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Abstract  16 

Background:�Diagnosing dengue accurately, especially in resource-limited settings, remains 17 

challenging due to overlapping symptoms with other febrile illnesses and limitations of current diagnostic 18 

methods. This study aimed to develop machine learning (ML) models that leverage readily available 19 

clinical data to improve diagnostic accuracy for dengue, potentially offering a more accessible and rapid 20 

diagnostic tool for healthcare providers.  21 

Methods:�We used data from the Sentinel Enhanced Dengue Surveillance System (SEDSS) in Puerto 22 

Rico (May 2012—June 2024). SEDSS primarily targets acute febrile illness but also includes cases with 23 

other symptoms during outbreaks (e.g., Zika and COVID-19). ML models (logistic regression, random 24 

forest, support vector machine, artificial neural network, adaptive boosting, light gradient boosting 25 

machine [LightGBM], and extreme gradient boosting [XGBoost]) were evaluated across different feature 26 

sets, including demographic, clinical, laboratory, and epidemiological variables. Model performance was 27 

assessed using the area under the receiver operating characteristic curve (AUC), where higher AUC 28 

values indicate better performance in distinguishing dengue cases from non-dengue cases.  29 

Results:�Among 49,679 patients in SEDSS, 1,640 laboratory-confirmed dengue cases were 30 

identified.�The�XGBoost and LightGBM models achieved the highest diagnostic accuracy, with AUCs 31 

exceeding 90%, particularly with comprehensive feature sets. Incorporating predictors such as monthly 32 

dengue incidence, leukopenia, thrombocytopenia, rash, age, and absence of nasal discharge significantly 33 

enhanced model sensitivity and specificity for diagnosing dengue. Adding more relevant clinical and 34 

epidemiological features consistently improved the models’ ability to correctly identify dengue cases.  35 

Conclusions:�ML models, especially XGBoost and LightGBM, show promise for improving diagnostic 36 

accuracy for dengue using widely accessible clinical data, even in resource-limited settings. Future 37 

research should focus on developing user-friendly tools, such as mobile apps, web-based platforms, or 38 

clinical decision systems integrated into electronic health records, to implement these models in clinical 39 

practice and exploring their application for predicting dengue. 40 
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Author summary 43 

Dengue is a tropical disease caused by the dengue virus, which is transmitted by mosquitoes. It affects 44 

millions of people worldwide every year, leading to severe illness and even death in some cases. Accurate 45 

and timely diagnosis of dengue is crucial for proper treatment and controlling the spread of the virus. 46 

Traditionally, diagnosing dengue relies on symptoms and laboratory tests, which can sometimes be non-47 

specific and not immediately available in distinguishing dengue from other similar illnesses. In our study, 48 

we explored the use of machine learning, a type of artificial intelligence, to improve dengue diagnosis 49 

using patient information from Puerto Rico. Our models, which use information like age, symptoms, and 50 

specific blood cell counts, can accurately predict whether someone has dengue. We found that some 51 

simple information, like whether a patient has a rash or low blood cell counts, can be very helpful in 52 

making a diagnosis. While more complex models performed slightly better, simpler models can also be 53 

effective, especially in places with limited resources. Our study shows that using computer models can 54 

improve dengue diagnosis and help healthcare providers make better decisions for their patients. 55 
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Introduction 56 

Dengue, a mosquito-borne viral infection transmitted by Aedes mosquitoes, is a significant global 57 

public health threat. Endemic in over 100 countries and affecting 2.5 billion people at risk, the virus poses 58 

a substantial burden on healthcare systems worldwide [1-3]. Dengue is caused by four distinct dengue 59 

viruses, also known as serotypes (DENV-1, -2, -3, and -4) that can lead to a spectrum of clinical 60 

presentations. These range from asymptomatic infections to debilitating illness, and in severe cases, 61 

potentially life-threatening complications like dengue hemorrhagic fever and dengue shock syndrome [4-62 

6]. Globally, dengue is estimated to cause 390 million infections [7] and 40,500 deaths annually [8]. 63 

The United States unincorporated territory of Puerto Rico has a long history with dengue, with 64 

the first reported outbreak in 1899 [9]. Puerto Rico accounts for over 95% of all locally acquired dengue 65 

cases reported within the United States [10, 11]. Transmission follows a seasonal pattern, with large 66 

outbreaks typically occurring every three to five years [12]. From 2010–2020, dengue was associated with 67 

nearly 30,000 confirmed and probable cases including 584 severe cases, 10,000 hospitalizations, and 68 68 

deaths island-wide [11]. A large epidemic in Puerto Rico occurred in 2012–2013, dominated by DENV-1, 69 

although sporadic cases of DENV-4 also occurred. During 2016–2023, cases remained relatively low 70 

compared to historical levels. However, in early 2024, a concerning surge in cases prompted a public 71 

health emergency declaration by Puerto Rico’s Department of Health. The outbreak has placed increased 72 

pressure on the healthcare system, which was already strained by the ongoing syndemic of dengue, 73 

influenza, and COVID-19 [13]. Particularly, high bed occupancy observed in June 2024 due to COVID-74 

19 has underscored the urgent need for improved diagnostic methods and effective public health 75 

interventions to manage and control the spread of dengue and other co-circulating pathogens.  76 

Diagnosing dengue accurately can be difficult, particularly in the early stages of the illness, due 77 

to overlapping symptoms with other febrile illnesses and the need for repeated evaluations to distinguish 78 

dengue from other conditions as the illness progresses. Current diagnostic methods have their limitations 79 

as well. Laboratory tests for dengue, such as RT-PCR or serologic assays, require specialized equipment 80 
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and expertise, are often unavailable in resource-limited settings, and can take several days to return 81 

results, making them less suitable for guiding immediate clinical management decisions. These tests also 82 

have limited windows of detection; for example, PCR is most sensitive in the first week of illness, while 83 

serologic tests are more useful later, potentially missing cases depending on when patients present for 84 

care. Rapid tests, while faster, have limitations in sensitivity, can be costly, and have not been authorized 85 

for use in the United States. As a result, many dengue cases are not confirmed in time to guide clinical 86 

decisions, which can impact patient care, public health efforts, and accurate reporting of disease burden. 87 

For example, during outbreaks, many cases are clinically diagnosed based on symptoms and 88 

epidemiological context, as laboratory resources are often prioritized for severe cases or sentinel 89 

surveillance rather than confirming every suspected case.  90 

This project proposes a novel approach to address these challenges by developing machine 91 

learning (ML) models for diagnosing dengue fever. These models leverage readily available data from the 92 

Sentinel Enhanced Dengue Surveillance System (SEDSS) in Puerto Rico, including demographics, 93 

symptoms, laboratory, and other factors. The models could be integrated into existing electronic health 94 

records (EHR) systems to assist clinicians in making timely diagnoses [14]. In clinical practice, the ML 95 

model could automatically analyze patient data upon entry, generating a risk score for dengue based on 96 

the combination of symptoms, patient history, and other available data [15]. When the model identifies a 97 

high probability of dengue, it would alert the clinician through the EHR system, prompting further 98 

investigation or specific diagnostic testing. This approach has been successfully used in other diseases, 99 

such as COVID-19 [16], infective endocarditis [17], and incident atrial fibrillation [18], where ML 100 

models are embedded into EHRs to provide early warnings for timely interventions, improving patient 101 

outcomes. 102 

In resource-limited settings where EHR systems may not be universally available, these models 103 

could be adapted for use on portable devices like smartphones or tablets, enabling healthcare workers to 104 

input patient data and receive a risk score even when access to advanced diagnostic tools is limited. This 105 
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flexibility ensures that the benefits of ML-driven diagnostic support can be extended beyond well-106 

resourced environments. 107 

By tapping into the growing adoption of EHRs worldwide, ML models can offer a solution that is 108 

not constrained by the physical limitations of laboratory resources. In many regions, even where basic 109 

laboratory facilities are lacking, EHR systems are being rapidly adopted, allowing healthcare providers to 110 

store and analyze patient data electronically. This technological advancement presents a unique 111 

opportunity for ML to enhance diagnostic accuracy and provide timely insights using data that is already 112 

being collected. To identify the optimal approach, we compare the performance of multiple ML 113 

algorithms and sampling techniques alongside traditional logistic regression analysis. By using ML, this 114 

project aims to improve diagnostic accuracy for dengue compared to traditional methods, provide a rapid 115 

and accessible tool for resource-limited settings, and potentially reduce misdiagnosis rates to improve 116 

patient outcomes. This project aligns with the growing body of research exploring the use of ML for 117 

infectious disease diagnosis, particularly in areas with limited diagnostic resources [19-22].   118 

 119 

Methods 120 

Study population 121 

In this analysis, we used data from SEDSS, an ongoing facility-based study in Puerto Rico that 122 

tracks the frequency and causes of acute febrile illness [23, 24]. Since its inception in 2012, SEDSS has 123 

included five sites: 1) Saint Luke’s Episcopal Hospital (SLEH) in Ponce, a tertiary acute care facility 124 

(2012–present), 2) SLEH-Guayama, a secondary acute care hospital (2013–2015), 3) Hospital de La 125 

Universidad de Puerto Rico in Carolina, another secondary acute care teaching hospital (2013–2015), 4) 126 

Centro de Emergencia y Medicina Integrada (CEMI), an outpatient acute care clinic in Ponce (2016–127 

present), and 5) Auxilio Mutuo Hospital, a tertiary care facility in the San Juan Metro Area (2018–128 

present). The data used for this analysis was downloaded from SEDSS on July 25, 2024. 129 

 130 
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Study enrollment and data collection 131 

Participants in SEDSS are enrolled through convenience sampling. Potential participants are 132 

identified by triage nurses as any patient with an acute febrile illness (AFI) defined by the presence of 133 

fever (≥38.0°C for temperatures measured orally, ≥37.5°C for temperatures measured rectally, and 134 

≥38.5°C for temperatures measured axillary) at the time of triage or chief complaint of having a fever 135 

within the past 7 days. During the Zika epidemic in Puerto Rico (June 2016–June 2018), patients were 136 

eligible if they presented with either rash and conjunctivitis, rash and arthralgia, or fever [25]. Starting in 137 

April 2020, patients with cough or dyspnea within the last 14 days (with or without fever) were also 138 

eligible to better capture respiratory viruses [13]. No age groups were excluded, although infants were 139 

only eligible for enrollment if they presented to the hospital after their initial discharge after birth. After 140 

meeting the inclusion criteria and being informed about the study, participants provided written informed 141 

consent. In cases where patients were incapacitated at the time of triage due to acute illness, consent was 142 

sought after their stabilization. 143 

Data collection in SEDSS involves patient interviews and medical record reviews at both 144 

enrollment and convalescence (∼7–14 days later). The case investigation form (CIF) gathers 145 

demographics, comorbidities, and clinical features. The convalescent sample processing form (CSPF) 146 

echoes CIF data, adding the second specimen collection date and AFI severity indicators 147 

(hospitalizations, clinic visits). Initially paper-based (CIF/CSPF), data collection transitioned to electronic 148 

format in 2020 using REDCap on Android tablets [26, 27]. 149 

 150 

Sample collection and laboratory procedures  151 

 Blood, nasopharyngeal (NP), and oropharyngeal (OP) specimens were collected at enrollment 152 

from eligible participants. Additional blood samples (serum and whole blood) were also collected during 153 

the convalescent phase. Participation required providing at least one sample (blood or OP/NP swab). All 154 

patients had molecular testing for dengue virus for specimens collected within 7 days of symptom onset. 155 
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Serologic testing for anti-DENV antibodies was performed using Immunoglobulin M (IgM) antibody 156 

capture enzyme-linked immunosorbent assay (ELISA) for specimens collected >3 days after symptom 157 

onset (6). Dengue cases were defined as a positive result for DENV by RT-PCR or DENV IgM. 158 

 159 

Variable selection 160 

Our variable selection process was designed to identify features at the initial clinical presentation 161 

that could assist in accurately diagnosing laboratory-confirmed dengue cases. We began by considering 162 

54 variables based on physicians’ medical knowledge and clinical experience. These variables included 163 

demographic characteristics, recent travel history, warning signs, other clinical signs, and laboratory 164 

findings. Additionally, dengue monthly incidence in Puerto Rico during 2012 to 2024 was obtained from 165 

the Puerto Rico Passive Arboviral Disease Surveillance System (PADSS). This data informed prior 166 

knowledge that could influence a physician’s dengue diagnosis, consistent with previous research [21]. 167 

To refine feature selection, we used logistic regression to calculate crude unadjusted odds ratios 168 

for each of the 54 variables. The use of unadjusted odds ratios allowed us to quickly assess the strength of 169 

association between each variable and dengue diagnosis without the complexity of adjusting for 170 

confounders at this stage. This step helped to screen variables and group them into feature sets based on 171 

their association with dengue, as indicated by the magnitude of their odds ratios. The rationale for this 172 

approach is that, in clinical practice, certain variables with strong associations (e.g., high or low odds 173 

ratios) may be more immediately relevant for consideration in a diagnostic model. This is particularly 174 

useful in scenarios where we want to simplify the feature selection process while still capturing the most 175 

impactful predictors. By using different odds ratio cutoffs (e.g., >6 or <0.17, >3 or <0.33, >2 or <0.50), 176 

we created four groups of variables with varying levels of association strength. Additionally, we included 177 

a group of variables that were statistically significant at p<0.05, to ensure that we did not overlook 178 

potentially important features with more moderate associations. 179 
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The decision to use these crude odds ratios to define feature sets was driven by the need for a 180 

straightforward and clinically intuitive method to narrow down the initial list of 54 variables before 181 

applying more complex ML models. Although ML algorithms can automatically select and weight 182 

features during model training, this initial step allowed us to focus on variables that were already known 183 

to be clinically relevant or strongly associated with dengue, simplifying the interpretation of the models 184 

for clinicians. The final feature sets were then evaluated using various ML models to determine their 185 

predictive performance. The rationale for evaluating different sized feature sets was to understand how 186 

model performance might change as we included more or fewer variables. This approach helped us 187 

balance the trade-off between model complexity and predictive accuracy, particularly when considering 188 

the potential application of these models in different clinical settings. 189 

Although previous dengue infection is a known risk factor for developing severe disease and can 190 

influence clinical presentation, it was excluded from the primary analysis due to limitations in its 191 

applicability to routine clinical practice. Immunoglobulin G (IgG) testing is not universally available, and 192 

interpreting positive IgG results can be challenging for clinicians, potentially leading to misdiagnosis. 193 

However, to assess the potential impact of this variable on model performance, we conducted an 194 

additional analysis incorporating a history of prior dengue infection (confirmed by IgG) as an additional 195 

feature in the highest performing model within each feature set. To further explore the performance of the 196 

models in resource-constrained settings, where complete blood counts (CBCs) might not be readily 197 

available, we conducted an additional subanalysis excluding leukopenia and thrombocytopenia from the 198 

highest performing models within each feature set. 199 

 200 

Sampling 201 

To address class imbalance in our dataset, we used downsampling to ensure an equal 202 

representation of dengue-positive and dengue-negative cases [28]. Class imbalance, where dengue-203 

positive cases are significantly outnumbered by dengue-negative cases, can bias ML models towards the 204 
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majority class, reducing their ability to accurately predict minority class outcomes. Downsampling 205 

mitigates this issue by randomly reducing the number of majority class instances to match the number of 206 

minority class instances, thus balancing the dataset and improving the model’s ability to accurately 207 

classify dengue-positive cases. This process was performed using the downSample function from the 208 

caret package in R [29], setting the ratio of positive to negative cases to 1:1. The datasets were then 209 

randomly partitioned into training and testing sets using a 70:30 ratio. The training sets were used to train 210 

the ML models, whereas the testing set was reserved for model evaluation. 211 

 212 

Machine learning models 213 

We used an initial logistic regression model as a baseline to explore the relationship between 214 

potential predictors and dengue diagnosis outcomes. This model was trained using the same groups of 215 

variables based on different odds ratio cutoffs as mentioned earlier: variables with odds ratios >6, >3, >2, 216 

and any variables significant at p<0.05. Stepwise selection was used to iteratively add or remove variables 217 

to identify the optimal model with the lowest Akaike Information Criterion (AIC). This approach 218 

balances model complexity and goodness-of-fit by selecting variables that contribute significantly to the 219 

model. The final logistic regression model, derived from stepwise selection, was evaluated on both the 220 

training and testing sets.  221 

Six ML methods were used to predict dengue infections and assess feature importance. These 222 

algorithms were selected to represent a breadth of ML predictive models and reflect those commonly used 223 

as diagnostic tools for various diseases. The algorithms used include Random Forest (RF), Support 224 

Vector Machine (SVM), Artificial Neural Network (ANN), Adaptive Boosting (AdaBoost), Light 225 

Gradient Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost). RF is an ensemble 226 

learning method that constructs multiple decision trees during training and outputs the mode of their 227 

predictions for classification or the mean prediction for regression [30]. SVM is a supervised learning 228 

algorithm that finds the optimal hyperplane to separate data points of different classes in the feature space 229 
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[31]. ANN is a computational model inspired by the way biological neural networks work, consisting of 230 

interconnected nodes (neurons) that process input data to learn and make predictions [32]. AdaBoosting is 231 

an ensemble technique that combines the predictions of several weak classifiers to create a strong 232 

classifier by focusing more on the instances that previous classifiers misclassified [33]. LightGBM is a 233 

fast, distributed, high-performance gradient boosting framework that uses tree-based learning algorithms 234 

for efficient and accurate predictions [34]. XGBoost is an optimized gradient boosting framework that 235 

uses decision trees and a range of enhancements for improved performance and speed in predictive 236 

modeling [34]. In this study, we specifically used the “gbtree” booster, which implements decision tree-237 

based gradient boosting for learning the model. 238 

For parameter optimization, we used a grid search to evaluate different combinations of 239 

hyperparameter values, and the area under the receiver operating characteristic curve (AUC-ROC) was 240 

used as the optimization metric. We used 5-fold cross-validation during model training to ensure 241 

robustness and reduce overfitting. Specific details of the grid search strategy and parameters included in 242 

each model are provided in the Table S2. For gradient boosting models, the training process used 100 243 

boosting rounds with early stopping if the evaluation metric did not improve for 10 rounds. The R 244 

packages randomForest [35], e1071 [36], nnet [37], ada [38], lightgbm [39], and xgboost [40], were used 245 

for implementing RF, SVM, ANN, AdaBoost, LightGBM, and XGBoost models, respectively.  246 

  247 

Performance evaluation 248 

Model performance was evaluated on both the training and testing sets using AUC-ROC as the 249 

primary performance metric. AUC-ROC is an aggregate measure of performance across all possible 250 

classification thresholds, providing a comprehensive assessment of the model’s ability to distinguish 251 

between classes. We used the DeLong method to calculate the confidence intervals for the AUC-ROC to 252 

ensure accurate estimation of the model’s performance [41]. Additionally, confusion matrices were 253 

generated to assess the model’s classification performance in terms of sensitivity, specificity, and 254 
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accuracy. The optimal threshold for classification was determined using Youden’s index from the ROC 255 

curve [42]. Cohen’s kappa was also calculated to measure the agreement between predicted and observed 256 

classifications, accounting for chance agreement. 257 

Feature importance was assessed for each ML model. By quantifying each feature’s contribution 258 

to the model’s accuracy, we can identify the most influential features to better understand and improv 259 

predictions for each method. For RF, AdaBoost, LightGBM, and XGBoost, we used the varImp, varplot, 260 

lgb.importance, and xgb.importance functions from the randomForest [35], ada [38], lightgbm [39], and 261 

xgboost [40] packages. For SVM, we determined feature importance by calculating the absolute value of 262 

the coefficients from the support vectors. For ANN, we used permutation importance [43], which works 263 

by calculating the original AUC-ROC as a baseline, then permuting each feature to break its relationship 264 

with the target variable and recalculating the AUC-ROC. The importance of a feature is determined by 265 

the decrease in AUC-ROC after permutation; a significant drop indicates high importance. Predicted 266 

probabilities were uniformly binned, with mean predicted probabilities and observed positive case 267 

proportions calculated for each bin. All analyses were done using R version 4.4.0 [44]. 268 

 269 

Post-hoc subanalysis: Evaluating AUC with sequential feature 270 

addition 271 

After identifying feature sets based on crude odds ratios in the primary analysis, we performed a 272 

post-hoc subanalysis to evaluate model performance by sequentially adding the most important features 273 

from the highest-performing ML model. This approach simulates a refined diagnostic process where key 274 

features are known in advance. By recalculating AUC with each feature added, we assessed the 275 

incremental benefit of each and identified the minimum set of variables for optimal performance. This 276 

analysis also tested the robustness of our primary feature selection by comparing it to ML-derived feature 277 

importance. 278 

 279 
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 280 

Ethics statement 281 

The Institutional Review Boards at the Centers for Disease Control and Prevention (CDC), 282 

Auxilio Mutuo, and Ponce Medical School Foundation approved the SEDSS study protocols 6214, and 283 

120308-VR/2311173707, respectively. Written consent to participate was obtained from all adult 284 

participants and emancipated minors. For minors aged 14 to 20 years, written consent was obtained, and 285 

for those aged 7 to 13 years, parental written consent and participant assent were obtained. 286 

 287 

Results 288 

Participant Characteristics 289 

From May 2012 to June 2024, 51,219 unique AFI visits were recorded from 41,180 participants 290 

enrolled in SEDSS, including 8,035 hospitalizations or transfers and 73 deaths. Of these visits, there were 291 

49,679 AFI visits from 40,124 participants tested for DENV. The median age among was 15 years 292 

(interquartile range (IQR): 4, 38) and 52.8% were female (Table 1). From these, 1,640 (3.3%) had dengue 293 

(1,167 positive by RT-PCR, 473 positive by DENV IgM), 1,026 (62.5%) of which occurred during the 294 

2012–2013 epidemic. SEDSS participants tested positive for other arboviruses including chikungunya 295 

(n=2,291) and Zika (n=1,899), and respiratory viruses including influenza A (n=4,296), influenza B 296 

(n=1,726), human adenovirus (n=1,835), respiratory syncytial virus (n=1,576), and SARS-CoV-2 297 

(n=2,322), among others (S3 Table). The majority of the 1,155 serotyped dengue cases were DENV-1 298 

(n=903, 78.2%), followed by DENV-3 (n=111, 9.6%), DENV-2 (n=91, 7.9%), and DENV-4 (n=50, 299 

4.3%). Of 1,640 dengue cases, 737 (44.9%) were hospitalized or transferred, and two (0.1%) died. 300 

Median duration from symptom onset to presentation at the emergency room was 3 days [IQR: 1, 4] for 301 

dengue cases. A previous dengue infection, as indicated by a positive IgG test on or before the fifth day of 302 

illness, was present in 79.1% (n=564/713) of dengue cases tested. Additionally, 38.5% (n=632) had at 303 
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least one comorbidity, including obesity (28.4%), chronic pulmonary disease (20.2%), and hypertension 304 

(9.0%). 305 

 306 

Table 1. Demographic and clinical characteristics of participants (dengue and non-dengue cases), SEDSS, May 2012–June 
2024. Dengue cases had a positive result for dengue by RT-PCR or IgM. 

Total 
N = 49679 

n (%) 

Laboratory-
confirmed 

dengue cases 
N = 1640 

n (%) 

Non-dengue 
cases 

N = 48039 
n (%) p-value 

Month    <0.001 

   January  3706 (7.5)   133 (8.1)   3573 (7.4)   

   February  3792 (7.6)   102 (6.2)   3690 (7.7)   

   March  3905 (7.9)    71 (4.3)   3834 (8.0)   

   April  3939 (7.9)    78 (4.8)   3861 (8.0)   

   May  4291 (8.6)   107 (6.5)   4184 (8.7)   

   June  4377 (8.8)   157 (9.6)   4220 (8.8)   

   July  4317 (8.7)   144 (8.8)   4173 (8.7)   

   August  4489 (9.0)   171 (10.4)   4318 (9.0)   

   September  4366 (8.8)   163 (9.9)   4203 (8.7)   

   October  4423 (8.9)   162 (9.9)   4261 (8.9)   

   November  4184 (8.4)   199 (12.1)   3985 (8.3)   

   December  3890 (7.8)   153 (9.3)   3737 (7.8)   

Days post onset     <0.001 

   0  8363 (17.8)   119 (7.9)   8244 (18.2)   

   1-3 30321 (64.6)   699 (46.5)  29622 (65.2)   

   4-6  6587 (14.0)   621 (41.3)   5966 (13.1)   

   7+  1633 (3.5)    65 (4.3)   1568 (3.5)   

Age group     <0.001 

   <1  3449 (6.9)     31 (1.9)   3418 (7.1)   

   1-4 10539 (21.2)    107 (6.5)  10432 (21.7)   

   5-9  6640 (13.4)    234 (14.3)   6406 (13.3)   

   10-19  7394 (14.9)    665 (40.5)   6729 (14.0)   

   20-29  5885 (11.8)    211 (12.9)   5674 (11.8)   

   30-39  4046 (8.1)    109 (6.6)   3937 (8.2)   

   40-49  3294 (6.6)     88 (5.4)   3206 (6.7)   

   50+  8432 (17.0)    195 (11.9)   8237 (17.1)   

Female sex  26238 (52.8)    761 (46.4)  25477 (53.0)  <0.001 

Health region     <0.001 

   Aguadilla    44 (0.1)      2 (0.1)     42 (0.1)   

   Arecibo   197 (0.4)      4 (0.2)    193 (0.4)   

   Bayamon  1041 (2.1)     26 (1.6)   1015 (2.1)   

   Caguas   588 (1.2)     28 (1.7)    560 (1.2)   

   Fajardo   359 (0.7)     16 (1.0)    343 (0.7)   

   Mayaguez   118 (0.2)      6 (0.4)    112 (0.2)   

   Metro  6523 (13.1)    352 (21.5)   6171 (12.8)   

   Ponce 40667 (81.9)   1205 (73.5)  39462 (82.1)   

   Unknown   142 (0.3)      1 (0.1)    141 (0.3)   
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Previous DENV infectiona (N = 2062)    0.003 

   Yes 1703 (82.6) 564 (79.1) 1139 (84.4)  

   No   359 (17.4) 149 (20.9)   210 (15.6)  

Traveled to another country in past two weeks   1501 (3.0)     74 (4.5)   1427 (3.0)  0.001 

Household member with dengue    619 (1.2)    133 (8.1)    486 (1.0)  <0.001 

Reported mosquito bites in past month  8557 (17.2)    624 (38.0)   7933 (16.5)  <0.001 

Comorbidities     

   Chronic pulmonary disease or asthma  9721 (19.6)    331 (20.2)   9390 (19.5)  0.544 

   Cancer   907 (1.8)     26 (1.6)    881 (1.8)  0.519 

   Chronic kidney disease   607 (1.2)     12 (0.7)    595 (1.2)  0.085 

   Congenital heart disease  1822 (3.7)    52 (3.2)   1770 (3.7)  0.307 

   Diabetes  4065 (8.2)   105 (6.4)   3960 (8.2)  0.009 

   High cholesterol  3034 (6.1)    80 (4.9)   2954 (6.1)  0.039 

   Hypertension  6664 (13.4)   147 (9.0)   6517 (13.6)  <0.001 

   Arthritis  1954 (3.9)    22 (1.3)   1932 (4.0)  <0.001 

   Thyroid disease  2980 (6.0)    69 (4.2)   2911 (6.1)  0.002 

   Obesity  9221 (18.6)   199 (12.1)   9022 (18.8)  <0.001 

   Gastritis   531 (1.1)    27 (1.6)    504 (1.0)  0.028 

Warning signsb     

   Persistent vomiting  9401 (18.9)   409 (24.9)   8992 (18.7)  <0.001 

   Abdominal pain 17476 (35.2)   972 (59.3)  16504 (34.4)  <0.001 

   Restlessness 18500 (37.2)   767 (46.8)  17733 (36.9)  <0.001 

   Clinical fluid accumulation  2939 (5.9)    87 (5.3)   2852 (5.9)  0.093 

   Mucosal bleeding  4276 (8.6)   255 (15.5)   4021 (8.4)  <0.001 

   Hepatomegaly   119 (0.2)    44 (2.7)     75 (0.2)  <0.001 

Other clinical signs/symptoms     

   Fever 45090 (90.8)  1631 (99.5)  43459 (90.5)  <0.001 

   Conjunctivitis  1762 (3.5)   133 (8.1)   1629 (3.4)  <0.001 

   Chills 26690 (53.7)  1309 (79.8)  25381 (52.8)  <0.001 

   Nausea 23125 (46.5)  1127 (68.7)  21998 (45.8)  <0.001 

   No appetite 29972 (60.3) 1282 (78.2) 28690 (59.7) <0.001 

   Rash  9268 (18.7)   924 (56.3)   8344 (17.4)  <0.001 

   Yellow skin   793 (1.6)   68 (4.1)   725 (1.5) <0.001 

   Itchy skin 6574 (13.2) 603 (36.8) 5971 (12.4) <0.001 

   Headache 29778 (59.9)  1383 (84.3)  28395 (59.1)  <0.001 

   Eye pain 14106 (28.4)   985 (60.1)  13121 (27.3)  <0.001 

   Myalgia 23983 (48.3)  1221 (74.5)  22762 (47.4)  <0.001 

   Arthralgia 19948 (40.2)  1020 (62.2)  18928 (39.4)  <0.001 

   Tachypnea  9965 (20.1)   744 (45.4)   9221 (19.2)  <0.001 

   Back pain 17666 (35.6) 874 (53.3) 16792 (35.0) <0.001 

   Calf pain 12638 (25.4)   605 (36.9)  12033 (25.0)  <0.001 

   Arthritis  4155 (8.4)   242 (14.8)   3913 (8.1)  <0.001 

   Nasal discharge 30350 (61.1)   531 (32.4)  29819 (62.1)  <0.001 

   Sore throat 22632 (45.6)   599 (36.5)  22033 (45.9)  <0.001 

   Cough 33842 (68.1)   702 (42.8)  33140 (69.0)  <0.001 

   Diarrhea 13803 (27.8)   709 (43.2)  13094 (27.3)  <0.001 

   Hypotension  1327 (2.7)   133 (8.1)   1194 (2.5)  <0.001 

   Narrow pulse pressure   828 (1.7)    39 (2.4)    789 (1.6)  0.284 

   Seizure   654 (1.3)    28 (1.7)    626 (1.3)  0.156 

   Capillary refill <3  2955 (5.9)    99 (6.0)   2856 (5.9)  0.889 

   Pale skin 11276 (22.7)   772 (47.1)  10504 (21.9)  <0.001 
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   Blue lips   734 (1.5)    70 (4.3)    664 (1.4)  <0.001 

Laboratory     

   Leukopenia  3757 (7.6)   968 (59.0)   2789 (5.8)  <0.001 

   Thrombocytopenia  4811 (9.7)   738 (45.0)   4073 (8.5)  <0.001 

Monthly dengue incidence per 1000 people 0.01 [0.00, 0.02] 0.12 [0.04, 0.32] 0.01 [0.00, 0.02] <0.001 
a Previous DENV infection was defined as a positive DENV IgG test result collected within 5 days of symptom onset. 
b Hemoconcentration (an increase in hematocrit due to plasma loss) is a known warning sign for severe dengue but was 
excluded from this study, as it requires serial measurements that are challenging to obtain at initial patient contact. To 
maintain applicability for early, point-of-care diagnosis, we focused on predictors available at first presentation. 

 307 

Among the 1,640 dengue cases, the most frequent symptoms were fever (99.5%, an inclusion 308 

criterion for SEDSS), headache (84.3%), and chills (79.8%) (Table 1). Common warning signs included 309 

abdominal pain (59.3%), restlessness (46.8%), and persistent vomiting (24.9%). Additionally, 59.0% of 310 

cases presented with leukopenia and 45.0% had thrombocytopenia.  311 

 312 

Variable Selection 313 

We identified key demographic, clinical, and laboratory characteristics significantly associated 314 

with dengue infection (Table S1) and created feature sets with 8 (OR>6 or <0.17), 20 (OR>3 or <0.33), 315 

32 (OR>2 or <0.50), and 48 (p<0.05) variables, allowing us to assess the impact of different feature 316 

combinations on model accuracy (Table S1). The 8-variable feature set included age group, days post 317 

onset, rash, fever, leukopenia, thrombocytopenia, hepatomegaly, and self-reported history of dengue in a 318 

household member from participant questionnaire. The 20-variable set was derived from the 8-variable 319 

set, adding reported recent mosquito bites, chills, itchy skin, headache, chronic arthritis, eye pain, 320 

myalgia, tachypnea, nasal discharge, hypotension, pale skin, and blue lips. The 32-variable set also 321 

included diagnosis month, abdominal pain, conjunctivitis, nausea, arthralgia, diarrhea, cough, yellow 322 

skin, no appetite, back pain, mucosal bleeding, and dengue monthly incidence in Puerto Rico. The 48-323 

variable set also included sex, health region, recent travel, arthritis, sore throat, calf pain, gastritis, narrow 324 

pulse pressure, persistent vomiting, restlessness, hypertension, thyroid disease, chronic kidney disease, 325 

diabetes, high cholesterol, and obesity. Chronic pulmonary disease, cancer, congenital heart disease, 326 
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clinical fluid accumulation, seizure, and capillary refill <3 seconds were not associated with dengue 327 

infection at p<0.05 and were not included in ML models. 328 

 329 

Performance evaluation 330 

In addition to the multivariable LR, we used a diverse range of ML algorithms to predict the 331 

probability of dengue infection. These ML models offer the advantage of adapting to complex data 332 

patterns and potentially improving diagnostic accuracy.  333 

The 8-variable feature set had the lowest estimated AUC values across all models, ranging from 334 

85.2% to 87.1% on the test set (Fig 1, Fig 2, Table 2). As the feature set size increased, AUCs 335 

progressively improved. The 20-variable set achieved 89.0% ~ 89.5% AUC, and the 32-variable set 336 

reached 91.3% ~ 94.2% AUC. The 48-variable set showed minimal further improvement (91.3% ~ 337 

94.7%) compared to the 32-variable set. 338 

 339 

Fig 1. ROC curves of Logistic Regression, Support Vector Machine, Random Forest, Adaptive 340 

Boosting, Light Gradient Boosting, and Extreme Gradient Boosting models for (A) 8-, (B) 20-, (C) 341 

32-, and (D) 48-variable feature sets, SEDSS, May 2012–June 2024. The area under the receiver 342 

operating characteristic curve is shown. 343 

 344 

Fig 2. Forest plot of AUC values for Logistic Regression, Support Vector Machine, Random Forest, 345 

Adaptive Boosting, Light Gradient Boosting, and Extreme Gradient Boosting models for (A) 8-, (B) 346 

20-, (C) 32-, and (D) 48-variable feature sets, SEDSS, May 2012–June 2024. DeLong method was 347 

used to obtain the 95% confidence intervals for the AUC-ROC. 348 

 349 

Table 2. Performance of each algorithm for predicting dengue infection on the test set, SEDSS, May 2012–June 2024. 

Model Accuracy Sensitivity Specificity PPV NPV F1 Score Kappa AUC 

8-variable feature set          

   Logistic Regression 0.8049 0.8821 0.7276 0.7641 0.8606 0.8189 0.6098 0.8672 
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   Support Vector Machine 0.7734 0.8679 0.6789 0.7299 0.8371 0.7929 0.5467 0.8521 

   Random Forest 0.7998   0.9004   0.6992   0.7496   0.8753   0.8181 0.5996   0.8588 

   Artificial Neural Network 0.8089   0.8720   0.7459   0.7744   0.8535   0.8203 0.6179   0.8690 

   Adaptive Boosting  0.8089   0.8821   0.7358   0.7695   0.8619   0.8224 0.6179   0.8700 

   Light Gradient Boosting 0.8069 0.8963 0.7175 0.7603 0.8738 0.8228 0.6138 0.8701 

   eXtreme Gradient Boosting 0.8100 0.8516 0.7683 0.7861 0.8381 0.8176 0.6199 0.8706 

20-variable feature set         

   Logistic Regression 0.8211 0.8476 0.7947 0.8050 0.8391 0.8257 0.6423 0.8905 

   Support Vector Machine 0.8079 0.8760 0.7398 0.7710 0.8565 0.8202 0.6159 0.8901 

   Random Forest 0.8120   0.8760   0.7480   0.7766   0.8578   0.8233 0.6240   0.8896 

   Artificial Neural Network 0.8191   0.8557   0.7825   0.7973   0.8443   0.8255 0.6382   0.8911 

   Adaptive Boosting 0.8211 0.8577 0.7846 0.7992 0.8465 0.8275 0.6423 0.8919 

   Light Gradient Boosting 0.8262 0.8374 0.8150 0.8191 0.8337 0.8281 0.6524 0.8943 

   eXtreme Gradient Boosting 0.8201 0.8780 0.7622 0.7869 0.8621 0.8300 0.6402 0.8945 

32-variable feature set         

   Logistic Regression 0.8394 0.8272 0.8516 0.8479 0.8313 0.8374 0.6789 0.9126 

   Support Vector Machine 0.8343 0.8862 0.7825 0.8029 0.8730 0.8425 0.6687 0.9130 

   Random Forest 0.8628   0.8740   0.8516   0.8549   0.8711   0.8643 0.7256   0.9318 

   Artificial Neural Network 0.8415 0.8659 0.8171 0.8256 0.8590 0.8452 0.6829 0.9117 

   Adaptive Boosting 0.8648 0.8801 0.8496 0.8540 0.8763 0.8669 0.7297 0.9380 

   Light Gradient Boosting 0.8740 0.8882 0.8598 0.8636 0.8849 0.8758 0.7480 0.9414 

   eXtreme Gradient Boosting 0.8730 0.8760 0.8699 0.8707 0.8753 0.8734 0.7459 0.9424 

48-variable feature set         

   Logistic Regression 0.8547 0.8699 0.8394 0.8442 0.8658 0.8569 0.7093 0.9134 

   Support Vector Machine 0.8547   0.8598   0.8496 0.8511 0.8583   0.8554 0.7093 0.9168 

   Random Forest 0.8659   0.8740   0.8577   0.8600   0.8719   0.8669 0.7317   0.9385 

   Artificial Neural Network 0.8547 0.8923 0.8171 0.8299 0.8835 0.8599 0.7093 0.9185 

   Adaptive Boosting 0.8730 0.8598   0.8862 0.8831 0.8634 0.8713 0.7459 0.9401 

   Light Gradient Boosting 0.8770 0.9207 0.8333 0.8467 0.9131 0.8822 0.7541 0.9456 

   eXtreme Gradient Boosting 0.8791 0.8618 0.8963 0.8926 0.8664 0.8769 0.7581 0.9465 

PPV: positive predictive value; NPV: negative predictive value; AUC: area under receiver operating characteristic curve. 

 350 

Among ML models, LightGBM and XGBoost consistently achieved the highest AUC across all 351 

feature sets, outperforming multivariable LR, SVM, and ANN by ~3% for the 32- and 48-variable sets. 352 

This higher performance is likely due to their ability to efficiently handle large feature spaces, capture 353 

complex interactions, and prevent overfitting through advanced regularization techniques. Despite this, 354 

even simpler models like LR achieved strong performance with AUCs of 91% for the larger feature sets 355 

(32 and 48 variables), suggesting that core features captured a substantial amount of the predictive signal. 356 

AUC values exceeded 93% for all models in the 32- and 48-variable sets when evaluated on the training 357 

set (S4 Table). 358 
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All models had high sensitivity (>84%) across feature sets (Table 2). Specificity was lower for 359 

the 8-variable set (67.9 ~ 76.8%) but improved to >85% for most models in the 32- and 48-variable sets. 360 

XGBoost with 48-variables achieved the highest overall AUC (94.7%), with corresponding sensitivity 361 

and specificity of 86.2% and 89.6%, respectively. Adding IgG testing improved the performance of 362 

XGBoost models across all feature sets, increasing AUC values by 2.6%, 2.0%, 0.5%, and 0.2% for the 8-363 

, 20-, 32-, and 48-variable sets, respectively (S5 Table). Excluding leukopenia and thrombocytopenia 364 

from the XGBoost models resulted in a decrease in AUC values, ranging from 0.5% for the 48-variable 365 

set to 5.5% for the 8-variable set. 366 

F1 scores consistently exceeded 82% across all models for the 20-, 32-, and 48-variable sets, 367 

indicating a good balance of precision (correct positive predictions out of all positive predictions) and 368 

recall (correct positive predictions out of all actual positives). Kappa values were highest (~0.75) for 369 

LightGBM and XGBoost for the 32- and 48-variable feature sets, suggesting good agreement between 370 

model predictions and actual classifications, beyond what would be expected by chance.  371 

 372 

Feature importance 373 

For the 8- and 20- variable sets, leukopenia was the top-performing feature for SVM, ANN, RF, 374 

LightGBM, XGBoost, and LR, followed by thrombocytopenia and rash (S1 Fig, S2 Fig, S6 Table). Age 375 

group, days post onset, eye pain, and absence of nasal discharge also emerged as important predictors for 376 

RF, LightGBM, and XGBoost. In contrast, AdaBoost identified blue lips, hepatomegaly, and hypotension 377 

as the highest scoring features. AdaBoost focuses on creating a series of weak learners (typically decision 378 

stumps) and combines them to form a strong classifier. It gives more weight to misclassified instances in 379 

subsequent iterations, which can result in a different feature importance profile as the model emphasizes 380 

different aspects of the data to improve accuracy. For the 32- and 48- variable sets, monthly dengue 381 

incidence showed the highest predictive power for SVM, RF, ANN, LightGBM, XGBoost, and LR (S3 382 

Fig, S4 Fig).  383 
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In the subanalysis where the most important features identified by the highest performing ML 384 

model, XGBoost, were sequentially added to the feature set, we observed variable improvements in AUC 385 

values (S5 Fig). The initial addition of two variables increased the AUC by 2.8%, suggesting a substantial 386 

enhancement in model performance with the inclusion of high-priority predictors. As more variables were 387 

added, the gains in AUC became marginal, with incremental improvements ranging from 0% to 1.5%. By 388 

quantifying the gains in AUC through sequential addition of important features, this analysis highlights 389 

that a relatively small set of highly predictive features can achieve substantial diagnostic performance, 390 

reinforcing the utility of ML-based feature selection in optimizing clinical models. 391 

 392 

Discussion 393 

The use of various ML algorithms, including RF, AdaBoost, LightGBM, and XGBoost, 394 

demonstrate significant improvements in diagnostic accuracy for dengue infection compared to traditional 395 

methods. Prior research has shown that the diagnostic accuracy of the 1997 and 2009 WHO clinical case 396 

definitions for dengue has high sensitivity (93%) but low specificity (29% and 31%, respectively), 397 

making it challenging to distinguish dengue from other febrile illnesses in clinical settings [45]. With 398 

AUC values exceeding 90% for larger feature sets, these models could potentially reduce misdiagnosis 399 

rates and improve patient outcomes, especially in settings where rapid tests are either not authorized or 400 

limited in availability. Furthermore, ML models can be instrumental during large dengue outbreaks, 401 

where rapid triage is essential. For instance, an ANN model developed for dengue severity prognosis 402 

demonstrated good performance using demographic information and laboratory test results, indicating 403 

that ML can quickly predict disease severity and assist in efficient patient triage [20]. Supporting this, 404 

other studies have shown high accuracy and effectiveness of ML in dengue diagnosis: an Extra Trees 405 

Classifier model achieved over 99% accuracy in Yemen [48], XGBoost reached an AUC of 86% in 406 

patients with AFI in Vietnam [49], and Decision Tree and Multilayer Perceptron models attained 98% 407 

accuracy in Brazil [50]. Other research on predicting severe COVID-19 in hospitalized children 408 
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demonstrated higher diagnostic performance with ML approaches compared to LR, with just a few simple 409 

and easily collected parameters [22].  410 

The identification of key features such as leukopenia, rash, thrombocytopenia, and age group 411 

aligns with clinical knowledge of dengue presentations, validating the models’ ability to capture relevant 412 

clinical indicators and suggesting they can effectively complement and enhance existing diagnostic 413 

processes. Leukopenia and thrombocytopenia are well-documented hematological manifestations of 414 

dengue, indicating the disease’s impact on the blood cell count [51] and were identified as key predictive 415 

variables in a similar study [20]. Although these hematological markers substantially contributed to 416 

model performance, particularly in smaller feature sets, the XGBoost model with the 48-variable set 417 

excluding leukopenia and thrombocytopenia achieved an AUC of 94.1%, demonstrating that strong 418 

predictive performance can be attained without relying solely on these laboratory values. This finding 419 

highlights the potential for accurate dengue prediction in resource-limited settings where access to CBCs 420 

may be restricted. Although IgG testing modestly improved AUCs, its limited availability, potential for 421 

misinterpretation in routine clinical practice, and reliance on specialized laboratory infrastructure 422 

compared to readily available CBCs restrict its utility as a routine diagnostic tool. The inclusion of age 423 

group is consistent with other ML prediction models [20, 22] and highlights the varying clinical 424 

presentations and risks across different age demographics, underscoring the need for age-specific 425 

diagnostic approaches. Rash, while common in dengue, is also seen in various other febrile illnesses and 426 

should be considered alongside other symptoms for differential diagnosis [53]. Similarly, the absence of 427 

nasal discharge, more indicative of respiratory pathogens, can also aid in differentiation. Other similar 428 

studies also identified body temperature [20] and duration of fever [21] as important features. 429 

Identifying monthly dengue incidence as a key feature underscores the value of temporal patterns 430 

for accurate dengue prediction. However, the impact of this data may vary depending on its granularity. 431 

While our study highlights potential benefits, other research suggests that using broader regional 432 

incidence data may yield smaller improvements compared to more localized data reflecting the specific 433 

transmission dynamics in a patient’s area [21]. These findings suggest the need for real-time surveillance 434 
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and timely intervention strategies, potentially leading to more effective public health responses during 435 

peak transmission periods [54]. By leveraging localized monthly incidence data, healthcare systems can 436 

better allocate resources, anticipate outbreaks, and implement targeted prevention measures, ultimately 437 

reducing the burden of dengue on communities. 438 

Despite the high performance of advanced models like XGBoost, it is noteworthy that simpler 439 

models like multivariable LR also achieved AUCs of 91% for the larger feature sets. This indicates that a 440 

substantial portion of the predictive power lies within core features, potentially making LR a more 441 

interpretable and computationally efficient option for some applications. However, for the larger feature 442 

sets, gradient boosting models (XGBoost, LightGBM, AdaBoost) outperformed LR, SVM, and ANN, 443 

which may be attributed to the gradient boosting models’ ability to better capture complex feature 444 

interactions and non-linear relationships within the data. Gradient boosting models are inherently 445 

designed to improve prediction accuracy by iteratively focusing on the hardest-to-predict cases, which can 446 

be particularly advantageous when dealing with larger and more complex feature sets. On the other hand, 447 

consistently lower AUC values for SVM and ANN across all feature sets in our study suggest potential 448 

challenges these models face in capturing intricate feature interactions and effectively generalizing from 449 

the data. Specifically, ANNs may struggle with high-dimensional datasets due to the “curse of 450 

dimensionality,” where the addition of more features can lead to sparse data, making patterns harder to 451 

identify [55]. This, coupled with the risk of overfitting—where the model memorizes the training data but 452 

fails to generalize well to unseen data—can reduce accuracy, increase training times, and decrease 453 

interpretability. These factors contribute to the observed performance gap between ANNs and the gradient 454 

boosting models, particularly as the feature set size grows. 455 

The observation that the performance improvement between the 32-variable and 48-variable sets 456 

is minimal suggests a point of diminishing returns. Here, additional features contribute little to predictive 457 

power while potentially increasing model complexity and training time. Thus, while ensemble methods 458 

like XGBoost may be preferable for applications where maximizing predictive accuracy is paramount, it 459 

is important to weigh the benefits of added complexity against the potential gains in performance. 460 
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While some models demonstrated high sensitivity, others prioritized specificity, highlighting the 461 

need to carefully consider the desired balance between correctly identifying true positives (high 462 

sensitivity) and minimizing false positives (high specificity) for specific clinical applications. Another 463 

study from Thailand suggests that incorporating dengue NS1 rapid test results enhances diagnostic 464 

specificity in models like Bayesian networks, indicating potential for similar improvements in our ML 465 

models, which could better confirm non-dengue cases when combined with clinical and laboratory data 466 

[21].  467 

This study was subject to several limitations. First, the dataset’s heavy skew towards data from 468 

the 2012-2013 outbreak and its primary focus on DENV-1 may limit the generalizability of the models to 469 

other periods, regions, or serotypes. Future research should focus on validating these models in diverse 470 

settings, integrating real-time data, and exploring the inclusion of newer diagnostic features to refine their 471 

accuracy and applicability further. Second, although more features generally improve model performance, 472 

there is a risk of overfitting, especially with smaller datasets. Third, the models were developed using data 473 

from SEDSS, where the inclusion criteria required febrile illness. This criterion may limit the 474 

generalizability of the models to populations without similar inclusion criteria. Fourth, as diagnostic tools, 475 

these models would need to be re-fitted to different variables and populations to ensure their accuracy and 476 

applicability across various settings. Fifth, the SEDSS dataset used in this study is systematically 477 

collected and robust, which may not accurately reflect the conditions of real-world datasets. In many real-478 

world applications, data from electronic health records can be sparse, contain free text fields, or have 479 

incomplete information. This could affect the model’s performance if it were trained on less-structured 480 

data. 481 

This study demonstrates the potential of ML models, particularly XGBoost and LightGBM, to 482 

improve dengue diagnostic accuracy. By incorporating a wider range of features, including temporal 483 

patterns like monthly dengue incidence, these models achieved high AUC values, exceeding 90% for 484 

larger feature sets. This enables early and precise diagnosis, which could lead to improved patient 485 

outcomes and reduced viral spread during outbreaks, particularly in resource-scarce settings where the 486 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317272doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317272


25 

availability of rapid tests is often constrained. Furthermore, our findings highlight the importance of both 487 

complex ensemble methods and simpler models. While XGBoost and LightGBM offer superior 488 

performance, even LR achieved strong accuracy with core features. However, careful consideration of 489 

model interpretability, generalizability, and continuous validation are crucial for real-world 490 

implementation. It is important to note that these ML models are intended to aid and improve dengue 491 

diagnosis rather than replace current methods, such as laboratory testing. Future research should focus on 492 

addressing these aspects to ensure robust and generalizable ML models that can empower clinicians and 493 

public health authorities to effectively manage and control dengue worldwide. 494 

To facilitate clinical application, developing a user-friendly tool such as a calculator, Shiny app, 495 

or web-based interface to implement the prediction model is a crucial next step. This would bridge the 496 

gap between complex ML models and clinical practice, allowing for efficient integration into routine care 497 

and potentially improving diagnostic accuracy and timeliness. 498 
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