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Abstract 

 

Oral epithelial dysplasia (OED) is a potentially malignant histopathological diagnosis given to 

lesions of the oral cavity that are at risk of progression to malignancy. Manual grading of OED is 

subject to substantial variability and does not reliably predict prognosis, potentially resulting in sub-

optimal treatment decisions. We developed a Transformer-based artificial intelligence (AI) pipeline 

for the prediction of malignant transformation from whole-slide images (WSIs) of Haematoxylin and 

Eosin (H&E) stained OED tissue slides, named ODYN (Oral Dysplasia Network). ODYN can 

simultaneously classify OED and assign a predictive score (ODYN-score) to quantify the risk of 

malignant transformation. The model was trained on a large cohort using three different scanners 

(Sheffield, 358 OED WSIs, 105 control WSIs) and externally validated on cases from three 

independent centres (Birmingham and Belfast, UK, and Piracicaba, Brazil; 108 OED WSIs).  Model 

testing yielded an F1-score of 0.96 for classification of dysplastic vs non-dysplastic slides, and an 

AUROC of 0.73 for malignancy prediction, gaining comparable results to clinical grading systems. 

With further large-scale prospective validation, ODYN promises to offer an objective and reliable 

solution for assessing OED cases, ultimately improving early detection and treatment of oral 

cancer. 

 

Keywords: Oral Epithelial Dysplasia, Computational Pathology, Dysplasia Detection, Malignant 

Transformation 
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1. Introduction 

 

Oral epithelial dysplasia (OED) presents a significant challenge in the realm of oral pathology, 

where accurate diagnosis and early detection are paramount for effective intervention and 

prevention of malignant progression. OED is a potentially malignant histopathological diagnosis 

encompassing various lesions of the oral mucosa, typically manifesting as white (leukoplakia), red 

(erythroplakia) or mixed red-white (erythroleukoplakia) lesions1,2.  

Histopathological grading of Haematoxylin and Eosin (H&E) stained tissue using the World Health 

Organisation (WHO, 20173) classification system remains the current accepted practice for 

diagnosis and risk stratification of OED lesions. This is a three-tier system for grading OED into 

mild, moderate and severe grades based on the presence, severity and location of a wide range of 

cytological and architectural histological features (28 in total4,5). By its nature, this approach suffers 

from significant intra- and inter-observer variability and has poor predictive value for malignant 

transformation risk, potentially impacting on patient management. An alternate binary grading 

system, categorising lesions as low- or high-risk, based on the number of cytological and 

architectural features (as listed in the WHO criteria) aimed to improve the reproducibility of 

grading6,7. However, studies have shown significant variability and unreliability in grading using 

both systems, highlighting the need for a more objective and reproducible methods that can better 

predict malignant transformation risk in OED8,9.   

To address challenges in subjectivity and misclassification of precancerous and cancerous lesions, 

there is a growing interest in leveraging advanced technologies, particularly deep learning (DL), 

which has seen extensive use in medical image analysis over the past decade10–12. Several state-

of-the-art models, such as U-Net13 and DeepLab14, have been developed to perform image 

classification and segmentation. These models typically use convolutional neural networks (CNN), 

such as ResNet15, as feature extractors. Within digital pathology, many CNN-based algorithms 

have  been developed for segmenting both tissue type and nuclear instances16–19. Further, weakly 

supervised methods have became popular choices for the analysis of histology images, enabling 

slide-level classification based on patch-level predictions. These methods typically divide WSIs into 

smaller patches, before using CNNs to extract patch-level features20–22. However, despite their 

success, CNN-based models have limitations such as high computational overhead and difficulty in 

capturing long-range dependencies in images, when being used for either segmentation or 

classification. 

Transformers have gained widespread attention in recent years as they have been successfully 

applied in several natural language processing and computer vision tasks such as classification23–

25. A typical Transformer encoder consists of a multi-head self-attention (MSA) layer, a multi-layer 

perceptron (MLP), and a layer normalisation (LN). The MSA layer empowers Transformers to 

capture long-range dependencies, making them a strong candidate for semantic segmentation in 
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medical images26–28. Transformers, therefore, have the potential to overcome some of the 

limitations of traditional CNNs. However, only a handful of methods have applied Transformers for 

semantic segmentation in medical images26,29. Their application in histology has primarily been 

constrained to classification tasks30,31, with semantic segmentation left relatively unexplored. This 

raises the question of whether Transformers can be harnessed for semantic segmentation of 

histological images. 

In this study, we aimed to develop a novel, weakly supervised, DL pipeline that could reliably and 

objectively segment and classify OED, whilst predicting the risk of malignant transformation in OED, 

using WSIs of H&E-stained OED slides. Specifically, we achieve this using interpretable nuclear 

features from dysplastic regions on the WSI. Moreover, we conduct a rigorous evaluation of the 

performance of our pipeline by comparing it to other state-of-the-art methods. To demonstrate the 

robustness and generalisability of our approach, we have developed our model using a large 

cohort with extended validation on unseen datasets acquired from three national and international 

centres (Birmingham and Belfast, UK, and Piracicaba, Brazil). For reproducibility, we make our 

code publicly available: https://github.com/adamshephard/odyn_inference.

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317264doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317264
http://creativecommons.org/licenses/by-nc/4.0/


 

5 
 

Figure 1. Overview of the ODYN pipeline. The top left panel shows the study data, whilst the top right panel shows an overview of 
the ODYN pipeline. The first stage (bottom left) takes an input oral tissue WSI and segments various tissue/cell types. This is done via 
HoVer-Net+ for epithelial and nuclei segmentation, and Trans-UNet to locate the dysplastic areas of the slide. The second step 
(bottom middle) diagnoses the input tissue as OED or normal, by calculating the ratio of the epithelium that is predicted to be 
dysplastic. If this is above a threshold (found on model training), then the slide is classified as OED. Finally, the third stage (bottom 
right) gives a prognosis, i.e. predicts whether the case will become cancerous. To do this, we generate patch-level nuclear features 
within the dysplastic regions alone and use these within a multi-layer perception (MLP), to predict malignant transformation. 
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2. Results 

 

In this retrospective multi-centric study, we propose an innovative weakly supervised method 

for predicting the progression of OED lesions to malignancy. We additionally aim to produce 

a model that classifies oral tissue slides as being dysplastic vs non-dysplastic. We achieved 

this by analysing H&E-stained WSIs obtained from oral tissue biopsies, using a CNN, a 

Transformer and a MLP, in what we have called our Oral DYsplasia Network, “ODYN” (see 

Figure 1). 

 

2.1 Dysplasia Segmentation  

In many cases of OED, histological atypia is not present across the entire tissue section, and 

thus, the first step of this work was to identify only the regions where dysplastic changes 

were present. We trained a Transformer (based on Trans-UNet26) to detect and segment the 

different dysplastic areas in each WSI. Internal testing of the ODYN dysplasia segmentation 

model demonstrated an F1-score of 0.81 (Recall = 0.85, Precision = 0.77) on OED cases 

and a specificity of 1.00 on controls. On external testing, the ODYN model achieved a F1-

score of 0.71 (Recall = 0.76, Precision = 0.66). The results of the ODYN model were 

superior to that of other state-of-the-art methods including U-Net13, HoVer-Net+16,32, 

DeepLabV3+33, Efficient-UNet34, and Swin-UNet29 (see Supplementary Appendix, Table S2). 

Examples of dysplasia segmentation heatmaps are shown in Figure 2. 

 

2.2 OED Classification 

Next, we used a pretrained CNN (HoVer-Net+16,32) to segment the epithelium and the nuclei 

in the WSI. For OED classification, we calculate the proportion of the epithelium mask that 

was segmented as dysplastic (from the previous step) and use an empirically determined 

threshold to classify slides as being dysplastic vs. non-dysplastic. On internal testing, we 

achieved an F1-score of 0.96 (AUROC = 0.93, Recall = 0.94, Precision = 0.97). The 

performance remained high on external testing, gaining an F1-score = 0.96 (Recall = 0.93, 

Precision = 1.00), showing the robustness and generalisability of the proposed method. 

 

2.3 Malignant Transformation Prediction 

We generated patch-level morphological features in the dysplastic regions of OED cases, 

which were used as input to a MLP to calculate a risk-score for malignancy progression (the 

ODYN-score). On internal cross-validation we attained an AUROC of 0.71 for predicting 

malignant transformation, which remained relatively constant on external validation, rising to 
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0.73 (Table 1). These scores are competitive to existing clinical grading systems including 

WHO (2017) and binary grades. However, it must be noted that the binary grading system 

had a higher AUPRC of 0.72 when compared to the ODYN-score. For a complete evaluation, 

we also compared our ODYN-score to the other grading systems through a survival analysis 

(see Figure 3). On internal testing, our ODYN-score gained a comparable C-index of 0.65 

and hazard ratio of 3.40, when compared to the other grading systems, and was shown to 

be significant (p < 0.001). On external testing the ODYN-score (C-index = 0.63) again 

attained comparable performance to both the binary grading system (C-index = 0.62), and 

WHO grading system (G2 stratification; C-index = 0.61), with all three being significant. The 

ODYN-score continues to surpass the WHO G1 stratification in terms of C-index and hazard 

ratio on both internal and external testing. Overall, these results show the prognostic 

significance and utility of the ODYN-score, being comparable to that of a pathologist’s binary 

grade for predicting transformation-free survival. 

 

Figure 2. Dysplasia segmentation heatmap using the ODYN model. 

A) Severe OED (binary grade: high-risk) which transformed; B) Mild OED (binary grade: low 

risk) which did not transform. The green line depicts the ground truth dysplasia segmentation.  
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2.4 Feature Analysis 

For our feature analysis, we compared both nuclear counts and area ratio in the top ten 

patches from cases that ODYN predicted to transform (i.e., true positives, TPs) against 

those correctly predicted to not transform (i.e., true negatives, TNs). This analysis was 

performed on the external data alone, and boxplots are given in the Supplementary 

Appendix, Figure S2. The nuclear count analysis found a significantly higher number of 

“other” nuclei within the non-epithelial tissue (d = 1.31, p < 0.001), in TPs when compared to 

TNs. It also showed a significantly higher number of “other” nuclei within the epithelium (i.e. 

intra-epithelial lymphocytes, IELs) in TNs when compared to TPs, however with a small 

effect size (d = 0.31). It also displayed a significantly higher number of both dysplastic 

epithelial nuclei (d = 1.32, p < 0.001) and normal epithelial nuclei (d = 1.06, p < 0.001) within 

TNs when compared to TPs. The area ratio analysis found a significantly higher number of 

“other” tissue in TPs when compared to TNs (d = 1.26, p < 0.001). Finally, it also showed a 

significantly higher number of both dysplastic epithelium (d = 0.49, p < 0.001) and normal 

epithelium (d = 0.78, p < 0.001) within TNs compared to TPs. 
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Figure 3 Kaplan-Meier transformation-free survival curves. 

Internal testing is on the left and external testing is on the right. The top row is WHO Grade 
G1 (i.e. Mild/Moderate vs Severe OED), second row is WHO Grade G2 (i.e. Mild vs 
Moderate/Severe OED), followed by the Binary grade and the ODYN-score. 
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Table 1. Slide-level results for transformation prediction. Here, WHO Grade G1 is mild/moderate vs severe cases, whilst WHO Grade G2 is 
mild vs moderate/severe cases. For AUROC, AUPRC and C-Index, the mean value is given with the standard deviation in brackets. For the 
hazard ratio, HR, we additionally provide the 95% confidence interval in square brackets.  

  Internal Validation  External Validation  
  

Model  AUROC AUPRC HR p C-Index AUROC AUPRC HR p C-Index  

WHO Grade G1 0.61 (0.06) 0.47 (0.11) 2.10 [1.23 – 3.58] 0.013 0.60 (0.00) 0.57 (0.00) 0.59 (0.00) 1.62 [0.82 – 3.19] 0.164 0.56 (0.00) 

WHO Grade G2 0.67 (0.03) 0.63 (0.07) 10.93 [3.40 – 35.16] < 0.001 0.67 (0.00) 0.65 (0.00) 0.72 (0.00) 2.43 [1.12 – 5.29] 0.025 0.61 (0.00) 

Binary Grade  0.73 (0.05) 0.62 (0.07) 4.95 [2.78 – 8.81] < 0.001 0.69 (0.00) 0.68 (0.00) 0.72 (0.00) 2.84 [1.36 – 5.92] 0.005 0.62 (0.00) 

ODYN-score  0.71 (0.07) 0.43 (0.12) 3.40 [1.72 – 7.67] < 0.001 0.65 (0.02) 0.73 (0.05) 0.67 (0.05) 2.95 [1.44 – 6.02] 0.003 0.63 (0.04) 
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3. Discussion 

 

Several studies have explored the application of machine learning, including DL, to study 

OED. The general focus of these methods has been to segment the epithelium (and the 

nuclei), either manually or via DL models16,32,35,36. These segmentations have then been 

used in further DL models to predict grade or transformation32,35,37 or for pathologist-curated 

features based on digital images38. However, there has been little focus on segmenting 

dysplastic regions only for downstream prediction of malignant transformation.  

In this study, we introduce ODYN, a novel Transformer-based pipeline for OED 

segmentation, classification and malignant transformation prediction. This pipeline has been 

developed using the largest and most diverse multicentric OED dataset to date, digitised 

using six different scanners. The results obtained through rigorous testing and validation 

demonstrate the effectiveness of our models in various aspects of OED analysis. The ODYN 

dysplasia segmentation performance has consistently outperformed other state-of-the-art DL 

models. We found only one other study to attempt dysplasia segmentation in OED36. The 

authors used a DeepLabV3+ model and evaluated it at the patch-level on moderate/severe 

cases from a single centre. Our study improved on this, using a new Transformer-based 

architecture evaluated at the WSI-level on all types of OED (mild, moderate and severe) 

from multiple centres, gaining higher F1-scores. Furthermore, the ODYN model has 

demonstrated good generalisability across external unseen datasets, indicating its 

robustness and applicability in diverse clinical settings. This highlights the potential of 

Transformer-based architectures in accurately delineating regions of dysplasia in H&E 

stained WSIs of oral epithelial tissue. This novel ground-breaking approach has the potential 

to redefine the landscape of OED diagnosis by providing more precise and consistent 

results.  

ODYN has also demonstrated promising results for OED classification. In this study, we 

used the predicted dysplastic proportion of the epithelium in a WSI to determine a diagnosis 

of OED. We chose this method to classify a WSI as dysplastic, rather than classifying a WSI 

as dysplastic solely based on the presence of any predicted dysplasia. We made this choice 

because our model predictions often included small areas of false positives. This decision to 

define a threshold, proved to be successful on both internal and external testing. The high 

precision and recall achieved in classifying OED indicates the potential for automated 

diagnosis, which has the potential to increase diagnostic efficiency.  

The application of ODYN-produced segmentation maps in predicting malignant 

transformation represents a significant advancement in computational pathology. Notably, 
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this approach outperforms the OMTscoring pipeline proposed by Shephard et al. (2024)32 

with a substantial improvement in AUROC score (see Supplementary Appendix, Table S3 

for comparative results). However, some comments must be made regarding model 

performance on external testing. Despite the AUROC and AUPRC remaining high for ODYN, 

there was a substantial drop in C-index. This drop was also seen for the WHO and binary 

grades, suggesting that this may be attributed to differences between internal and external 

datasets (i.e. a domain shift). An analysis of the data used for external testing, showed a 

substantially different transformation-free survival rate for external centres. We see only 23% 

of cases to transform on internal testing. In contrast nearly, 42% of cases transformed in the 

external cohorts. This variation in the number of events is a clear indication of a type II prior 

(domain) shift between internal and external cohorts39 (see Supplementary Appendix, Figure 

S3, for Kaplan-Meier transformation-free survival curves), and is the clinical reality of 

retrospective cohorts. 

The provided approach offers a significant level of explainability; a crucial aspect for 

translating computational models to clinical practice. Our model used morphological/spatial 

features within (and around) dysplastic areas to generate a prediction, thus emulating the 

features used by the pathologist in OED grading. Our feature analysis allowed the 

exploration of different nuclear types within dysplastic vs normal epithelium. These analyses 

showed, unsurprisingly perhaps, that more dysplastic nuclei were present in the patches that 

were predicted to transform (vs non transformed). Corroborating this, they additionally 

showed cases that were correctly predicted to not transform to have more normal epithelial 

tissue (and nuclei). Moreover, cases that transformed exhibited increased “other” nuclei in 

both connective tissue and the epithelium. We posit that this elevated density of “other” 

nuclei around the epithelium within transforming cases likely indicates the presence of peri-

epithelial lymphocytes (PELs). Furthermore, emerging evidence from Bashir et al. (2023)35 

highlights a higher density of PELs in cases undergoing malignant transformation. These 

findings align with previous research, noting increased immune cell infiltration in tongue 

lesions progressing to OSCC40 and identifying distinct immune-related subtypes in moderate 

and severe OED41. 

We believe that the application of cutting-edge DL techniques, such as the ODYN pipeline, 

has huge translational potential which could help improve the accuracy and objectivity of 

OED diagnosis and grading. In addition to this, AI-based pipelines can improve prognostic 

reliability for prediction of cancer risk to improve patient outcomes. Future research should 

explore the scalability of the ODYN model to accommodate a broader range of oral 

conditions (such as those which can mimic OED) and tissue variations to assess whether it 

can accurately discriminate OED from other similar appearing conditions whilst still 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317264doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317264
http://creativecommons.org/licenses/by-nc/4.0/


 

13 
 

accurately predicting malignancy risk. This will enhance the clinical utility of the model and 

ultimately help provide more personalised patient care.  

The authors acknowledge challenges and opportunities for future research based on this 

study. A potential challenge highlighted by this work is the need to address the 

interpretability of DL models in clinical practice. We have therefore used an interpretable 

model for transformation prediction, that considers known histological features (e.g., shape 

and size variations of nuclei) to generate predictions from dysplastic ROIs. We provide 

heatmaps for each slide to help explain model decisions. We believe such approaches can 

enhance trust and acceptance amongst healthcare professionals. The authors additionally 

acknowledge limitations related to a retrospective study. It would have been of interest to 

further explore the model performance for predicting OED recurrence. However, as there is 

no standardised treatment protocol for OED, there may have been variations in patient 

management between centres, and it is also difficult to reliably know the difference between 

true recurrence and field change. We would have additionally liked to incorporate social risk 

factors (e.g., smoking, alcohol consumption) in the multivariable modelling, however, it was 

not possible to acquire consistent information between the different centres. These issues 

could be addressed by a future prospective validation study. Despite this, the external 

validation of our models across multiple centres and scanners is a notable strength of this 

study. Future research could explore the application of ODYN in even more diverse clinical 

settings and expand its utility to other histopathological tasks beyond OED analysis. We 

suggest testing the method on other head and neck precancerous lesions, such as laryngeal 

dysplasia, as an interesting future direction of research. 

In conclusion, our study signifies a substantial leap forward in the field of digital oral 

pathology, offering a powerful tool in ODYN for the detection, segmentation, and 

classification of OED, which we have made publicly available. This technology, underpinned 

by DL and Transformer-based architectures, showcases the potential of computational 

pathology to revolutionise the diagnosis and management of OED. The model's exceptional 

performance in both internal and external testing, along with its ability to improve 

transformation prediction, underscores its potential to impact clinical practice positively. By 

addressing challenges and continuing to refine the model, we envision ODYN playing an 

important role in improving the diagnosis and management of OED and potentially other 

head and neck precancerous lesions in the future. 
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4. Methods 

 

4.1 Study Cohorts 

4.1.1 Development and Internal Validation Cohort  

The training cohort consists of a retrospective sample of histology tissue sections (dating 

2008 to 2016 with minimum five-year follow-up data) collected from the Oral and 

Maxillofacial Pathology archive at the School of Clinical Dentistry, University of Sheffield, UK 

(referred to as the internal centre, hereafter). After microscopic inspection of the tissue 

sections by a Consultant Pathologist (SAK), newly cut 4 µm sections of the selected cases 

were obtained from formalin fixed paraffin embedded blocks and stained with H&E for 

analysis. 

In total, 509 slides were collected from 406 patients. The slides were digitised to high-

resolution WSIs at 40× objective power using one of three scanners: NanoZoomer S360 

(Hamamatsu Photonics, Japan; 0.2258 mpp), Aperio CS2 (Leica Biosystems, Germany; 

0.2520 mpp), Pannoramic 1000 (P1000, 3DHISTECH Ltd, Hungary; 0.2426 mpp). Further 

inspection of the WSIs excluded cases with poor staining quality, artefacts, distortions or 

blurring. The resulting cohort comprised 358 WSIs (n = 277 patients) with a confirmed 

histological diagnosis of OED and 105 WSIs (n = 81 patients) confirmed as non-dysplastic 

(controls). Due to incomplete follow-up data for five patients with OED (7 WSIs), these cases 

were only used for algorithm training and excluded from clinical outcome analysis. Thus, the 

final cohort included 351 WSIs (n = 272 patients) with confirmed diagnosis of OED amongst 

which 64 patients (79 WSIs) exhibited malignant transformation. Slides from the same 

subjects were assigned to the same fold during algorithm training/testing. An overview of the 

dataset and a CONSORT diagram are given in the Supplementary Appendix (Table S1 and 

Figure S1, respectively). 

Clinical follow-up data for the OED cohort included patient age (at time of diagnosis), sex, 

intraoral site, OED grade (using binary and WHO 2017 systems) and transformation status. 

Transformation was defined as the progression of a dysplastic lesion to OSCC at the same 

clinical site within the follow-up period, and transformation time was measured in months. To 

ensure diagnostic consistency, all cases were evaluated by at least two certified pathologists 

(PMS, PMF, DJB, KH), who provided an initial diagnosis based on the WHO grading system 

(between 2008-2016). To confirm the WHO (2017) grade and assign binary grades, the 

cases were blindly re-evaluated by SAK and a clinician with a specialist interest and 

expertise in OED analysis (HM).  
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Amongst the 358 OED WSIs, HM exhaustively delineated regions of interest (ROI) 

representative of dysplasia in a large subset of 260 OED WSIs, using in-built annotation 

tools in the QuPath® software42. Of the 105 control WSIs, HM additionally manually 

delineated the entire epithelium in a subset of 96 control WSIs42. 

4.1.2 Independent Validation Cohorts   

The ODYN model was tested on three external datasets acquired from: 

i. Precision Medicine Centre, Patrick G. Johnston Centre for Cancer Research, 

Queen’s University Belfast, UK (47 WSIs) 

ii. Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic 

Sciences, University of Birmingham, UK (42 WSIs) 

iii. Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental 

School University of Campinas (UNICAMP), São Paulo, Brazil (19 WSIs) 

Owing to the limited size of these datasets we combined them into a single multi-institutional 

external test set. Prior to the inclusion of external cases in the study, all WSIs were checked 

for suitability. Slides of poor quality, insufficient epithelium and cases positive for Candida 

Albicans or suggestive of Human Papilloma Virus infection were excluded. The WSI cohorts 

from Birmingham and Belfast were scanned at 40× objective power using a Pannoramic 250 

(P250, 3DHISTECH Ltd., Hungary; 0.1394 mpp) and Aperio AT2 (Leica Biosystems, 

Germany; 0.2529 mpp) whole-slide scanner, respectively, to obtain digital WSIs. The Brazil 

cases were scanned at 20× objective power, by an Aperio CS (Leica Biosystems, Germany; 

0.4928 mpp) scanner. The same clinical follow-up information was collected as that for the 

development/internal cohort. The external dataset did not include any control cases. Due to 

incomplete follow-up data for three patients with OED (3 WSIs), these cases were only used 

for algorithm validation and excluded from clinical outcome analysis. Thus, the final cohort 

included 105 WSIs (n=105 patients) amongst which 44 patients (44 WSIs) exhibited 

malignant transformation. A summary of this cohort and a CONSORT diagram are provided 

in the Supplementary Appendix (Table S1 and Figure S1, respectively). For model training, 

HM exhaustively delineated ROIs of dysplasia in 30 cases each from both Birmingham and 

Belfast, and an additional 18 cases from Brazil, using the QuPath® software. 

4.1.3 Ethics Statement 

Ethical approval for the study was obtained from the NHS Health Research Authority West 

Midlands (18/WM/0335), and experiments were conducted in compliance with the 

Declaration of Helsinki. Data collected were fully anonymised. 
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4.2 Analytical Workflow 

4.2.1 Dysplasia Segmentation  

Since dysplastic changes may not be widespread across the entire tissue section in a slide, 

the first step of developing the DL pipeline involved identification and localisation of the 

dysplastic tissue regions for semantic segmentation. To achieve this, we trained a 

Transformer, based on Trans-UNet26, to automatically detect and segment the different 

dysplastic regions in each WSI across the training dataset. The model takes an input image 

of size 512 × 512 (at 1.0 micron per pixel, mpp, resolution) and outputs a dysplasia 

segmentation map. 

For internal model testing, the dataset was split at 80/20, and controlled for both scanner 

type and OED grade. This resulted in 206 OED and 75 control WSIs in the training set, and 

54 OED and 21 controls WSIs in the internal testing set, with ground truth annotations. Note, 

a higher proportion of controls were kept in the test set to ensure high specificity of OED 

segmentation in the control sample. After tessellating the WSIs and region masks into 

smaller patches (512 x 512 pixels, 184 pixels overlap, 10× magnification, 1.0 mpp), a total of 

19,063 OED and 11,756 non-dysplastic patches were generated for model training/validation 

on the internal discovery cohort. This totalled 6,341 patches with ground truth annotations 

from the 78 WSIs in the external cohort. Various stain augmentation algorithms were tested 

during the development of the final model, using the TIAToolbox43. For the evaluation of 

OED segmentation, on both internal and external testing, large ROIs centred on the 

annotated tissue section were generated.  

4.2.2 OED Classification  

A pretrained CNN-based HoVer-Net+16,32 model was used to segment the epithelium and the 

individual nuclei across each WSI. To classify OED, the proportion of the epithelium mask 

that was segmented as dysplastic was calculated and an empirically determined threshold 

used to classify slides as being dysplastic vs. non-dysplastic (dysplasia-epithelium ratio, 

REpith). We found thresholds for this ratio based on all the WSIs used for training the 

dysplasia segmentation model (281 WSIs). We therefore tested the model internally on the 

remaining 182 WSIs, and externally on all 108 WSIs. HoVer-Net+ was used for inference 

alone for this task and was not further trained, as it is a state-of-the-art model for epithelium 

and nuclear segmentation and classification, that has been extensively pre-trained on OED 

data16,32. 

4.2.3 Malignant Transformation Prediction (ODYN-scoring) 

The WSIs were tessellated into smaller patches (512 x 512 pixels, with 256 pixels overlap at 

0.5 mpp) using tissue in the dysplastic regions alone. The nuclear segmentations from 

HoVer-Net+ were used to generate a total of 168 nuclear-based morphological and spatial 
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features for each (dysplastic) patch. See the Supplementary Appendix, pp 7, for a list of the 

features used. These patch-level features were used as input to an MLP to calculate a risk-

score for malignant transformation (ODYN-score). Thus, the ODYN-score indicated whether 

the algorithm predicted the case to have transformed (high-risk) or not transformed (low-risk). 

The MLP model had three layers with 168 nodes in the input layer, 64 nodes in the hidden 

layer, and 2 nodes in the output layer. It used a leaky ReLU activation function and dropout 

(0.2) after the hidden layer. The MLP was trained by Monte Carlo iterative-draw-and-rank 

sampling (IDaRS20), using a symmetric cross-entropy loss function and the Adam optimiser. 

This loss function was chosen as it has been shown previously to help overcome errors 

associated with weak labels20,44. IDaRS sampling was performed with parameter values of k 

= 5 for top predictive patches and r = 45 random patches, using a batch size of 256. On 

inference, the trained MLP calculated a prediction score for each patch in the dysplastic 

regions of the WSI, which can be considered the likelihood of a tile belonging to the positive 

class in the classification task (i.e., transformation). Slide-level scores were then obtained by 

taking the average prediction score across the top 50% ranked tiles. We used nuclear 

features with the aim of making the model interpretable. However, we additionally provided 

comparison to a ResNet34 classifier (trained with Macenko stain augmentation), using deep 

features, to show the impact on performance (see Supplementary Appendix, Table S3).  

We used repeated five-fold cross-validation in our ODYN-scoring internal experiments based 

on the internal cohort. For each fold of cross-validation, we held one fold back for testing, 

and used the remaining four folds with a 90/10 split of data for training/validation. We then 

tested our model externally, by evaluating each model from internal cross-validation (i.e. all 

15 folds) on the external data, and ensembling their predictions.  

Survival analyses were additionally conducted to assess the prognostic significance of the 

ODYN-score in predicting transformation-free survival. Kaplan-Meier curves were generated, 

and log-rank tests were used to determine the statistical significance of grading (for ODYN-

score, WHO and binary grades). A multivariate Cox proportional hazards model was 

employed, incorporating the ODYN-score, sex and age (and lesion site for internal testing), 

to predict transformation-free survival. We additionally performed this analysis using the 

binary and WHO grades in place of the ODYN-score for further comparison. Transformations 

were right censored at eight years across these analyses to ensure consistency between 

internal and external cohorts. 
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4.3 Feature Analysis 

We generated nuclear counts and area ratios in the ten top-ranked tiles (as correctly 

predicted by iterative draw and rank sampling). For nuclear counts, we studied dysplastic 

epithelial nuclei, normal epithelial nuclei, “other” nuclei from within the epithelium (i.e., intra-

epithelial lymphocytes, IELs), and “other” nuclei outside the epithelium (i.e., peri-epithelial 

lymphocytes, PELs). For area ratios, we studied the ratio of the patch that was “other” tissue, 

dysplastic epithelium, and normal epithelium. We performed paired two-tail t-tests (with false 

discovery rate, FDR correction for multiple comparisons) between patches from cases that 

ODYN correctly predicted to transform vs does not transform, to determine statistical 

significance. We additionally calculated effect sizes for these tests (cohen’s d). 

 

4.4 Evaluation Metrics 

Dysplasia segmentation performance (aggregated across all ROIs) was measured by 

calculating the F1-score, Recall and Precision. For internal testing of controls, a single 

measure of specificity for OED segmentation was reported, since a single incorrectly 

predicted pixel (e.g. incorrectly predicted as OED), would result in an F1-score, Recall, and 

Precision values of 0; thus, not giving an accurate representation of the model performance. 

For the evaluation of OED classification (dysplastic vs non-dysplastic) the F1-score, Recall, 

and Precision across all ROIs (and slides) were measured. Area under the receiving 

operating characteristic (AUROC) score was calculated for internal testing across all ROIs. 

For the evaluation of the ODYN-scoring pipeline, we provide an AUROC score and an area 

under the precision-recall curve (AUPRC) score across all slides. We used concordance 

index (C-index) to measure the rank correlation between predicted risk scores and patients’ 

survival time. The reported C-index is the mean over each repeat of the experiment, whilst 

the p-value is calculated by two times the median p-value (from the log-rank test) over all 

repeats, to get a conservative estimate. We additionally used the hazard ratio (HR) and p-

value output from the multivariate analyses as further metrics for evaluation. For reporting, 

we focus on the p-value from the multivariate analyses, being a more conservative and 

robust estimate. However, for completeness we also provide the log-rank p-value with the 

Kaplan-Meier curves. 

 

5. Data Availability 
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We are unable to share the whole slide images and clinical data, due to restrictions in the 

ethics applications. 

 

6. Code Availability 

 

In the spirit of reproducibility, we have made the inference code for our pipeline available 

online, with model weights https://github.com/adamshephard/odyn_inference. 
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