years) and UKB (265,541 

participants, aged 56.5 ± 8.0 years). These aging clock models were constructed using clinical 

biomarkers, with chronological age included as a reference. 

Figure 5 showed the C-index of survival analysis and AUC values for 10-year mortality prediction 

of these aging clocks. The BioAge model significantly showed better overall performance than 

any other biological and chronological age across the NHANES and UKB dataset, both in the 

overall sample and within specific age groups. For example, the BioAge model achieved a C-index 

of 0.847 in the entire cohort, outperforming the Levine's phenotypic age (0.845), KDM (0.827), 

and chronological age (0.822). As for cause-specific mortality, the GOLD BioAge model showed 

the highest the value of C-index and AUC among these aging clocks. For example, for mortality 

concerning respiratory disease, C-index of the BioAge were 0.885 in NHANES and 0.828 in UKB. 

Taking the NHANES III as the validation dataset (Figure S7), the GOLD BioAge also showed 

competitive performance, compared with these common aging clocks. These results shown the 

validity of our biological age algorithm and its efficiency for capture mortality risks. 

 

Light BioAge for practice simplicity 
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For clinical practice simplicity, we refined and simplified GOLD BioAge as a light version called 

the Light BioAge (Figure S8). The Light BioAge model included age, serum creatinine, glucose, 

and CRP (log-transformed). The calculating formula is as followed: 

𝐿𝑖𝑔ℎ𝑡	𝐵𝑖𝑜𝐴𝑔𝑒 = 𝑎𝑔𝑒 + 8.3313 ∗ 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 + 0.8270 ∗ 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 

+5.7305 ∗ 𝑙𝑜𝑔𝑐𝑟𝑝 − 13.5298 

In NHANES, 38,001 samples (49.6 ± 18.3 years old) with these three biomarkers were enrolled. 

And the Light BioAge was strongly correlated with chronological age (R = 0.987), which 

accounted for 93.73% of the variance in the GOLD BioAge. Its difference from chronological age 

(Light BioAgeDiff) was positively correlated with age (Figure 6B), which followed a nearly 

normal distribution (Figure 6C). It also showed significant associations with comorbility, self-

rated health, unhealthy lifestyles, and risks of mortality (Figure 6D-G, Table 1). 

Compared to GOLD BioAge model, the Light BioAge model, utilizing the fewest indicators, 

demonstrated competitive predictive accuracy (Figure 5). In the NHANES dataset, while the full 

BioAge model achieved a higher C-index of 0.832 for all-cause mortality, the Light model 

demonstrated competitive performance with a C-index of 0.811. Further, we found that the C-

index of the Light BioAge was very close to previous prominent measures, such as the Levine’s 

phenotypic age and KDM. For example, for mortality of cerebrovascular disease, the C-index of 

Light BioAge reached 0.910, comparable to phenotypic age (0.902) and KDM (0.914) in 

NHANES. Notably, to enhance clinical applicability, we identified its performance in predicting 

incident chronic disease. For instance, the Light BioAge model demonstrated HR of 1.116, 1.099, 

and 1.077 for COPD, myocardial infarction, and stroke, respectively (Figure 6H). These results 

highlighted that the Light BioAge provided a robust and practical alternative while remaining 

competitive with other aging metrics. 

 

Light BioAge predicted mortality in validation cohorts 

We further validated the Light BioAge in three independent datasets, including the CHARLS 

(17,163 participants, aged 58.4 ± 10.05 years), RuLAS (1,785 participants, aged 77.0 ± 4.2 years), 

and CLHLS (2,499 participants, aged 85.5 ± 12.0 years). In the three cohorts (Table 1), it 

documented 1752, 186, 813 deaths during the median follow-up period of 9.0, 4.0, 4.1 years, 

respectively. 
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The Light BioAge was strongly correlated with chronological age across the three cohorts (Figure 

7A). In the full samples, the Light BioAge achieved AUC values of 0.792 in CHARLS, 0.809 in 

CLHLS, and 0.746 in RuLAS (Figure 7B). These values were higher than those for chronological 

age, which were 0.774, 0.790, and 0.646, respectively. Notably, the Light BioAge outperformed 

chronological age in individuals aged between 60-79 years with AUC exceeding 0.790 in both 

CLHLS and RuLAS; it also maintained a robust AUC near 0.8 for those aged 75 and older, 

significantly outperforming chronological age. Participants with high BioAgeDiff (top 20%) 

experienced a more pronounced decline in survival probability compared to those with low 

BioAgeDiff (botteom 20%) across CHARLS, RLAS, and CLHLS (Figure 7C). By the end of 

follow-up periods in each cohort, the survival probabilities of individuals in the high-risk groups 

were about 75%, 85% and 55%, respectively. 

With human aging as a longitudinal process, we examined the dynamic changes of Light 

BioAgeDiff between wave 1 and wave 3 of CHARLS (Figure 8A). The Light BioAge in the two 

waves were strongly correlated (R=0.915, Figure 8B), while the Light BioAgeDiff showed a 

moderate correlation (R=0.475).  According to Light BioAgeDiff, paticipants were classified into 

slow (Diff<0), normal (0<=Diff<5) and fast (Diff>5) aging groups, subsequently classifying them 

into seven categories based on their aging status across both waves (Figure 8C). The stable slow-

aging groups across the two waves were taken as the reference. Compared with the reference, the 

stable fast-aging groups and accelerated aging groups (slow/normal to fast) exhibited the highest 

mortality risks (Figure 8D-E). In addition, the decelerated aged (fast to slow/normal) had reduced 

mortality risks. 

 

Light BioAgeDiff, frailty and mortality risks 
Next, we explored the associations of Light BioAgeDiff with frailty as assessed by the frailty index 

that included age-related chronic diseases, self rated health, basic and instrucmental activities of 

daily living and mobility capacity. In CHARLS 2011 and 2015, the frailty status were associated 

with BioAgeDiff, in which the frail individuals were 1.14 and 1.20 years old than the robust 

counterparts (Figure 9A). During longtidinal follow-ups (2011-2015, 2015-2018), the baseline 

BioAgeDiff was associated with incident frailty (odds ratio [95% CI]: 1.02 [1.01-1.04]; 1.04 [1.01-

1.07], Figure 9B). The paticipants categoried within the fourth quantile of BioAgeDiff  had the 

highest risks. Using the BioAgeDiff as a measure of biologica aging, we examined the mediation 
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role of functional decline, measured by frailty index, in the associations of BioAgeDiff with 

mortality risks (Figure 9C). The mediation proportion of frailty index was about 26.4% (p<0.001) 

while its increase accounted for 6.48%.   

The Light BioAgeDiff demonstrated performance comparable to that of frailty in predicting 

mortality, while the C-index of BioAgeDiff and frailty were 0.634 and 0.633 in CHARLS. using 

both BioAgeDiff and frailty as measures of biological and functional aging, we examined their 

combined effectiveness in identifying individuals at high risk for mortality. The survival 

probability of  frail individuals was about 70% during 9-year follow-up in CHARLS (Figure 9D). 

In contrast, frail individuals with the highest BioAgeDiff had a mortality rate of approximately 55% 

during this period (Figure 9E). Therefore, These findings highlight the potential role of Light 

BioAgeDiff in preventing incident frailty and its joint contribution with frailty in identifying 

individuals at elevated risk for mortality. 

 

Discussion 
In this study, we presented an elegant algorithm for estimating biological age as a linear 

combination of chronological age and various biomarkers. The GOLD biological age and its 

difference from chronological age provided insights into the relationship between individual 

biomarker values and the aging pace. Notably, the implementation of our algorithm in proteomics 

and metabolomics demonstrated the significant potential of omics biomarkers in identifying risks 

of mortality and and age-related chronic diseases. Furthermore, benchmark analysis demonstrated 

that our models outperformed traditional aging clocks in predicting the risks of both all-cause and 

cause-specific mortality across different age groups. We also developed a simplified version 

termed the Light BioAge, which provides a practical and efficient alternative with simplified 

calculations. The Light BioAge exhibited strong predictive capabilities in assessing mortality risks 

across three validation elderly cohorts and was associated with the onset of frailty, collectively 

forecasting mortality risks associated with frailty. In summary, our algorithm was validated as a 

general framework for constructing aging clocks. Importantly, both the BioAge and its light 

version can serve as convenient tools for aging assessment in clinical practice. 

The robustness of the GOLD BioAge algorithm and the aging clocks were validated through 

multiple aspects. The evaluation of GOLD BioAge primarily focused on the correlation between 

BioAgeDiff and chronological age, the prediction of all-cause and cause-specific mortality, the 
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incidence of multiple age-related chronic diseases, the onset of frailty, and validations across 

diverse populations. Additionally, benchmark analyses of mortality prediction demonstrated the 

superiority and sensitivity of the GOLD BioAge model. Consequently, GOLD BioAge served as 

a general and reliable measure of biological aging, offering simple and practical calculations for 

aging assessment and public health.  

The pace of individual aging experiences dynamic changes throughout life, influenced by 

modifiable lifestyle choices, environmental factors, psychological influences, and health 

conditions. Identifying individuals at high risk of premature aging can enhance primary prevention 

efforts and reduce the healthcare and socioeconomic burdens linked to age-related diseases. In this 

study, the innovative biological aging clock exhibited stronger associations with morbidity and 

mortality than chronological age, providing a direct measure of an individual's aging progression. 

To further advance the application of biological age in public health and clinical settings, we 

introduced the Light BioAge, a simple and practical aging clock that utilized just three accessible 

biomarkers alongside chronological age. The Light BioAge demonstrated applicability across 

various independent cohorts (NHANES, UKB, CHARLS, CLHLS, and RuLAS) with differing 

study designs, participant characteristics, and morbidity profiles. This model incorporated serum 

creatinine, blood glucose, and C-reactive protein levels with chronological age to reflect kidney 

function, metabolic and inflammatory status. These biomarkers were commonly used in medical 

examinations and were readily available at a low cost. Therefore, Light BioAge offered a 

convenient tool for ongoing monitoring of aging trajectories to prevent functional decline and age-

related diseases. 

Compared with the Levine’s phenotypic age, we both estimated the biological age by fitting the 

Gompertz distribution to empirical mortality data. The Levine’s phenotypic age had been widely 

used in aging-related studies. Notably, the phenotypic age outperformed earlier biological age-

related methods in predicting all-cause mortality and various diseases25. GOLD BioAge exhibited 

a strong correlation with Levine's phenotypic age in the NHANES and UKB dataset, 

demonstrating the robustness and reliability of our algorithm. Notably, the Levine’s phenotypic 

age relied on the Gompertz cumulative distribution function to estimate the 10-year mortality risk. 

Its calculation involved a double logarithmic transformation, which inevitably hindered its clinical 

interpretation. In comparison, our approach simplified the calculation process by utilizing the 
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hazard function to identify instantaneous mortality risk, resulting in a higher predictive accuracy 

for mortality outcomes.  

Our study introduced the ProtAge and MetAge, integrating omics data into the GOLD biological 

age framework. These novel aging clocks generally outperformed clinical marker-based clocks in 

predicting mortality, which probably due to the higher sensitivity of omics data in capture aging-

related information26. For ProtAge, proteins were categorized into four groups based on their 

physiological function, each contributing to a distinct age estimate. Proteomics plays a crucial role 

in aging process, as changes in protein expression and post-translational modifications, particularly 

those linked to inflammation, oxidative stress, and cell cycle regulation, provide stable, long-term 

biomarkers. These molecular signatures offered deeper insights into biological aging compared to 

clinical markers. Additionally, because protein alterations often preceded the onset of chronic 

diseases, proteomics enhanced the early disease detection, making ProtAge a valuable tool for 

predicting mortality and early-stage health risks27-29. In addition, metabolomics reflected rapid, 

short-term fluctuations in the body’s biochemical processes, offering insights into how recent 

changes in diet, physical activity, and stress impact aging. The integration of both proteomic and 

metabolomics data into the aging clock framework created a more comprehensive tool to estimate 

biological age. It also provided the potential for personalized health interventions to mitigate 

aging-related risks. 

This study has several limitations. First, although the omics-based aging clocks demonstrated 

superior performance compared to those using clinical biomarkers in the UKB dataset, further 

validation in other elderly cohorts is essential to confirm these findings. Additionally, the selection 

of biomarkers for the aging clocks was performed using LASSO penalized regression to enhance 

accuracy; however, different feature selection methods could yield alternative sets of biomarkers, 

indicating potential for further optimization of biomarker panels in clinical applications. 

Furthermore, we validated the Light BioAge in three Chinese cohorts, leaving uncertain whether 

the full GOLD BioAge model would more accurately capture the risks associated with geriatric 

syndromes and mortality. 
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Methods and materials 
Study populations 

Our study used the data of NHANES 1999-2018, UKB, CHARLS, CLHLS, and RuLAS. The US 

NHANES is a nationally representative cross-sectional survey of civilian living in the US, 

approved by the National Center for Health Statistics (NCHS) Ethics Review Board30. The UK 

Biobank is large-scale perspective cohort that collected data from over 500,000 participants across 

22 centers in England, Scotland, and Wales. UKB received ethics approval from the North West 

Multicenter Research Ethics Commitee31. The CHARLS is an ongoing prospective population-

based longitudinal cohort study of middle-aged and older Chinese adults. CHARLS was approved 

by the Ethics Review Board of Peking University, which was conducted in accordance with the 

Declaration of Helsinki and other relevant guidelines and regulations32. The CLHLS is a 

nationwide longitudinal study of old-aged Chinese population. The project was approved by the 

Biomedical Ethics Committee of Peking University, China (IRB00001052-13074)33. The Rugao 

Longevity and Ageing Study (RuLAS) is a population-based perspective study, which consisted 

of a longevity cohort and an aging cohort in Rugao, China34. The RuLAS was approved by the 

Human Ethics Committee of Fudan University School of Life Sciences. All participants provided 

written informed consent. And This study followed the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) reporting guidelines for cohort studies35. 

 

Clinical biomarker selection for constructing Gold BioAge 

We utilized the data of NHANES 1999-2018 for variable selection, and refined the biomarker 

panel for constructing Gold Biological Age. As a result, 26 common biomarkers from cell blood 

count (CBC) tests and biochemical assays were enrolled (Table S1). LASSO Cox regression 

models were employed for biomarker selection, with five-fold cross-validation to determine the 

optimal parameter value (lambda.1se) of 0.0166. First, the 26 biomarkers and chronological age 

were analyzed using the LASSO Cox regression. Then 10 biomarkers were retained in the model 

(Figure S1), including chronological age, creatinine, glucose, among others. This set of 

biomarkers formed the basis for the novel biological age model (Gold BioAge). To simplify the 

panel for practical use, feature selection was performed on 10 blood biomarkers (biochemical and 

hematological) that were consistently observed across various cohorts (Table S2). This simplified 
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panel included chronological age, serum creatinine, glucose, and C-reactive protein (CRP) for the 

light Gold Biological age model (Light BioAge). 

 

Metabolomics and proteomics biomarker selection 

Then, we applied GOLD BioAge models to metabolic and proteomic biomarkers, respectively, 

employing data from the UK Biobank (UKB, 2006-2010). For the Gold Proteomic Age Model 

(Gold ProtAge), we analyzed 2,923 proteins from 53,014 participants. To maintain the relative 

integrity of the independent sample, we removed proteins with more than 10% missing data, 

resulting in 1,459 protein biomarkers for analysis. Using LASSO-Cox regression model, we 

calculated protein-predicted age (ProtAge) in the entire sample (n = 39,772) through five-fold 

cross-validation. To achieve a balance between simplicity and predictive power, we opted for a 

lambda value of exp (-6), optimizing the model’s simplicity and model performance (Figure S1). 

Then it selected 22 protein biomarkers along with chronological age. Detailed descriptions of all 

the selected proteins are available in the supplementary materials. For the Gold Metabolic Aging 

Clock (Gold MetAge), we utilized nuclear magnetic resonance (NWR) - based blood profiling 

metabolomics data from UKB. A total of 248,202 UKB participants were enrolled, each with 

measurements of 251 circulating metabolomic markers. We performed LASSO-Cox regression 

using fivefold cross-validation, selecting features based on the lambda value of exp (-6), which 

corresponded to a one standard deviation increase over the lambda with minimum mean-squared 

error. Among the 251 metabolic biomarkers, 27 were selected, along with chronological age, to 

develop the Gold MetAge. 

 

GOLD BioAge model training  

We conducted two Gompertz regression models for biological age model training. The first 

Gompertz regression model only included chronological age as a predictor of time-to-mortality 

data. The second Gompertz regression model incorporated both chronological age and selected 

biomarkers as predictors. We defined the gold biological age (Gold BioAge) as the age accounting 

for the actual mortality hazard by considering both chronological age (CA) and additional 

biomarkers (Figure S2).  The models were specified as follows: 

Model 1: Chronological Age Only: 

𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧	ℎ𝑎𝑧𝑎𝑟𝑑:	ℎ((𝑡) = 𝑟𝑎𝑡𝑒( ∗ 𝑒𝑥𝑝(𝛽( ∗ 𝐶𝐴 + 𝑠ℎ𝑎𝑝𝑒( ∗ 𝑡) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.24317305doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.14.24317305
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model 2: Chronological Age and Selected Biomarkers: 

𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧	ℎ𝑎𝑧𝑎𝑟𝑑: 	ℎ)(𝑡) = 𝑟𝑎𝑡𝑒) ∗ exp	(𝛽) ∗ 𝐶𝐴 +.𝛽)! ∗ 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟! + 𝑠ℎ𝑎𝑝𝑒) ∗ 𝑡) 

In Model 2, biomarkers represented the selected biomarkers included in the model, and 𝛽! (coef) 

represented the coefficients of each biomarker. The GOLD BioAge integrated chronological age 

with relevant biomarkers to better reflect mortality hazard and aging status. Let ℎ((𝐵𝑖𝑜𝑎𝑔𝑒, 𝑡 =

0) ≈ ℎ)(𝐵𝑖𝑜𝑎𝑔𝑒, 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠, 𝑡 = 0). In real dataset, the ℎ(	and ℎ) empirical distributions were 

different (Figure S2), resulting in underestimate of biological age in the whole population. Thus, 

we add a constant (𝛾) correct the bias and let ℎ( = 𝛾 ∗ ℎ).  

Thus, Gold BioAge was derived as follows: 

𝐺𝑜𝑙𝑑	𝐵𝑖𝑜𝐴𝑔𝑒 =
1
𝛽(
U𝛽)	 ∗ 𝐶𝐴 +.𝛽)! ∗ 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟! 	 + 	log	

𝛾 ∗ 𝑟𝑎𝑡𝑒2
𝑟𝑎𝑡𝑒1 Y 

For further simplicity and robustness, we set the coefficient parameter of CA (𝛽)	) equal to the 

parameter (𝛽( ) in Model 2, and estimated the parameter for rate, shape, and coefficients of 

biomarkers.  

When 𝛽)	 = 𝛽(	, the formula was further simplified as follows:	

𝐺𝑜𝑙𝑑	𝐵𝑖𝑜𝐴𝑔𝑒 = 𝐶𝐴 +
1
𝛽(
U.𝛽)! ∗ 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟! 	 + 	log	

𝛾 ∗ 𝑟𝑎𝑡𝑒2
𝑟𝑎𝑡𝑒1 Y 

The Gompertz distribution parameters (rate, shape, and coefficients) were estimated by maximum 

likelihood using the "flexsurv" R package. The coefficients of GOLD BioAge, ProtAge and 

MetAge were shown in the Table S5-8.The algorithm of GOLD BioAge was implemented as a R 

package (http://github.com/Jerryhaom/GOLDBioAge). 

 

Benchmark of biological age models 

To ensure the robustness of our models, we evaluated the model performance in the NHANES and 

UKB, compared with other common phenotypic aging clocks and dimensional reduction methods. 

The the Levine phenotypic age, KDM age and mahalanobis distance statistic were calculated using 

the ‘BioAge’ R package36.  The PCA age was calculated through principal component analysis and 

regressed to age with first five components. In the NHANES and UKB datasets, we compared the 

concordance index (C-index) of survival analysis and Area Under the Curve (AUC) of 10-year 

mortality prediction in the full samples and across three age groups: young adults, middle-aged 

adults, and older adults. It allowed us to determine the models' ability to discriminate mortality 
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risk across different age groups. In addition to all-cause mortality, these aging clocks in predicting 

cause-specific mortality were evaluated. Since the aging clock was a single variable, the prediction 

values of 10-year survival status was estimated through on logistic regressions based on aging 

clcoks. This comprehensive benchmarking analysis allowed for a thorough evaluation of the 

models' performance and comparison with other established aging clocks. The associations of 

GOLD BioAge, Light BioAge, ProtAge, and MetAge with all-cause and cause-specific mortality 

were shown in Table S9-11. 

 

Validation in independent elderly cohorts 

We validated the Light BioAge model in other three elderly cohorts: the CHARLS, RuLAS and 

CLHLS datasets. Five waves of CHARLS data (2011-2020) were utilized, with blood-based 

bioassay data used to construct the Light BioAge. Health and function questionnaires were 

collected for frailty assessment37 (Table S12). For RuLAS, the wave 2 (2016) was taken as 

baseline, and data of blood biomarkers were obtained. The data CLHLS 2014-2018 was enrolled 

to validate the LightBioAge. We calculated the ROC curves to evaluate the prediction performance 

of Light BioAge and chronological age across the all sample, as well as subpopulations stratified 

by age (60-79 years; >= 80 years). Additionally, we fitted survival curves for low-risk and high-

risk groups based on the Light BioAgeDiff model. 

 

Assessment of mortality and onset of chronic diseases 

In NHANES, death information was based on linked data from records taken from the National 

Death Index (NDI) through December 31, 2019, provided through the Centers for Disease Control 

and Prevention. Data on mortality status and length of follow-up (in person-months) were available 

for nearly all participants. In UKB, death information was obtained through death certificates held 

within the National Health Service (NHS) Information Centre (England and Wales) and the NHS 

Central Register (Scotland) to November 30, 2022. We calculated participants’ time to death from 

baseline to the date of death, date of loss to follow-up, or date of last record of follow-up, 

whichever came first. We used the International Statistical Classification of Diseases, 10th, to 

define causes of death. The cause-specific mortality included mortality of malignant neoplasm, 

heart disease, cerebrovascular disease, respiratory disease, Alzheimer disease, diabetes, and others.  
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In addition, diagnosed dates of incident chronic disease in UKB were also collected, including 

cancer, myocardial infraction, heart failure, stroke, chronic obstructive pulmonary disease (COPD), 

and dementia.  

 

Assessment of health-related factors and outcomes 

The unhealthy lifestyle score was based on six modifiable lifestyle factors: smoking, alcohol 

consumption, physical activity, diet, body mass index (BMI), and sedentary behavior, defined by 

World Health Organization.The score was categorized into five groups (0, 1, 2, 3, 4 and more 

unhealthy factors). Multimobidites, defined as the number of lifetime disease diagnoses. In 

NHANES, we included diabetes, high blood pressure, congestive heart failure, coronary heart 

disease, heart attack, stroke, cancer or malignancy, and chronic bronchitis; In UKB, we included 

cancer, myocardial infarction, heart failure, stroke, chronic obstructive pulmonary disease (COPD), 

and dementia. Disease count was classified into five categories: no disease, 1, 2, 3, and 4 or more 

diseases. Self-rated health was recorded in four levels: excellent or very good, good, fair and poor. 

The distributions of GOLD BioAge, Light BioAge, ProtAge, and MetAge by unhealthy lifestyles, 

comorbidity, and self-rated health were shown in Table S13.
 

 

Statistical analysis  

Survival analysis was conducted in different age groups. Within the same group, participants were 

classified into quintiles based on their BioAge Difference (BioAgeDiff), with the top 20% 

representing individuals at highest risk of death. Kaplan-Meier survival curves were then plotted 

to compare the predicted survival probabilities between the highest and lowest quintiles of the 

novel BioAge. Harrell’s Concordance Index (C-index) was used to assess the predictive 

discrimination in survival analysis. And the Area Under the Curve (AUC) was took as a robust 

metric to evaluate the prediction ability. Cox proportional hazard models were conducted to assess 

the associations between different biological aging clocks, mortality and the onset of chronic 

diseases. The cox models were adjusted for sex and chronological age. All statistical analyses were 

performed using R version 4.3.3. 
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Figure legends 
Figure 1. GOLD BioAge and its Association with Health-Related Factors. The diagram (A) 
illustrated the exponential relationship between mortality hazard and biological age (BA), 
chronological age (CA). The “Diff” referred to the difference between GOLD BioAge and CA, 
termed GOLD BioAgeDiff. The scatter plot (B) showed the strong correlation between GOLD 
BioAge (estimated biological age) and CA. The estimated coefficients for CA and biomarkers 
(C), used to calculate GOLD BioAge, were displayed, with the mean biomarker values of young 
adults serving as the reference. The distribution of GOLD BioAgeDiff in NHANES (D). The 
correlations of GOLD BioAgeDiff with counts of age-related chronic diseases (E), self-rated 
health (F), and unhealthy lifestyles (G). 
 
Figure 2. The associations of BioAgeDiff and risks of mortality. The survival plots for 
individuals categorized by levels of BioAgeDiff, PCA age, and MDS in the NHANES cohort. 
The high and low groups represent the top and bottom 20% of the age-stratified population (ages 
45-54, 55-64, 65-74, and 75-85 years). PCA: Principal Component Analysis; MDS: Mahalanobis 
Distance Statistics. 
 
Figure 3. The associations of GOLD ProtAge, MetAge, and BioAge with mortality in UK 
Biobank. (A) Correlations between the three aging clocks and chronological age. (B) C-index 
values from survival analysis and the AUC for 10-year mortality prediction, comparing the three 
aging clocks and chronological age, with results for all-cause (age-stratified) and cause-specific 
mortality. (C) Survival curves for individuals classified by ProtAgeDiff, MetAgeDiff, and 
BioAgeDiff in the general population (top panel) and young adults (bottom panel, <45 years 
old). High and low risk groups were defined as the top and bottom 20% of the population. 
ProtAgeDiff, MetAgeDiff, and BioAgeDiff represented the differences between ProtAge, 
MetAge, and BioAge and chronological age, respectively. The C-index for ProtAgeDiff and its 
subpanels and proteins were shown. ProtAgeDiff consisted of CardioDiff, InfamDiff, NeuroDiff, 
and OncoDiff, which were linear combinations of cardiometabolic, inflammatory, neurological, 
and oncological proteins. (E) Density plots and (G) a correlation heatmap (filled with Pearson 
correlation coefficients) of these subpanels were presented. (F) Survival plots based on 
ProtAgeDiff subpanels and (H) the risk score, which was the count of high-risk factors derived 
from ProtAgeDiff subpanels. 
 
Figure 4. Associations between GOLD ProtAge, MetAge, and BioAge and the incidence of 
age-related chronic diseases. The forest plots (A) illustrated the hazard ratios and C-index for 
ProtAge, MetAge, and BioAge across different diseases in the UKB. These associations were 
adjusted for age and sex. MI: myocardial ischemia; COPD: chronic obstructive pulmonary 
disease; CI: confidence interval. Survival plots were displayed based on the differences between 
ProtAge, MetAge, and BioAge relative to chronological age, referred to as ProtAgeDiff, 
MetAgeDiff, and BioAgeDiff. The high and low groups corresponded to the top and bottom 20% 
of the population, respectively. 
 
Figure 5. Comparison of GOLD BioAge and other common aging clocks in predicting 
mortality in NHANES and UKB. The C-index in survival analysis (A) and AUC value of 10-
year mortality prediction (B) of these aging clocks were shown.  Both all-cause (age-stratified) 
and cause-specific mortality are considered. The highest value was marked with bold. The 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.24317305doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.14.24317305
http://creativecommons.org/licenses/by-nc-nd/4.0/


BioAge, Light, Levine and KDM referred to the GOLD BioAge, its light version, Levine’s 
phenotypic age, KDM algorithm derived age, respectively.  
 
Figure 6. The Light BioAge and its associations with age-related factors and outcomes. The 
correlation of Light BioAge with age (A). And the difference of Light BioAge with age also 
correlated with age (B) and its distribution (C). The correlations of Light BioAgeDiff with 
counts of age-related chronic diseases (D), self-rated health (E), and unhealthy lifestyles (F). The 
survival plot (G) based on Light BioAgeDiff levels, with the top and bottom 20% of the 
population representing the high and low groups. The forest plots (H) showed the hazard ratios 
and C-index of Light BioAge in relation to chronic diseases, adjusted for age and sex. MI: 
myocardial ischemia; COPD: chronic obstructive pulmonary disease; HR: hazard ratio; CI: 
confidence interval.  
 
Figure 7. Validations of the Light BioAge in three independent cohorts. The correlations (A) 
of Light BioAge with age in CHALS, RuLAS and CLHLS. The ROC curves (B) of Light 
BioAge (solid lines) and age (dotted lines) for predicting mortality across all samples, and within 
age-stratified groups (<80, >=80 years old). Survival plots (C) depicted mortality trajectories of 
individuals categorized based on Light BioAgeDiff levels, with the top and bottom 20% 
represented as high and low groups in CHARLS, RuLAS, and CLHLS. 
 
Figure 8. The Light BioAge, its dynamics and mortality in CHARLS. Illustration (A) 
detailing the study designs across five waves in CHARLS. Correlation (B) between Light 
BioAge values in wave 1 (2011) and wave 3 (2015). Scatter plot (C) displayed Light BioAgeDiff 
in wave 1 (2011) and wave 3 (2015), with dotted lines indicating Light BioAgeDiff values of 0 
and 5. Individuals were divided into 7 groups based on the changes in Light BioAgeDiff, with 
survival plots (D) and forest plots (E) provided. Model 1 represented the crude model, while 
Model 2 adjusted for age and sex. 
 
Figure 9. The Light BioAgeDiff, frailty and mortality in CHARLS. The boxplots (A) of 
Light BioAgeDiff across robust, prefrail, and frail individuals in CHARLS waves 1 (2011) and 3 
(2015), with statistical significance determined using Wilcoxon tests. Forest plots (B) illustrated 
the associations between Light BioAgeDiff and incidence of frailty. The odd ratios were 
calculated through continuous and category Light BioAgeDiff (Q1-4: quantiles), adjusted by age 
and sex. The mediation models (C) of Light BioAge (wave 1, 2011), frailty index (wave 3, 2015) 
and mortality (wave 3-5, 2015-2022) were conducted. The change in frailty index was calculated 
based on assessments from waves 1 and 3. ADE: average direct effect; ACME: average causal 
mediated effect. The survival plots of individuals according to frailty status (D), and both frailty 
status and levels of Light BioAgeDiff (E). 
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Table 1. Associations of GOLD BioAgeDiff and its light version with mortality across five cohorts. 
Category/Cohorts Events/N Follow-up years HR (95% CI) C-index 
GOLD BioAgeDiff     
NHANES 4,716/ 39348 8.08 (4.42 - 11.92) 1.155 (1.150-1.159) 0.771 
UKB 36,589/ 417,067 13.98 (13.21 - 14.72) 1.133 (1.131-1.135) 0.677 
Light BioAgeDiff     
NHANES 6,373/38,001 11.08 (4.33 - 15.33) 1.197 (1.191-1.204) 0.697 
UKB 37,619/ 428,266 13.98 (13.21 - 14.71) 1.143 (1.140-1.147) 0.622 
CHARLS 1,752/17,163 9.00 (5.00 - 9.00) 1.130 (1.118-1.143) 0.643 
RuLAS 186/ 1,785 4.00 (4.00 - 4.00) 1.093 (1.052-1.136) 0.585 
CLHLS 813/2,499 4.08 (2.54 - 4.08) 1.060 (1.045-1.075) 0.575 
HR: hazard ratio; CI: confidence interval; All cox proportional hazard regression models were adjusted 
for age and sex. The C-index was calculated in the crude model. Follow-up years were shown with the 
median (interquartile range). 
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Table 2. Biological curation of ProtAge-related proteins 
Protein 

 
Molecular evidence 

GDF15 Growth/differentiation factor 15 Stress-induced cytokine; increases with cardiovascular 
diseases and exercise, involved in metabolic regulation and 
inflammatory responses1,2. 

EDA2R Tumor necrosis factor receptor 
superfamily member 27 

Receptor involved in immune response and apoptosis; may 
have roles in tumor development and inflammatory 
signaling3,4. 

WFDC2 WAP four-disulfide core domain 
protein 2 

Protease inhibitor involved in innate immunity; 
overexpressed in ovarian cancer and other malignancies5. 

TNFRSF10B Tumor necrosis factor receptor 
superfamily member 10B 

Receptor for TRAIL, promotes apoptosis; commonly 
upregulated in cancers and targeted for cancer therapies6. 

MMP12 Macrophage metalloelastase Enzyme that degrades extracellular matrix proteins; involved 
in tissue remodeling and chronic inflammatory diseases7,8. 

NEFL Neurofilament light polypeptide Structural component of neurons; increased levels seen in 
neurodegenerative conditions like ALS and multiple 
sclerosis9,10. 

CDCP1 CUB domain-containing protein 1 Transmembrane protein involved in tumor metastasis and cell 
migration; frequently elevated in various cancers11,12. 

HAVCR1 Hepatitis A virus cellular receptor 1 Immune regulatory protein linked to inflammation and tissue 
injury; associated with kidney and liver diseases13,14. 

PRSS8 Prostasin Serine protease involved in sodium regulation and epithelial 
cell function; linked to hypertension and cancer15,16. 

LTBP2 Latent-transforming growth factor 
beta-binding protein 2 

Regulates TGF-β signaling and bioavailability; mutations 
linked to connective tissue disorders and fibrosis17,18. 

HGF Hepatocyte growth factor Promotes cell proliferation, motility, and survival; important 
for tissue regeneration and cancer progression19-21. 

ADGRG1 Adhesion G-protein coupled 
receptor G1 

Regulates cell adhesion and migration; mutations linked to 
vascular anomalies and brain disorders22. 

REN Renin Key enzyme in blood pressure regulation and fluid balance; 
central to the renin-angiotensin system23,24. 

NTproBNP N-terminal prohormone of brain 
natriuretic peptide 

Biomarker for heart failure; elevated in response to cardiac 
stress and used to assess heart dysfunction25,26. 

EGFR Epidermal growth factor receptor Receptor tyrosine kinase involved in cell growth and 
differentiation; frequently mutated in cancers, notably lung 
cancer27,28. 

CEACAM5 Carcinoembryonic antigen-related 
cell adhesion molecule 5 

Cell adhesion molecule used as a tumor marker; 
overexpressed in colorectal and other cancers29. 

BCAN Brevican core protein Extracellular matrix protein highly expressed in the brain; 
associated with gliomas and brain development disorders30. 

LRRN1 Leucine-rich repeat neuronal protein 
1 

Involved in neural development and synaptic function; linked 
to neurodegenerative conditions31,32. 

ADGRG2 Adhesion G-protein coupled 
receptor G2 

Regulates reproductive function and sperm transport; 
mutations cause male infertility33,34. 
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Protein 
 

Molecular evidence 
KIT Mast/stem cell growth factor 

receptor Kit 
Tyrosine kinase receptor involved in cell survival and 
proliferation; mutations implicated in gastrointestinal stromal 
tumors and leukemia35,36. 

IGFBP3 Insulin-like growth factor-binding 
protein 3 

Regulates IGF activity and cell survival; altered levels 
associated with cancer and metabolic disorders37,38. 

AGER Advanced glycosylation end 
product-specific receptor 

Mediates inflammatory and stress responses; plays a role in 
diabetes complications and chronic diseases39-41. 
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