
1 
 

ARTICLE 

 

Leveraging Deep Learning of Chest Radiograph Images to Identify Individuals at High 

Risk for Chronic Obstructive Pulmonary Disease 

 

Saman Doroodgar Jorshery, MD, MPH;1,2 Jay Chandra, BA;1 Anika S. Walia, BA;1 Audra 

Stumiolo, MS;1 Kristin Corey, MD;3 Seyedeh Maryam Zekavat, MD, PhD;2,4 Aniket N. 

Zinzuwadia, MD;1 Krisha Patel;1 Sarah Short, MPH;5 Jessica L. Mega, MD, MPH;5 R. Scooter 

Plowman, MD, MBA, MHSA, MSc;5,6 Neha Pagidipati, MD, MPH;3,7 Shannon S. Sullivan, 

MD;8 Kenneth W. Mahaffey, MD;6,9 Svati H. Shah, MD, MHS;3,7,10 Adrian F. Hernandez, MD, 

MHS;3,7 David Christiani, MD, MPH;11,12 Hugo J.W.L. Aerts, PhD;1,13,14 Jakob Weiss, MD;1,13,15 

Michael T. Lu, MD, MPH;1,13 and Vineet K. Raghu, PhD1,13 on behalf of the Project Baseline 

Health Study Group 

 

1Cardiovascular Imaging Research Center (CIRC), Department of Radiology, Massachusetts 

General Hospital & Harvard Medical School, Boston, MA, USA 

2Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 

MA, USA 

3Department of Medicine, Duke University School of Medicine, Durham, NC, USA 

4Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, 

MA, USA 

5Verily Life Sciences, LLC, San Francisco, CA, USA 

6Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.24317055doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.11.14.24317055


2 
 

7Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA 

8Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA 

9Stanford Center for Clinical Research, Department of Medicine, Stanford University School of 

Medicine, Palo Alto, CA, USA 

10Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA 

11Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 

USA 

12Pulmonary and Critical Care Division, Massachusetts General Hospital, Harvard Medical 

School, Boston, MA, USA 

13Program for Artificial Intelligence in Medicine (AIM), Brigham and Women’s Hospital & 

Harvard Medical School, Boston, MA, USA 

14Department of Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, 

Maastricht, The Netherlands 

15Department of Diagnostic and Interventional Radiology, Medical Center – University of 

Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany 

Corresponding Author: 

Vineet K. Raghu, PhD 

Massachusetts General Hospital 

165 Cambridge St, Suite 400 

Boston, MA 02114 

P: (412) 605-4524 | vraghu@mgh.harvard.edu 

 

Word count: 3,450  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.24317055doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.14.24317055


3 
 

SUMMARY 

Background: This study assessed whether deep learning applied to routine outpatient chest X-

rays (CXRs) can identify individuals at high risk for incident chronic obstructive pulmonary 

disease (COPD).  

Methods: Using cancer screening trial data, we previously developed a convolutional neural 

network (CXR-Lung-Risk) to predict lung-related mortality from a CXR image. In this study, we 

externally validated CXR-Lung-Risk to predict incident COPD from routine CXRs. We 

identified outpatients without lung cancer, COPD, or emphysema who had a CXR taken from 

2013-2014 at a Mass General Brigham site in Boston, Massachusetts. The primary outcome was 

6-year incident COPD. Discrimination was assessed using AUC compared to the TargetCOPD 

clinical risk score. All analyses were stratified by smoking status. A secondary analysis was 

conducted in the Project Baseline Health Study (PBHS) to test associations between CXR-Lung-

Risk with pulmonary function and protein abundance.  

Findings: The primary analysis consisted of 12,550 ever-smokers (mean age 62·4±6·8 years, 

48.9% male, 12.4% rate of 6-year COPD) and 15,298 never-smokers (mean age 63·0±8·1 years, 

42.8% male, 3.8% rate of 6-year COPD). CXR-Lung-Risk had additive predictive value beyond 

the TargetCOPD score for 6-year incident COPD in both ever-smokers (CXR-Lung-Risk + 

TargetCOPD AUC: 0·73 [95% CI: 0·72-0·74] vs. TargetCOPD alone AUC: 0·66 [0·65-0·68], 

p<0·01) and never-smokers (CXR-Lung-Risk + TargetCOPD AUC: 0·70 [0·67-0·72] vs. 

TargetCOPD AUC: 0·60 [0·57-0·62], p<0·01). In secondary analyses of 2,097 individuals in the 

PBHS, CXR-Lung-Risk was associated with worse pulmonary function and with abundance of 

SCGB3A2 (secretoglobin family 3A member 2) and LYZ (lysozyme), proteins involved in 

pulmonary physiology. 
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Interpretation: In external validation, a deep learning model applied to a routine CXR image 

identified individuals at high risk for incident COPD, beyond known risk factors. 

Funding: The Project Baseline Health Study and this analysis were funded by Verily Life 

Sciences, San Francisco, California. 

ClinicalTrials.gov Identifier: NCT03154346 
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INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory 

symptoms (shortness of breath, chronic cough, phlegm production) due to airway and/or alveoli 

abnormalities that cause prolonged, progressive airflow obstruction.1 COPD is the third leading 

cause of mortality worldwide2 and carries an estimated burden of $30 billion annually to the 

United States (U.S.) healthcare system.3 COPD is incurable; however, early diagnosis and 

subsequent lifestyle4 and pharmaceutical intervention5 improve prognosis.6 The key diagnostic 

criterion for COPD is a post-bronchodilator forced expiratory volume in one second (FEV1) to 

forced vital capacity (FVC) ratio ≤0·7 as measured by spirometry.7 

 

Current guidelines do not recommend screening asymptomatic adults for COPD.7,8 Instead, 

targeted case finding using spirometry has been proposed for individuals with a high suspicion of 

COPD: patients with chronic respiratory symptoms, structural abnormalities of the airways, and 

prevalent risk factors (e.g., smoking, exposure to pollutants).7 However, spirometry is often 

unavailable in low-income countries9,10 and is underutilized with disparate accessibility in high-

income countries,11 leading to estimates that 50%-75% of COPD cases remain undiagnosed.12,13 

Although patients with undiagnosed COPD are typically at an earlier disease stage,14 these 

individuals have a similar risk of mortality to those with confirmed COPD.12 Identifying 

undiagnosed cases could help preserve quality of life in these patients by enabling targeted 

interventions to slow disease progression.8  

 

Several approaches have been proposed to identify patients at high risk for COPD.15 Most focus 

on surveys or questionnaires administered to patients during routine primary care visits.16,17 
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Another promising approach is to opportunistically identify high-risk individuals using routinely 

collected data in the electronic medical record (EMR), such as demographics, history of 

respiratory disease, and smoking history.15,18,19 Smoking is a major driver of COPD risk but is 

often not documented or recorded inaccurately in the EMR,20 and a growing proportion of COPD 

cases occur in never-smokers, for whom there are fewer well-established risk factors.21 

 

Chest radiographs (CXRs) are one of the most common diagnostic tests in medicine22 and are a 

first-line imaging test for respiratory symptoms, including in primary and urgent care settings. 

Recent advances in artificial intelligence (AI), especially convolutional neural networks 

(CNNs),23 have enabled breakthroughs in extracting information from a CXR image to assess 

disease risk.24,25 We previously developed an AI model called CXR-Lung-Risk that can estimate 

the risk of 18-year lung-related mortality (COPD, lung cancer, interstitial lung disease, chronic 

emphysema) based on a single posterior-anterior (PA) CXR image as the only input.26 This 

model was validated in multiple clinical trial cohorts, and the CXR-Lung-Risk output was 

associated with survival in lung cancer patients. 

 

Here, we tested whether the CXR-Lung-Risk model can be applied to routine, outpatient CXR 

images to identify patients in the EMR at high risk for incident COPD (Fig. 1). We compared the 

performance of the CXR-Lung-Risk model with an EMR-based clinical risk score 

(TargetCOPD).19 Additionally, we leveraged CXR images from participants in the Project 

Baseline Health Study (PBHS) to test whether the CXR-Lung-Risk score was associated with 

lower lung function and plasma protein concentrations. CXR is a widely used imaging modality; 
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therefore, these findings may show the potential for opportunistic screening using deep learning–

based models to identify high-risk individuals and guide COPD prevention. 

 

METHODS 

Cohort description, sample inclusion, and exclusion criteria 

Our primary analysis included 27,848 outpatients (Supplementary Fig. 1) ages 50–80 who had a 

posterior-anterior (PA) CXR taken at a Massachusetts General Brigham (MGB) hospital from 

2013–2014 and no history of lung cancer, COPD, or chronic emphysema as defined by the 

International Classification of Diseases, 9th and 10th revision (ICD-9 and ICD-10) diagnosis 

codes (Supplementary Table 1). Analyses were performed in sub-cohorts stratified by ever-

smokers (N=12,550) vs. never-smokers (N=15,298). This study was approved by the Mass 

General Brigham Institutional Review Board with a waiver of informed consent for retrospective 

analysis of deidentified data. The study followed Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines for a risk 

prediction model validation study.42 

 

In secondary analyses, we tested the association of CXR-Lung-Risk with pulmonary function 

testing and plasma protein abundances using data from the Project Baseline Health Study 

(PBHS),43 a diverse cross-sectional cohort study across four U.S. sites (sponsored by Verily Life 

Sciences) (ClinicalTrials.gov Identifier: NCT03154346). The deeply phenotyped PBHS cohort 

consists of 2,502 participants enriched for lung cancer and cardiovascular disease risk factors 

with demographic, survey, clinical, molecular, laboratory, and imaging taken at the initial study 

visit. Of the 2,502 patients, 2,097 had PA CXR images available (Fig. 1), and 1,263 underwent 
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pulmonary function testing. 957 participants had CXR imaging and proteomic data available for 

289 plasma proteins. Individuals with known lung cancer or prevalent COPD were removed 

from all analyses. 

 

CXR-Lung-Risk and chest radiograph images 

The CXR-Lung-Risk model was developed to predict a composite outcome of 18-year lung 

disease (COPD, lung cancer, interstitial lung disease, chronic emphysema) mortality based on a 

single CXR image using 147,497 images from the Prostate, Lung, Colorectal, and Ovarian 

(PLCO) Cancer Screening Trial.26 The output of the model is expressed in years rather than a 

percentage to enhance interpretability (e.g., a CXR-Lung-Risk score of 60 years means the 

individual has lung-related mortality risk equivalent to the average 60-year-old). The PLCO 

study was conducted between 1993 and 2001 at 10 U.S. sites. This model was validated in two 

held-out testing datasets not used during model development. These radiographs were obtained 

from asymptomatic volunteers for lung cancer screening trials. Here, we tested the CXR-Lung-

Risk model in a patient cohort where radiographs were obtained during routine care.  

 

This study serves as an external validation of CXR-Lung-Risk using the existing free, open-

source version without alterations (https://github.com/AIM-Harvard/CXR-Lung-Risk). Routine 

CXR images from MGB patients were obtained from the Picture Archiving and Communication 

System (PACS). For patients with multiple radiographs, we used the earliest radiograph during 

the study period. We expected no meaningful overlap of PLCO participants with our analysis 

cohort since no PLCO study site was in the same region as our current analysis cohort, and the 
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last PLCO participant was enrolled 12 years before the MGB cohort and 16 years before the 

PBHS study began. 

 

Smoking history, risk factors, race, and ethnicity 

In the MGB cohort, information about smoking history and risk factors, including recent dyspnea 

and medication use, was collected from the EMR. Smoking status was determined through 

manual review of clinical history, physical exam, and pulmonary function reports. A previously 

described algorithm44 was used to extract pack-years at the time of the CXR image for each 

patient. Patients without any smoking information were considered never-smokers. The presence 

of COPD and other comorbidities were identified using ICD-9 and ICD-10 codes 

(Supplementary Table 1).45,46 Race and ethnicity information was based on self-reported data and 

followed the guidelines outlined in the National Institutes of Health Policy on Reporting Race 

and Ethnicity Data.47 In the PBHS cohort, all risk factors were based on self-reported data. 

 

Outcomes 

The primary outcome was incident COPD in the 6 years after the initial chest radiograph based 

on combined ICD-9 and ICD-10 codes obtained from the EMR (Supplementary Table 1). All-

cause mortality was determined using the Social Security Master Death Index and the Mass 

General Brigham death registration system.  

 

TargetCOPD clinical risk score  

We compared CXR-Lung-Risk to the TargetCOPD score,19 a regression model that includes age, 

smoking status, dyspnea, prescriptions for short-acting beta agonist (SABA), and prescriptions 
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for antibiotics to output a probability that an individual has COPD. The TargetCOPD score was 

developed and validated from a large cluster randomized controlled case finding trial in primary 

care to predict the risk of undiagnosed COPD using data from the EMR. For binary analyses, we 

used this score with the published binary threshold of ≥7·5% risk. We assessed whether CXR-

Lung-Risk had added value to predict incident COPD beyond the TargetCOPD score. Patients 

without medication information were considered to have no prescriptions for salbutamol or 

antibiotics (0·7% of the cohort).  

 

Protein abundance data 

Plasma proteins from 957 participant samples from the PBHS study were used to associate CXR-

Lung-Risk with underlying biologic disease mechanisms. Each plasma protein sample from the 

PBHS study was prepared using microflow high-resolution liquid chromatography-mass 

spectrometry. Then, these raw data were converted to protein abundances through the use of Dia-

NN, v1.8.1 (https://github.com/vdemichev/DiaNN). Detailed steps of the quality control process 

can be found in the Supplementary Material. A total of 289 proteins were detected across all 

patient plasma samples. Microbial proteins, contaminants, and Ig variable chain proteins were 

not included in the analyses.  

 

Statistical analyses  

We assessed the discrimination of CXR-Lung-Risk vs. the TargetCOPD score using time-

dependent area under the receiver operating characteristic curves (AUC) over 6-, 3-, and 1-year 

follow-up periods. We used DeLong’s method to calculate the confidence intervals (CIs) for all 

AUCs. To address censoring, we assessed the association of the CXR-Lung-Risk score with 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.24317055doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.14.24317055


11 
 

incident COPD using Cox proportional hazards survival analysis, adjusted for clinical variables 

including age, smoking status, recent dyspnea, SABA use, prevalent asthma, antibiotic use, and 

findings from the CXR report, including the presence of a lung opacity, atelectasis, 

pneumothorax, pneumonia, edema, consolidation, or a lung lesion. We stratified the continuous 

CXR-Lung-Risk score into three ordinal groups (low risk: ≤50; moderate risk: >50 to ≤55; and 

high risk: >55) in both ever- and never-smokers. Cumulative incidence curves were calculated to 

assess the association of the ordinal risk groups with COPD incidence. All analyses were 

stratified by smoking status (ever- vs. never-smokers).  

 

Secondary analyses were conducted in PBHS participants with pulmonary function tests (PFTs) 

and plasma proteomics. We related CXR-Lung-Risk scores to percentage of predicted peak 

expiratory flow (PEF), percentage of predicted forced vital capacity (FVC), percentage of 

predicted FEV1, FEV1/FVC ratio and abundance of 289 plasma proteins. Linear regression was 

used to adjust for age, sex, self-reported race, respiratory disease, body mass index (BMI), and 

study site. Significant proteins were identified using a Bonferroni-corrected p-value <0·05 based 

on a t-test for the regression coefficient. All analyses were stratified by smoking status (ever- vs. 

never-smokers). In a sensitivity analysis, we additionally adjusted for chronic kidney disease and 

lung disease.  

 

Role of the Funding Source 

The funder of the study had no role in the study design, data collection, data analysis, data 

interpretation, or writing of the report. 
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RESULTS 

MGB cohort characteristics 

Our primary MGB study cohort consisted of 12,550 patients who had ever smoked cigarettes 

(mean age 62·4 [SD 6·8], 48·9% male, 90·6% White), and 15,298 patients who had never 

smoked (mean age 63·0 [SD 8·1], 42·8% male, 85·8% White) (Table 1). In this cohort, the 6-year 

COPD incidence was 12·4% (1562/12550) in ever-smokers and 3·8% (580/15298) in never-

smokers. Cohort characteristics were largely similar to the cohort in which the CXR-Lung-Risk 

model was developed (Supplementary Table 2); however, the smokers in the current cohort had a 

milder smoking history (mean 15·9 pack-years vs 35·5).  

 

CXR-Lung-Risk model discrimination  

We first evaluated the discrimination of CXR-Lung-Risk and baseline approaches to predict 6-, 

3-, and 1-year COPD incidence. CXR-Lung-Risk significantly improved the AUC for 6-year 

COPD incidence beyond the TargetCOPD clinical risk calculator both among ever-smokers 

(CXR-Lung-Risk + TargetCOPD AUC: 0·73 [95% CI: 0·72-0·74] vs. TargetCOPD AUC: 0·66 

[95% CI: 0·65-0·68], p<0·01) and never-smokers (CXR-Lung-Risk + TargetCOPD AUC: 0·70 

[95% CI: 0·67-0·72] vs. TargetCOPD AUC: 0·60 [95% CI: 0·57-0·62], p<0·01) (Table 3). 

Similar results were seen for 3- and 1-year outcomes.  

 

Ordinal CXR-Lung-Risk model categories and incident COPD 

We tested the association of ordinal CXR-Lung-Risk groups with incident COPD 

(Supplementary Table 3). In ever-smokers, a graded association with incident COPD was 

observed across moderate (aHR: 1·7 [95% CI: 1·5-1·9]) and high (aHR: 3·4 [95% CI: 2·9-3·9]) 
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CXR-Lung-Risk groups compared to the low-risk group, after adjusting for risk factors and 

radiologist findings on the CXR report (Fig. 2a).  

 

A similar pattern was observed in never-smokers, with a higher risk of incident COPD in the 

moderate (aHR: 1·6 [95% CI: 1·3-1·9]) and high (aHR: 2·4 [95% CI: 1·9-3·0]) CXR-Lung-Risk 

groups compared to the low-risk group after adjustment (Fig. 2b). 

 

COPD rates at binary thresholds 

We compared the rates of incident COPD among patients at high risk according to CXR-Lung-

Risk and those at high risk according to the TargetCOPD score using the published 7·5% risk 

threshold (Table 4).19 We found that the two risk models were complimentary, with patients at 

high risk by both models having a 28·4% and 11·5% rate of 6-year COPD in the ever-smoker 

group and never-smoker group, respectively. Patients at low risk by both approaches had a 4·7% 

and 2·2% rate of 6-year COPD in the ever-smoker group and never-smoker group, respectively.  

Similar results were found for 3- and 1-year incident COPD (Supplementary Table 4).  

 

Association of CXR-Lung-Risk with pulmonary function tests and proteomics in the 

Project Baseline Health Study 

For additional insight into the biological basis of the association between CXR-Lung-Risk and 

incident COPD, we tested whether CXR-Lung-Risk was associated with quantitative measures of 

pulmonary function and plasma protein abundance using data from 2,097 individuals with a 

CXR image as part of the PBHS study (mean age 62·3± 6·8, 48·6% male, 82·7% non-Hispanic 

White; Table 2).  
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CXR-Lung-Risk was negatively correlated with all pulmonary function measures tested 

(FEV1/FVC, diffusing capacity for carbon monoxide [DLCO], FEV1, PEF) in ever-smokers (R2: 

6%-22%) and in never-smokers, although to a lesser extent (R2: 1%-8%) (Supplementary Fig 1). 

These relationships persisted after adjusting for further covariates in linear regression, including 

age, sex, BMI, and study site. With every 1 standard deviation (SD) increase in CXR-Lung-Risk 

(~6 years), a 2·4%–5·3% decrease in pulmonary function test performance was observed for 

ever-smokers (p<0·05 for all comparisons) after adjustment. Associations were attenuated in 

never-smokers, although the FEV1/FVC ratio (0·8% [0·3%-1·3%] per SD of CXR-Lung-Risk) 

and DLCO % predicted (1·8% [0·1%-3·6%]) were associated after adjustment (both p<0·05). 

When adjusting for the presence of any type of lung disease, the effect sizes were attenuated but 

remained significant except for PEF (Supplementary Fig. 2). 

 

In proteomic analyses across 289 plasma proteins, we found that two proteins had a significant 

positive relationship with the CXR-Lung-Risk score (Bonferroni-adjusted p-value <0·05): 

SCGB3A2 (secretoglobin family 3A member 2) and LYZ (lysozyme) (Fig. 3). This was robust to 

adjustment for history of lung disease or chronic kidney disease (Supplementary Fig. 3a). In a 

stratified analysis by smoking status, SFTPB (surfactant protein B) and LRG1 (leucine-rich α-2 

glycoprotein 1) were significantly associated with CXR-Lung-Risk in ever-smokers, whereas 

LYZ and SCGB3A2 had similar effect sizes but did not have a significant relationship with 

CXR-Lung-Risk (Supplementary Fig. 3b). For never-smokers, LYZ had a similar adjusted effect 

size as in the full analysis with all patients; however, the association of SCGB3A2 and SFTPB 

with CXR-Lung-Risk was attenuated in never-smokers (Supplementary Fig. 3c). 
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DISCUSSION 

Chest radiographs are a basic, first-line test for respiratory symptoms; however, these images are 

non-diagnostic for COPD. We hypothesized that an AI model, CXR-Lung-Risk, could extract 

“hidden” information from the CXR image to identify individuals at high risk for incident 

COPD. Our major findings were 1) CXR-Lung-Risk predicted 6-year incident COPD with 

complimentary value to a clinical risk score in ever-smokers (∆AUC=0·07 for combined vs. 

clinical score alone) and never-smokers (∆AUC=0·10), 2) Patients at the highest risk of incident 

COPD according to the AI model had high rates of 6-year COPD (ever-smokers: 23·6%; never-

smokers: 7·8%) and 3) Higher CXR-Lung-Risk was associated with poor performance on PFTs 

and with plasma protein concentrations with known relationships to lung function. 

 

Despite significant advances in establishing diagnostic criteria for COPD,27 it is estimated that 

half of COPD cases remain undiagnosed. Potential reasons include the lack of spirometry use, 

lack of public awareness of symptoms and risk factors, misinterpretation of spirometry results in 

younger adults and the elderly, and manifestation of similar respiratory symptoms in patients 

with comorbidities.9,10 Since persistent respiratory symptoms are required to diagnose COPD, 

routine screening of asymptomatic adults is not a recommended, nor feasible solution. Instead, 

targeted case finding via patient questionnaires or risk factor-based scores may be a more 

effective solution to identify individuals at high risk who are likely to be diagnosed with COPD 

upon spirometric testing.28 
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The CXR-Lung-Risk model presented here may improve early identification of individuals at 

high risk for COPD through opportunistic screening of existing routine CXRs in the EMR. The 

CXR-Lung-Risk model could scan the electronic medical record to identify patients with CXRs 

already administered during routine care stored in electronic Picture Archiving and 

Communication Systems (PACS) systems and estimate COPD risk. For patients with a high 

estimated risk, the system could alert their care team that they may be at high risk for COPD. In 

our current study, ever-smokers in the highest risk group according to CXR-Lung-Risk had a 

23·6% rate of incident COPD over 6 years (7·8% in never-smokers). Additionally, the CXR-

Lung-Risk model may be recognizing signs consistent with undiagnosed COPD, as 6·5% and 

3·8% of ever- and never-smokers at high predicted risk had COPD diagnosed within 1 year of 

the CXR, respectively, suggesting that 16–25 individuals need to be screened to detect one 

undiagnosed case of COPD. Potential next steps for patients at high estimated risk include: 1) 

sending the patient a respiratory symptom questionnaire, 2) conducting surveillance for signs and 

symptoms of incident COPD, or 3) performing diagnostic spirometry.  

 

Adding the CXR-Lung-Risk model to the TargetCOPD clinical risk score increased the 

discrimination for 6-year incident COPD in ever-smokers (∆AUC=0·07) and never-smokers 

(∆AUC=0·10). This suggests that further performance improvements are possible when 

combining the CXR image with prevalent risk factors and smoking history from the medical 

record, which will be explored in future work. 

 

A common concern with AI-based approaches is their lack of interpretability or “black-box” 

nature.29 In our previous study, we showed that the CXR-Lung-Risk outputs were associated 
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with prevalent risk factors including age, sex, obesity, smoking status, smoking pack-years, 

history of cardiovascular disease, and the presence of emphysema, fibrosis, and lung opacities on 

the CXR image. In this study, we found strong associations between the CXR-Lung-Risk output 

with lower lung function and abundance of three lung-related proteins in a community cohort 

from the PBHS study. DLCO values and the FEV1/FVC ratio were negatively associated with 

CXR-Lung-Risk with a stronger effect observed in smokers. The former is a marker of nearly all 

lung diseases and the latter is a marker of obstructive lung diseases such as COPD and asthma.30 

All PFTs (PEF, FEV1/FVC ratio, and DLCO) were negatively associated with CXR-Lung-Risk 

in smokers.  

 

To gain further insight into potential biological mechanisms of high CXR-Lung-Risk, we tested 

associations between our risk score and plasma protein concentrations. We found positive 

associations of SCGB3A2 and LYZ concentrations with CXR-Lung-Risk and a strong 

association between SFTPB with CXR-Lung-Risk, although non-significant. SCGB3A2 is a 

cytokine molecule only expressed in the lungs by the bronchiolar club cells.31 It has been shown 

to be protective against various lung disease processes including inflammation, fibrosis, and 

malignancy.31 Additionally, SCGB3A2 has been shown to be associated with asthma and 

COPD.32,33 SFTPB is a lung surfactant protein only expressed in the lungs. Higher plasma 

expression levels of SFTPB have been observed in patients with lung disease and decreased lung 

function potentially due to increased lung permeability that enables  the transit of surfactant into 

the blood.34,35 LYZ is an enzyme that primarily degrades bacterial cell walls. It is expressed in 

the lungs, plasma, stomach, and salivary glands.36 LYZ was found to have higher expression 

levels in the lungs in the setting of COPD and idiopathic pulmonary fibrosis.37,38 Additionally, 
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LYZ has been specifically linked to the development of pulmonary emphysema.36 These 

analyses suggest that CXR-Lung-Risk may be picking up imaging signs specific to biological 

pathways of reduced lung function.  

 

Limitations of this study should be considered. The primary analysis was conducted in patients 

having routine chest radiography at a single hospital system in Boston, Massachusetts, and most 

were non-Hispanic White individuals. Future studies need to test this model in more diverse 

populations and other geographic locations, especially as COPD may have a heterogenous 

etiology across racial/ethnic groups.39 Although the CXR-Lung-Risk model accurately identified 

individuals at high risk for incident COPD, it is unclear whether this will improve early 

detection; this needs to be tested in prospective trials.40 We chose to use radiographs taken in 

2013–2014 to ensure a 6-year follow-up period, but trends in COPD diagnosis and prevalence 

may have changed. A criticism of risk prediction approaches is that they tend to identify older 

and frailer individuals as high-risk; this problem of overdiagnosis needs to be addressed in a 

prospective trial.41 

 

In this study, we externally validated the CXR-Lung-Risk model, an open-source AI tool, for the 

identification of patients at high risk of COPD based on a routine chest radiograph image from 

the EMR. CXR-Lung-Risk predictions were associated with pulmonary function testing and with 

plasma proteins indicative of lung health. Future research will test whether implementation of 

this model can improve the high undiagnosed case rate of COPD across diverse populations. 
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Table 1.  Cohort characteristics for Mass General Brigham patients 

 Ever-smoker group Non-smoker group 

N 12550 15298 

Age, mean (SD) 62·4 (6·8) 63·0 (8·1) 

Male sex (%) 6135 (48·9) 6550 (42·8) 

Race (%)   

Asian 189/11569 (1·6) 707/13686 (5·2) 

Black 874/11569 (7·6) 1174/13686 (8·6) 

Other Race 19/11569 (0·2) 57/13686 (0·4) 
White 10487/11569 (90·6) 11748/13686 (85·8) 

Hispanic ethnicity (%) 349/12338 (2·8) 547/13356 (4·0) 

Recent dyspnea (%) 4519 (36·0) 6503 (42·5) 

Salbutamol use (%) 3723 (29·7) 3385 (22·1) 

Antibiotic use (%) 2378 (18·9) 2180 (14·3) 

Current smoker (%) 2366 (18·9) - 

Smoking pack-years, mean (SD) 15·9 (20) - 

CXR-Lung-Risk, mean (SD) 50·9 (5·7) 49·3 (5·9) 

TargetCOPD score mean (SD) 0·14 (0·1) 0·06 (0·05) 

CXR report findings (%)   

Lung opacity 2631 (21·0) 3024 (19·8) 

Atelectasis 1374 (10·9) 1565 (10·2) 

Pneumothorax 279 (2·2) 250 (1·6) 
Pneumonia 1194 (9·5) 1397 (9·1) 

Edema 484 (3·9) 481 (3·1) 

Consolidation 310 (2·5) 380 (2·5) 
Lung lesion 1357 (10·8) 1830 (12·0) 

Prevalent asthma (%) 1338 (10·7) 2465 (16·1) 

6-year COPD rate (%) 1562 (12·4) 580 (3·8) 

6-year al-cause mortality (%) 944/12219 (7·7) 1978 (13·0) 

COPD, chronic obstructive pulmonary disorder. 
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Table 2. Cohort characteristics for Project Baseline Health Study participants 
 
   

N=2097 
Age, mean (SD) 51·4 (17·0) 

Male sex (%) 919 (43·8) 

BMI (kg/m2), mean (SD) 28·0 (6·9) 

Site (%)  

Durham, North Carolina 404 (19·3) 

Kannapolis, North Carolina 343 (16·4) 

Los Angeles, California 457 (21·8) 

Palo Alto, California 893 (42·6) 

Race (%)  

Asian 199 (9·5) 

Black or African American 370 (17·6) 

Other Race 236 (11·2) 

White 1292 (61·6) 

Smoking status (%)  

Current 321 (15·2) 

Former 455 (21·6) 

Never 1321 (63·0) 

CXR-Lung-Risk, mean (SD) 46·1 (6·1) 

FEV1/FVC ratio, mean (SD) 75·3 (8·3) 

DLCO % predicted, mean (SD) 88·8 (23·7) 

FVC % predicted, mean (SD) 97·6 (22·0) 

PEF % predicted, mean (SD) 90·0 (30·3) 

BMI, body mass index; CXR, chest X-ray; DLCO, diffusing capacity for carbon monoxide; FEV1, forced expiratory 
volume in one second; FVC, forced vital capacity; PEF, peak expiratory flow. 
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Table 3. Discrimination for 6-year, 3-year, and 1-year incident chronic obstructive pulmonary disease 
(COPD) by baseline, CXR-Lung-Risk, and TargetCOPD models in ever-smokers and never-smokers  
 

Model 
Ever-smoker group 
AUC [95% CI] 

Non-smoker group 
AUC [95% CI] 

6-year incident COPD   

Age, Sex 0·53 [0·52–0·55] 0·60 [0·57–0·62] 

Age, Sex, Smoking Status 0·64 [0·63–0·66] N/a 

TargetCOPD 0·66 [0·65–0·68] 0·60 [0·57–0·62] 

CXR-Lung-Risk 0·67 [0·66–0·69] 0·66 [0·64–0·68] 

CXR-Lung-Risk + TargetCOPD 0·73 [0·72–0·74] 0·70 [0·67–0·72] 

3-year incident COPD   

Age, Sex 0·54 [0·52–0·56] 0·59 [0·56–0·62] 

Age, Sex, Smoking Status 0·65 [0·63–0·67] N/a 

TargetCOPD 0·68 [0·66–0·70] 0·58 [0·55–0·61] 

CXR-Lung-Risk 0·67 [0·66–0·69] 0·65 [0·63–0·68] 

CXR-Lung-Risk + TargetCOPD 0·74 [0·73–0·76] 0·69 [0·66–0·71] 

1-year incident COPD   

Age, Sex 0·53 [0·50–0·56] 0·60 [0·57–0·64] 

Age, Sex, Smoking Status 0·63 [0·61–0·66] N/a 

TargetCOPD 0·68 [0·65–0·70] 0·56 [0·52–0·60] 

CXR-Lung-Risk 0·67 [0·66–0·69] 0·67 [0·64–0·70] 

CXR-Lung-Risk + TargetCOPD 0·73 [0·72–0·74] 0·69 [0·66–0·73] 

*P<0·05.  
AUC, area under the receiver operating characteristic curve; CI, confidence interval. 
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Table 4. Rates of 6-year chronic obstructive pulmonary disease (COPD) in ever- and never-smokers by CXR-
Lung-Risk and TargetCOPD binary high-risk groups  
 

 
TargetCOPD  
>7·5% 

TargetCOPD  
<=7·5% Total 

Ever-smokers    
CXR-Lung-Risk High 549/1936 (28·4%) 128/934 (13·7%) 677/2870 (23·6%) 

CXR-Lung-Risk Not High 703/5832 (12·0%) 182/3848 (4·7%) 885/9680 (9·1%) 

Total 1252/7768 (16·1%) 310/4782 (6·5%) 1562/12550 (12·4%) 

Never-smokers    
CXR-Lung-Risk High 64/558 (11·5%) 136/2017 (6·7%) 200 / 2575 (7·8%) 

CXR-Lung-Risk Not High 165/2990 (5·5%) 215/9733 (2·2%) 380 / 12723 (3·0%) 

Total 229/3548 (6·4%) 351/11750 (3·0%) 580/15298 (3·8%) 
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FIGURES: 

 

Figure 1. Schematic diagram of the study 
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a 

 

b 

 

Figure 2. Cumulative incidence of chronic obstructive pulmonary disease (COPD) by CXR-

Lung-Risk ordinal categories in (a) ever-smokers and (b) never-smokers 
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Figure 3. Association between CXR-Lung Risk model and plasma protein abundance in the 

Project Baseline Health Study (PBHS). All estimates are adjusted for age, sex, body mass index 

(BMI), study site, smoking status, and frequency of smoking if the patient has smoked (every 

day vs some days). 
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