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Abstract 103 
 104 
Although genome wide association studies (GWAS) in large populations have identified hundreds 105 
of variants associated with common diseases such as coronary artery disease (CAD), most 106 
disease-associated variants lie within non-coding regions of the genome, rendering it difficult to 107 
determine the downstream causal gene and cell type. Here, we performed paired single nucleus 108 
gene expression and chromatin accessibility profiling from 44 human coronary arteries. To link 109 
disease variants to molecular traits, we developed a meta-map of 88 samples and discovered 110 
11,182 single-cell chromatin accessibility quantitative trait loci (caQTLs). Heritability enrichment 111 
analysis and disease variant mapping demonstrated that smooth muscle cells (SMCs) harbor the 112 
greatest genetic risk for CAD. To capture the continuum of SMC cell states in disease, we used 113 
dynamic single cell caQTL modeling for the first time in tissue to uncover QTLs whose effects are 114 
modified by cell state and expand our insight into genetic regulation of heterogenous cell 115 
populations. Notably, we identified a variant in the COL4A1/COL4A2 CAD GWAS locus which 116 
becomes a caQTL as SMCs de-differentiate by changing a transcription factor binding site for 117 
EGR1/2. To unbiasedly prioritize functional candidate genes, we built a genome-wide single cell 118 
variant to enhancer to gene (scV2E2G) map for human CAD to link disease variants to causal 119 
genes in cell types. Using this approach, we found several hundred genes predicted to be linked 120 
to disease variants in different cell types. Next, we performed genome-wide Hi-C in 16 human 121 
coronary arteries to build tissue specific maps of chromatin conformation and link disease variants 122 
to integrated chromatin hubs and distal target genes. Using this approach, we show that 123 
rs4887091 within the ADAMTS7 CAD GWAS locus modulates function of a super chromatin 124 
interactome through a change in a CTCF binding site. Finally, we used CRISPR interference to 125 
validate a distal gene, AMOTL2, liked to a CAD GWAS locus. Collectively we provide a disease-126 
agnostic framework to translate human genetic findings to identify pathologic cell states and 127 
genes driving disease, producing a comprehensive scV2E2G map with genetic and tissue level 128 
convergence for future mechanistic and therapeutic studies. 129 
 130 
 131 
Keywords: human genetics, coronary artery disease, genome wide association studies, single 132 
cell RNA sequencing, single cell ATAC sequencing, Hi-C, quantitative trait loci (QTL), CRISPR 133 
interference 134 
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 154 
Introduction 155 
 156 
Common diseases are driven by a multitude of factors and are among the most difficult to treat 157 
given the lack of a unified disease mechanism1,2. Coronary artery disease (CAD) is the most 158 
prevalent common heart disease and a leading cause of death worldwide3. Numerous genome- 159 
wide association studies (GWAS) have uncovered causal disease variants driving CAD risk and 160 
paved the way for new therapeutic target discovery4–9. Notably, much of the translation from 161 
GWAS to therapeutic targets in the CAD space has been restricted to lipid-lowering drugs10,11. 162 
While classically considered a lipid driven disease, large-scale clinical outcome studies have 163 
shown a persistent risk of CAD independent of lipid levels and patients continue to suffer from 164 
atherosclerotic disease despite optimal lipid-lowering therapy12–14. Additionally, most of the GWAS 165 
loci in CAD are thought to regulate biological pathways outside lipid biology15,16. Leveraging 166 
human genetics to uncover new lipid-independent biological mechanisms and drug targets in CAD 167 
presents a tremendous unmet need and would be a major milestone in translating population- 168 
scale GWAS findings to therapies for patients17–19. 169 
 170 
While population scale GWAS studies offer the greatest opportunity for target discovery, most of 171 
the variants identified lie within non-coding regions of the genome, making it difficult to dissect 172 
the causal cells and molecular pathways20,21. The advent of single cell sequencing technologies 173 
now allows for the profiling of human tissues in health and disease at unprecedented granularity22–174 
25. Prior studies have utilized traditional single cell RNA-sequencing (scRNA-seq) for detailed 175 
characterization of cell states in human tissue that drive disease26–33; however, these studies do 176 
not profile the non-coding genome making it challenging to link GWAS variants to observed 177 
molecular changes. More recently, Turner et al34 utilized single-nucleus assay for transposase-178 
accessible chromatin with sequencing (snATAC-seq) in human coronary arteries to link CAD 179 
GWAS variants to regulatory elements. Although this represented a major advance in the field, 180 
the lack of complementary transcriptomic profiling rendered it challenging to nominate the causal 181 
genes in these specific cell types. Furthermore, isolated snATAC-seq precludes the discovery of 182 
distal gene regulation as a driver of disease,35–37 and there are currently no studies which profile 183 
the 3D chromatin architecture in human coronary arteries to enable the study of these distal 184 
regulatory connections. More recently, technological advances have paved the way for 185 
simultaneous multi-omic profiling of the transcriptome and epigenome at single-cell 186 
resolution,32,36,38–45 presenting a unique opportunity to link genetic variants to cell types and genes 187 
to nominate causal gene programs driving disease risk. 188 
 189 
Herein, we performed Multiome (RNA + ATAC) sequencing in 44 human coronary arteries to build 190 
a multi-omic map of CAD. We utilized novel computational methods46,47 to link enhancers to 191 
putative target genes and built a single cell variant-to-enhancer-to-gene (V2E2G) map of human 192 
CAD. Furthermore, we performed single cell chromatin accessibility quantitative trait loci (caQTL) 193 
discovery to prioritize variants casually linked to changes in chromatin. Collectively, we found that 194 
the smooth muscle cells (SMCs) harbor the greatest genetic risk of CAD. To expand insight into 195 
gene regulation in functionally heterogeneous SMC cell states we utilized dynamic caQTL 196 
modeling48 to uncover cell-state dependent pathogenicity of disease variants. To dissect the role 197 
of genetic variants in regulating larger scale gene networks, we performed genome-wide Hi-C49 198 
in 16 human coronary arteries to link variants to distal genes and validated our findings using cell- 199 
specific Hi-C with chromatin immunoprecipitation (HiChIP-seq)50 and in vitro clustered regularly 200 
interspaced short palindromic repeats interference (CRISPRi). Collectively, we provide the first 201 
multi-omic map of human CAD and integrate transcriptomic, epigenetic, and chromatin 202 
architecture to link disease-associated genetic variants with causal cell types and genes. 203 
 204 
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Results 205 
 206 
Multi-omic map of human coronary artery disease 207 
We performed single nucleus Multiome (RNA + ATAC) sequencing in 44 human coronary arteries 208 
from non-failing donors and patients with chronic heart failure isolated at the time of orthotopic 209 
heart transplantation (Fig. 1a, Extended Data Fig. 1a, Supplementary Table 1). After quality 210 
control52, doublet removal52, data integration53, and clustering, we recovered 126,804 nuclei from 211 
11 distinct cell types (Fig. 1b, Extended Data Fig. 1b-d) present in all patient samples (Fig. 1c). 212 
To annotate cell types, we used paired RNA information from the nuclei for differential gene 213 
expression analysis and used canonical marker genes to annotate cell types (Fig. 1d, Extended 214 
Data Fig. 2a-b, Supplementary Table 2). We used MACS2 to call peaks from the ATAC-seq 215 
data (Fig. 1e) and identified 143,743 cell type specific differentially accessible marker peaks (Fig. 216 
1f). We found that there was a concordance between RNA and ATAC clustering; however, having 217 
gene expression enabled annotation of rarer cell types missed by ATAC-based clustering 218 
(Extended Data Fig. 2c-e). Using the RNA-based annotation and differentially-accessible peaks 219 
across cells, we found cell-type-specific enrichment of transcriptional motifs (Extended Data Fig. 220 
2f). Having paired RNA and ATAC information from the same nucleus offers a unique opportunity 221 
to construct a comprehensive genome-wide enhancer gene map from tissue. We linked peaks to 222 
genes using a new supervised single-cell model called scE2G (Wei-Lin Qiu, Maya Sheth, Robin 223 
Andersson, and Jesse Engreitz, in preparation), which predicts enhancer-gene regulatory 224 
interactions using features based on chromatin accessibility, distance, and peak-gene correlation 225 
across single cells (Fig. 1g, Extended Data Fig. 7a-f, Supplementary Table 13-13, Methods). 226 
We found that the non-immune cells (smooth muscle cells (SMCs), endothelial cells (ECs), and 227 
fibroblasts) had the greatest number of shared enhancers relative to myeloid cells (Fig. 1g).  228 
 229 
To test for enrichment of disease risk in the four major cell types (SMC, EC, Myeloid, Fibroblast), 230 
we used stratified LD score regression54 (LDSC) to partition heritability in cell-type marker peaks 231 
for key cardiometabolic diseases (coronary artery disease, diabetes, abdominal aortic 232 
aneurysms, diastolic/systolic blood pressure, and stroke)8,55–58. Notably, we found that SMCs and 233 
ECs harbor the greatest genetic risk across cardiometabolic disease variants (Fig. 1h). Next, we 234 
performed genome-wide Hi-C in 16 human coronary arteries (8 African American and 8 European 235 
individuals) (Fig. 1a,i,j, Extended Data Fig. 3a-d). We identified more loops at 10 kb resolution 236 
than at 2 or 5 kb resolution that were also on average smaller in size (Extended Data Fig. 3,f). 237 
To further enrich for high-confidence loops, we only retained loops identified in coronaries from 238 
at least two individuals. To uncover higher-level chromatin structures that are not as dynamic as 239 
loops, we also identified topologically associated domains (TADs) (Extended Data Fig. 3). 240 
 241 
Single-nuclei caQTL discovery 242 
Chromatin accessibility quantitative trait loci (caQTL) mapping can identify regulatory variants that 243 
regulate accessibility of a regulatory element in the genome through mechanisms such as altered 244 
transcription factor binding51,52. Single cell caQTLs enable further identification of variants that 245 
may regulate chromatin accessibility in a cell-type specific manner34,53. To boost our power for 246 
single-cell caQTL discovery, we built a chromatin accessibility meta-map by integrating our 247 
Multiome ATAC-seq data with prior snATAC-seq from human coronary arteries34 (Extended Data 248 
Fig. 4a). Our integrated CAD snATAC-seq meta-map of genotyped samples included 88 samples 249 
and 245,562 nuclei across 4 ancestries (Extended Data Fig. 4a-c). We then used this meta-map 250 
and RASQUAL59 to identify pseudobulk caQTLs in four major cell types (SMC, EC, Myeloid, 251 
Fibroblast) (Fig. 2a, Supplementary Table 14-21). Notably, RASQUAL simultaneously models 252 
allelic imbalance and QTL effect to improve fine-mapping of putative causal variants. A +/-10KB 253 
cis-window around the peaks was tested for association between variant and chromatin 254 
accessibility and age, sex, sequencing site, and the first four principal components of genotype 255 
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data were included as covariates (see Methods). At the 10% FDR threshold, we found 11,182 256 
caQTLs in SMCs, ECs, Myeloid cells, and Fibroblasts. We found that the power for QTL discovery 257 
was associated with number of nuclei (Fig. 2b, Extended Data Fig. 4d). As expected, we found 258 
that caQTLs were strongly enriched near the peaks they were predicted to regulate (Extended 259 
Data Fig. 4e). We used the scE2G map to link the caQTL peak to its predicted target gene. We 260 
next overlapped our pseudobulk caQTLs with GTEx bulk arterial tissue eQTLs by cell type and 261 
found several hundred shared QTL variants in SMCs, ECs, Myeloid cells, and Fibroblasts, 262 
respectively (Fig. 2c, Supplementary Tables 15, 17, 19, 21). Furthermore, we found a strong 263 
correlation in effect size between our SMC caQTLs and bulk coronary artery eQTLs from GTEx 264 
(Fig. 2d). 265 
 266 
To identify disease-associated caQTLs, we overlapped single-cell caQTLs for each cell type with 267 
CAD GWAS variants (defined as variants associated with CAD at 1% FDR8 along with variants in 268 
linkage disequilibrium with these at R2 ≥ 0.8 in the European population from 1000 Genomes 269 
Project) which yielded numerous disease relevant cell-type-specific caQTLs (Extended Data Fig. 270 
5a-d). For example, we found that rs7182567 was an SMC-specific caQTL that was also a GWAS 271 
variant (p = 5.4x10-26) and a bulk GTEx eQTL for ADAMTS7 in tibial artery (Fig. 2e, Extended 272 
Data Fig. 5a). To map this molecular trait to cell state, we leveraged our paired RNA information 273 
and sub-clustered the SMCs into transcriptionally distinct cell states, forming a continuum of 274 
contractile SMCs (SMC1-3) to de-differentiated SMCs (fibromyocyte, FMC; chondromyocyte, 275 
CMC) (Fig. 2f). Notably, we found that ADAMTS7 was most highly expressed in FMCs (Fig. 2f) 276 
suggesting a role in disease regulation. 277 
 278 
Similarly, we found that rs8017642 is an EC-specific caQTL for NEK9 (Fig. 2g, Extended Data 279 
Fig. 5b). To identify functionally-distinct endothelium cell states, we mapped our data to a high-280 
resolution single-cell RNA-seq atherosclerosis atlas60 and identified four transcriptionally-distinct 281 
endothelium subsets (Fig. 2h). Notably, NEK9 was expressed in endothelial cells enriched with 282 
endothelium-to-mesenchymal transition (EndoMT) genes, such as COL1A1 and FN161 (Fig. 2h, 283 
Extended Data Fig. 5e). Pathway enrichment for marker genes for the EndoMT population 284 
showed increased EMT and stress response signals (Extended Data Fig. 5f). Next, we used the 285 
41 EC-specific putative causal genes previously identified from in a V2G2P analysis of CAD 286 
GWAS loci47 to create a gene set score which showed maximal enrichment in intimal ECs 287 
(Extended Data Fig. 5g). Additionally, as prior work has uncovered a gene program47 driving 288 
CAD pathogenesis in ECs (Program 8), we created a gene signature for all Program 8 genes. 289 
Consistent with prior work,47 we found an enrichment of this program in angiogenic/vaso vasorum 290 
ECs (Extended Data Fig. 5j). 291 
 292 
To illustrate how a cell type specific caQTL can impart functional transcriptional changes, we 293 
examined the CAD GWAS variant rs658956. The variant is an SMC-specific caQTL and regulates 294 
a putative enhancer element (chr1:59169569-59170069) that is linked to the HSD52 gene (based 295 
on scE2G) (Fig. 2j,k). Additionally, transcription factor binding site (TFBS) analysis found that 296 
rs658956, which changes the reference (G) to alternative (T) allele,  is predicted to disrupt a 297 
BACH1/2 TF binding motif (Fig. 2l). Furthermore, we found that rs658956 is also a tibial artery 298 
eQTL for HSD52 expression (p = 1.1x10-41) wherein the switch from reference (G) to alternate (T) 299 
is associated with decreased expression (Fig. 2m). Collectively, this would suggest that the 300 
GWAS variant rs658956 may impact TF binding thereby decreasing chromatin accessibility of the 301 
enhancer and subsequently reducing HSD52 gene expression. 302 
 303 
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Idenfitying caQTLs that are dynamic with SMC de-differentiation state 304 
Molecular QTL discovery using bulk or pseudobulk data is generally carried out in a cell state 305 
agnostic-manner from tissues which collapses cells across a heterogeneous mix of cell states. 306 
For example, in the development of atherosclerosis is it known that SMCs undergo a phenotypic 307 
switch from a contractile to a fibroblast-like FMC phenotype30 which is accompanied by 308 
corresponding transcriptional changes. Paired multiomic RNA-ATAC sequencing offers the 309 
opportunity to characterize individual cells within a global cell type across continuous 310 
transcriptional cell states and to model this continuum of heterogeneous cell states to discover 311 
peaks that may modify or be modified by QTL variant effects54.  312 
 313 
Using the top 100 marker genes defined in FMCs from Wirka et al30, we created an FMC module 314 
score across our integrated SMC map and identified a continuum of activation states (see 315 
Methods, Fig. 3a, Extended Data Fig. 6a-b). We then binned nuclei into bottom, middle, and top 316 
thirds based on FMC score for downstream modeling (Fig. 3b). To dissect caQTL dynamics in 317 
the context of cell state, we utilized a Poisson mixed effect (PME) single cell model48,55 (Fig. 3c, 318 
Extended Data Fig. 6c). This approach models cell-level fragment counts with random effect 319 
covariates to account for relatedness shared by cells from the same sample and sequencing 320 
conditions. Briefly, at baseline we model ATAC fragment counts with fixed effect covariates 321 
including genotype, number of fragments per cell, TSS enrichment per cell, principal components 322 
of single-cell ATAC counts, principal components of genotype data, random effect covariates 323 
(batch and sequencing site), and intercept. To test for dynamic caQTLs where the genotype effect 324 
is modified by SMC cell state, we then added a cell-level FMC score term and a genotype-FMC 325 
score interaction term as covariates in the model (Fig. 3c). Finally, we binned the nuclei by 326 
bottom, middle, and top FMC score buckets (Fig. 3b,c) and identified dynamic caQTLs which 327 
differ according to cell-state. 328 
 329 
We ran the PME single cell model on the lead variants of SMC-specific caQTLs identified through 330 
the RASQUAL pseudobulk analysis and found 794 caQTLs which are dynamic with respect to 331 
FMC score (Fig. 3d, Supplementary Table 22). The significant interaction term indicates a 332 
modification of genotype effect on peak accessibility during cell-state transition or a genotype-333 
specific modification of cell-state dependent changes on peak accessibility, both of which are 334 
plausible depending on the mechanism of the variant (e.g. variant modifies pioneer vs. non-335 
pioneer transcription factor binding). Notably, of the 794 ATAC peaks regulated by dynamic 336 
caQTLs, 12 also contained CAD GWAS variants (Fig. 3e). We then used the scE2G map to link 337 
the 12 dynamic disease-associated caQTLs to target genes. To connect the dynamic disease-338 
associated genes to gene programs, we used a large language model (ChatGPT) to group genes 339 
by biological groups and found an enrichment of VSMC function/migration, transcriptional 340 
regulation, and ECM remodeling cellular processes and signaling pathways (Fig. 3e). 341 
Interestingly, we found that a gene set score of these genes (Fig. 3e) was enriched in FMCs 342 
(Extended Data Fig. 6d) bolstering a role in disease regulation through cell state phenotypic 343 
switching. For example, the CAD GWAS SNP rs11838776 is a dynamic caQTL variant for an 344 
enhancer (chr13:110388102-110388602) that lies within COL4A2/COL4A1 locus. The strongly 345 
negative interaction term of the PME model suggests that the alternate allele of rs11838776 may 346 
further decrease accessibility of this enhancer as the SMCs transition into a more FMC-like cell 347 
state. We further confirmed this effect by visualizing minimal genotype-specific effect in ATAC 348 
accessibility in “quiescent” SMCs (bottom third FMC score) versus larger negative genotype-349 
specific effect in “de-differentiated” FMCs (top third FMC score) (Fig. 3f,g). Interestingly, the bulk 350 
GTEx data suggests that rs11838776 is not an eQTL for COL4A1 in tibial arteries (p = 0.69) but 351 
is an eQTL for COL4A1 in cultured fibroblasts (p = 2.2x10-6) with the same directionality as the 352 
interaction effect (Fig. 3h). Collectively, this would suggest that rs11838776 and its enhancer may 353 
regulate COL4A1 expression only as cells enter a fibrogenic fate. To dissect the molecular 354 
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mechanism driving this dynamic QTL effect, we explored TF binding motifs surrounding the 355 
rs11838776 variant. We found that the reference allele (G) contributes to a consensus binding 356 
motif for EGR1/2, while the alternate allele (A) is predicted to abrogate this motif (Fig. 3i). 357 
Furthermore, we created a gene set score for EGR1/2 and COL4A1/2, respectively, using RNA 358 
data and found greatest expression in the CMC/FMC cell state suggesting that as SMCs de-359 
differentiate EGR1/2 expression increases, driving COL4A1/2 expression (Fig. 3j). We also found 360 
that the CAD GWAS variant rs658956 was dynamic for chromatin accessibility at the SMC specific 361 
enhancer and linked to HSD52 (Fig. 2j-k, Extended Data Fig. 6e). 362 
 363 
Single cell disease variant-to-enhancer-to-gene map 364 
To map CAD disease variants to cell types and genes in an unbiased fashion, we built a disease 365 
relevant variant-to-enhancer-to-gene (V2E2G) map as follows46,47,63 (Fig. 4a,b): 366 
 367 

1) Select ATAC-seq peaks from the 4 major cell types which contain a CAD GWAS variant 368 
(1,533) 369 

2) Variant-to-enhancer (V2E): identify cell-type-specific peaks (as called by MACS2, see 370 
Methods) overlapping disease variants, and H3K27ac peaks from bulk coronary 371 
arteries56,57. Using this approach, we found cell specific V2E pairs: SMC (490), 372 
endothelium (424), fibroblast (431), and myeloid (367). 373 

3) Variant-to-enhancer-to-gene (V2E2G): Link peaks from (2) to genes using a new 374 
supervised single-cell model called scE2G (Wei-Lin Qiu, Maya Sheth, Robin Andersson, 375 
and Jesse Engreitz, in preparation), which predicts enhancer-gene regulatory interactions 376 
using features based on chromatin accessibility, distance, and peak-gene correlation 377 
across single cells (Fig. 4a, Extended Data Fig. 7a-f, see Methods). Overlapping scE2G 378 
predictions with our cell-type-specific peaks, we found the following (single-cell V2E2G 379 
peaks, no. linked genes): SMC (276, 325), endothelium (239, 268), fibroblast (235, 279), 380 
and myeloid (199, 236). 381 

4) Finally, to nominate V2E2G links which also affect a molecular trait, we overlapped V2E2G 382 
peaks with our single cell caQTLs and found the following (single-cell V2E2G peaks with 383 
caQTLs, no. linked genes): SMC (49, 41), endothelium (5, 3), fibroblast (13, 11), and 384 
myeloid (15, 12). 385 

 386 
Notably, we found that SMCs were most enriched with V2E2G links and likely harbor the greatest 387 
genetic risk of driving CAD. Overlapping V2E2G with single-cell caQTLs provides a high-fidelity 388 
set of cell-type-specific hits which may be driving disease in SMCs through a direct change in a 389 
molecular trait – however, this approach is challenging in more rare cell types where fewer nuclei 390 
hinder QTL discovery (Fig. 2b, 4b). 391 
 392 
SMC V2E2Gs are disease relevant 393 
We utilized ChatGPT to group SMC V2E2G which are caQTLs (41 genes) into functional 394 
biological programs and found enrichment across SMC processes including ECM remodeling, 395 
cellular growth and proliferation, metabolism, cytoskeletal organization, and gene regulation (Fig. 396 
4c). To identify SMC V2E2G targets which correlate with disease burden, we first used the top 397 
100 FMC marker genes from Wirka et al30 to generate a FMC marker gene score (Fig. 4d), 398 
correlated expression of genes identified from V2E2G in SMCs with FMC score, and plotted the 399 
correlation colored by adjusted p-value (Fig. 4e). We found that 278/325 genes from our V2E2G 400 
showed a positive correlation with FMC score while no genes had a negative correlation, 401 
demonstrating an enrichment for disease relevant linked genes (Fig. 4e). To identify those with 402 
highest confidence, we restricted these 278/325 genes to those that were nominated from our 403 
bulk arterial GTEx and SMC caQTL overlap analysis which resulted in a set of 5 genes (Fig. 4e,f). 404 
A heatmap of these 5 genes (MYO9B, COL4A1, COL4A2, FNDC3B, and LRRFIP1) shows 405 
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increasing expression as SMCs transition from contractile (SMC1-3) towards de-differentiated 406 
disease associated states (CMC, FMC) (Fig. 4f). Furthermore, we created a gene set score for 407 
the 325 SMC V2E2Gs and found greatest enrichment in SMC3 and FMCs (Fig. 4g) – collectively, 408 
these findings support the notion that FMCs harbor the greatest genetic risk of CAD. Among 409 
these, we highlight rs7246865 as an example as we found this variant to be an SMC dynamic 410 
caQTL, a pseudobulk caQTL, and a V2E2G link, thus underscoring its potential importance in 411 
disease. We show that rs7246865 falls inside an SMC peak (snATAC-seq) and coronary artery 412 
enhancer (ENCODE human coronary artery H3K27ac), and there is a E2G link to the MYO9B 413 
and HAUS8 transcription start site (Fig. 4h). Importantly, a prior study has used CRISPRi to 414 
validate that disruption of rs7246865 is causally linked to MYO9B/HAUS8 expression8. 415 
 416 
Disease variant chromatin networks 417 
To dissect the broader impact of disease variants on gene networks through chromatin looping, 418 
we used genome-wide human coronary HiC to construct large scale chromatin networks (Fig. 419 
5a). Briefly, we built interconnected chromatin networks with interacting anchors using a fast 420 
greedy modularity optimization algorithm58,59(Fig. 5a, see Methods). We found 5,331 421 
interconnected networks (Fig. 5b). To identify disease associated networks and build a variant-422 
to-enhancer-to-network (V2E2N) map, we identified networks where any loop within the network 423 
contains a V2E in either anchor (i.e. a snATAC peak that contains a GWAS variant and overlaps 424 
with and ENCODE coronary artery H3K27ac) for SMCs, fibroblasts, ECs, and myeloid cells (Fig. 425 
5b). Interestingly, we found that all networks contain an average of 18 HiC loops while disease 426 
associated networks (V2E2N) contain an average of 59 HiC loops (in SMCs) (Fig. 5c). To identify 427 
genes implicated in our V2E2N, we found all snATAC-seq peaks present in any HiC anchors in 428 
the V2E2N (Fig. 5a) and identified linked genes using the scE2G map as before (Fig. 4a,b). Using 429 
this interested approach, we mapped a variant to a catalogue of genes that may be regulated 430 
locally or distally through a linked chromatin network (Fig. 5d). This strategy identified key disease 431 
networks which form ‘super chromatin interactome’ hubs wherein a disease variant is part of 432 
several hundred interconnected chromatin loops (Fig. 5d,e). Interestingly, we found that the CAD 433 
GWAS variant rs4887091 (located within enhancer element chr15:78750919-78751419) was part 434 
of a super chromatin interactome that consisted of numerous genes such as CHRNA3, CHRNA4, 435 
MORF4L1, CHRNA5, CTHS, and ADAMTS7 which were also V2E2G for rs4887091 – notably, 436 
CHRNA3, CHRNA4, and ADAMTS7 were also arterial eQTLs for rs4887091 (Fig. 5e,f). At the 437 
disease variant rs4887091, a base pair change from the reference (T) to alternate (C) allele leads 438 
to a change in a CTCF binding motif (Fig. 5g). We performed ChIP-seq for CTCF in cultured 439 
human coronary artery smooth muscle cells (HCASMCs) and demonstrated that rs4887091 440 
overlaps a CTCF binding site, suggesting that this variant may drive broader changes in chromatin 441 
organization through regulation of CTCF binding (Fig. 5h). 442 
 443 
Cell type specific mapping of disease variants to distal genes 444 
Although our scE2G predictions are limited to enhancer-gene interactions within a cis-window, 445 
leveraging our Hi-C based V2E2N analyses we can assign potential distal gene regulatory 446 
function to disease variants. Using our V2E2N, we can map disease variants to distal genes. As 447 
an example, we find that the CAD GWAS variant rs9876658 falls within a snATAC-seq peak in 448 
SMCs, ECs, and fibroblasts (but not myeloid cells) highlighting stroma specific regulation (Fig. 449 
6a). From the genome-wide coronary artery HiC we find a loop connecting the rs9876658 450 
enhancer to the AMOTL2 transcription start site – notably, we do not find a chromatin loop 451 
between rs9876658 and the nearest gene ANAPC13 (Fig.6a). Collectively, this analysis predicts 452 
that rs9876658 regulates AMOTL2 expression in stromal cells, however since our HiC is from 453 
bulk coronary arteries we cannot implicate a specific cell type, and furthermore, snATAC-seq 454 
alone does not identify functional enhancers. 455 
 456 
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Furthermore, published bulk coronary artery H3K27ac does not provide cell specificity for active 457 
enhancers, so to map disease variants to cell type specific enhancers, we performed H3K27ac 458 
ChIP-seq in human coronary artery smooth muscle cells (HCASMC) and human coronary 459 
endothelial cells (HCAEC) and found that rs9876658 overlapped with a H3K27ac peak in SMCs 460 
but not ECs (Fig. 6b), suggesting the ATAC-seq peak containing rs9876658 is a functional 461 
enhancer in SMCs but not endothelial cells. Next, to address limitations of bulk tissue chromatin 462 
capture, we performed HiChIP-seq in HCASMCs and HCAECs and found a direct loop between 463 
the enhancer containing rs9876658 and the AMOTL2 promoter in SMCs but not ECs (Fig. 6b).  464 
 465 
CRISPRi of rs9876658 affects AMOTL2 expression in SMCs 466 
To causally link rs9876658 to cell specific regulation of AMOTL2, we performed CRISPRi 467 
targeting the TSS (AMOTL2) and regulatory enhancer (containing rs9876658) with a Lenti-dCas9-468 
KRAB-blast vector (see Methods). We found that targeting the AMOTL2 TSS led to a complete 469 
knockdown of AMOTL2 expression in HCASMCs and HCAECs validating our system (Fig. 6c). 470 
Interestingly, targeting the AMOTL2 TSS also led to a modest reduction in ANAPC13 expression 471 
in HCASMCs, consistent with our network analysis which identified AMOTL2 and ANAPC13 being 472 
part of the same network (Fig. 6c). Importantly, targeting of the enhancer containing rs9876658 473 
led to a reduction in AMOTL2 expression in HCASMCs but not HCAECs bolstering our prediction 474 
from human tissue mapping (Fig. 6c). Collectively, these analyses nominate rs9876658 as a 475 
causal regulator of AMOTL2 expression in SMCs but not ECs and implicate this gene as a novel 476 
candidate for atherosclerosis. 477 
 478 
Discussion 479 
 480 
GWAS studies have identified hundreds of variants driving common diseases such as CAD1,7–9,60. 481 
A key challenge in going from human genetics to druggable therapies is our lack of understanding 482 
of the causal cell types and gene programs driving disease15. The emergence of multi-omic single 483 
cell technologies has given us a unique opportunity to profile human tissue at high resolution25,61. 484 
Numerous studies have leveraged these technologies to uncover cellular heterogeneity in human 485 
tissue across many diseases contributing to a human cell atlas26–29,32,33,62,63. Yet, there are few 486 
studies which have mapped common disease variants to causal cell types and genes for target 487 
discovery from human tissue. Further, a key limitation of prior studies is the use of uni-modal 488 
sequencing technologies or reliance on cell-based systems which precludes discovery of disease 489 
targets from the native tissue environment. 490 
 491 
Our study utilized a new technique, single nucleus Multiome (RNA + ATAC)32,38,39, in human 492 
coronary arteries from 44 patients with paired genotyping for un-biased characterization of the 493 
transcriptome and epigenome at single cell resolution. Capturing paired gene expression and 494 
chromatin accessibility from the same nucleus allows for ground truth peak-gene linkage40,42,43,64,65 495 
and is an important milestone for gene regulation discovery in human tissue. We also utilized a 496 
novel computational framework, scE2G46,47,66, to build an un-biased genome-wide single cell 497 
V2E2G map in human CAD. Notably, we found that SMCs were most enriched with V2E2G links 498 
(325 linked genes) and likely harbor the greatest genetic risk of driving CAD. This systematic 499 
approach can be applied across diseases and allows for an unbiased framework to prioritize 500 
pathological genes and cell types driving human disease. 501 
 502 
To validate our scV2E2G map using an orthogonal strategy in a broader patient cohort, we 503 
integrated our data with published human coronary artery snATAC-seq34 to build a meta-map of 504 
88 samples for single cell caQTL discovery. Using this strategy, we discovered 11,182 single cell 505 
caQTLs many of which overlapped with bulk arterial tissue GTEx eQTLs. Notably, this approach 506 
allows for discovery of novel QTLs in rarer cell types that will be missed by traditional bulk 507 
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approaches54,67. To enrich for disease associated QTLs, we overlapped our scV2E2G map with 508 
caQTLs and to nominate a high confidence gene set with GWAS, scE2G, and molecular trait 509 
evidence in regulating disease – we found 5 such genes (MYO9B, COL4A1, COL4A2, FNDC3B, 510 
and LRRFIP1) whose expression was also correlated with the SMC fibromyocyte transition state.  511 
 512 
Traditional pseudobulk QTL discovery is a cell state agnostic method34,68 and lacks the ability to 513 
discriminate between molecular traits which are influenced by disease state48. Here, we utilize 514 
single cell genomics in a large population to incorporate cell state dynamics in one of the most 515 
fluid cell states in the atherosclerotic plaque – SMCs. In atherosclerosis, contractile SMCs 516 
undergo de-differentiation and acquire a fibromyocyte phenotype (FMC) with distinct 517 
transcriptional signatures30,69,70. We performed single cell caQTL discovery using the FMC de-518 
differentiation score as a continuous variable to identity QTLs which are cell state dependent. 519 
Using this framework, we uncovered rs11838776 as a QTL for COL4A1 which dynamically 520 
becomes active as SMCs de-differentiate via a TF binding site change for EGR1/2. Interestingly, 521 
EGR1/2 are universal stripe factors which are known to orchestrate changes in chromatin 522 
accessibility for recruitment of co-binding factors71,72. This is the first application of single cell state 523 
dependent QTL modeling in human tissue and can expand our understanding of gene regulation 524 
in heterogenous cells from tissue. In cases where there are epigenetically or transcriptional 525 
defined cell states and cell state trajectories that may be disease relevant, such approaches 526 
present an efficient way to uncover molecular QTLs that may modify or be modified by disease-527 
associated differentiation process that may be missed while profiling a bulk tissue. 528 
 529 
Given the genome is a dynamic 3D structure73, chromatin looping through TADs is a crucial high-530 
level state governing downstream gene regulation73–76. Currently, there are no studies which 531 
profile chromatin looping in human CAD. Prior studies in cell-based systems and other tissues 532 
have demonstrated the power of HiC technologies to uncover chromatin architecture in the 533 
context of gene regulation and mapped disease variants to distal causal genes77–86. Here, we 534 
performed genome-wide HiC in 16 human coronary arteries and used network graphs to connect 535 
chromatin communities. This approach allows for building tissue-specific gene regulatory 536 
networks within TADs. Numerous studies have shown that large scale chromatin structures have 537 
tissue and cell specificity78,80,87, yet no study has profiled looping in diseased human arterial tissue. 538 
We integrated our chromatin networks with the scV2E2G map to identify disease variants 539 
enriched in a super chromatin interactome that may regulate a broader gene program. To our 540 
surprise, we found that the disease variant rs4887091 drives a super chromatin interactome 541 
through a modified CTCF binding site. Given the role of CTCF in regulating TAD insulation 542 
boundaries, these results would suggest that this disease variant is orchestrating broad scale 543 
chromatin changes. Furthermore, by integrating HiC tissue looping with multi-omic scV2E2G 544 
mapping, we uncovered several novel candidate genes linked to CAD GWAS loci that were not 545 
previously implicated. We found rs9876658 was linked to the distal candidate gene AMOTL2 and 546 
used cell specific H3K27ac and HiChIP-seq and CRISPRi to target the active enhancer containing 547 
rs9876658 to show SMC specific regulation. 548 
 549 
Our study is not without limitations. First, we rely on nuclear RNA from multi-omic capture which 550 
precludes discovery or cellular transcripts as prior studies have shown that single cell RNA is 551 
deeper for cell state annotation. We utilized high resolution published single cell data to perform 552 
reference mapping for state imputation88. Second, QTL associations can have pleotropic effects 553 
making it challenging to parse out relevant targets from our large caQTL discovery analysis – we 554 
leveraged cell specific QTL discovery and single cell caQTL modeling to enrich for and prioritize 555 
disease associated cell types and cell states. Third, our coronary artery HiC data is bulk 556 
precluding inference of cell type specific looping – to prioritize cell types and increase confidence 557 
for cell specific looping, we used HiChIP-seq in targeted cell types in vitro. 558 
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 559 
In conclusion, we built the first multi-omic gene expression and chromatin accessibility map of 560 
human CAD and provide a comprehensive framework to map CAD GWAS variants to cell types 561 
and genes. Additionally, we use single cell QTL modeling to characterize state dependent 562 
pathogenicity of disease variants in human tissue. We used tissue HiC to build large scale 563 
chromatin networks and uncover how disease variants impact distal gene regulation. Finally, we 564 
integrated tissue omics with cell based epigenetic profiling to prioritize and functionally test 565 
candidate genes using enhancer TAP-seq and CRISPRi. Collectively we provide a disease 566 
agnostic framework to translate human genetic findings to identify pathologic cell states and 567 
genes driving disease – this study provides a comprehensive V2E2G map with genetic and tissue 568 
level convergence for future mechanistic and therapeutic studies. 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
 608 
 609 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 13 

Acknowledgments 610 
 611 
JMA was supported by the American Heart Association Predoctoral Fellowship (826325) and is 612 
currently supported by Leducq Foundation Network Seed Grant (#20CVD02). JMA and PL are 613 
supported by the Washington University School of Medicine Medical Scientist Training Program. 614 
This work was supported by National Institutes of Health (NIH) grants UM1HG008853 (IMH and 615 
NOS), R01HG013371 (IMH and NOS), R01HL159171 (NOS), R01HL171045 (TQ), 616 
R01HL134817 (TQ), R01HL139478 (TQ), R01HL156846 (TQ), R01HL151535 (TQ), 617 
R01HL158525 (TQ), UM1HG011972 (JME and TQ), U01HG011762 (TQ), R01HL159176 (JME), 618 
R01HL164811 (RG and JME), American Heart Association 23SCISA1144703 (PC), 619 
24SCEFIA1248386 (PC), 695 20CDA35310303 (PC), and the Novo Nordisk Foundation Center 620 
for Genomic Mechanisms of Disease (NNF21SA0072102). MUS acknowledges the support of an 621 
NSF Graduate Research Fellowship (DGE-1656518) and a graduate fellowship award from 622 
Knight-Hennessy Scholars at Stanford University. NOS was also supported in part by the 623 
Foundation for Barnes-Jewish Hospital. We thank Dr Matthew-Ackers Johnson from NUS 624 
Cardiovascular Research Institute for the provision of the primary HCAEC and HCASMC cell 625 
lines. RSYF is funded by Individual Research Grants from the National Medical Research Council 626 
(NMRC) of Singapore (MOH-001480-00) and MOE Academic Research Fund (AcRF) Tier 3 627 
(MOE-000333-00). The study was partially supported from an Amgen sponsored research 628 
agreement. Study design schematics were created in BioRender.com. We thank the Genome 629 
Technology Access Center at the McDonnell Genome Institute at Washington University School 630 
of Medicine for help with genomic analysis. The Center is partially supported by NCI Cancer 631 
Center Support Grant #P30 CA91842 to the Siteman Cancer Center. This publication is solely 632 
the responsibility of the authors and does not necessarily represent the official view of the NIH. 633 
 634 
Author Contributions 635 
 636 
NOS and IMH conceived the study. JMA, TQ, and NOS drafted the manuscript with assistance 637 
from all authors. JMA collected all coronary arteries. JMA and AB isolated nuclei from human 638 
coronary arteries. JMA performed 10x Multiome cDNA construction for library preparations and 639 
sequencing. JMA, PCL, IE, CJK, MS, WLQ, SK, DYL, DL, AT, PC, and QZ performed all 640 
computational analysis. CLM assisted with QTL discovery. TY, KL, SJ, BA, CML, and YHH 641 
assisted with the HiC study. CJML, RG, and RSYF performed all CRISPRi experiments. CAN, 642 
QZ, MR, and CJML performed all in vitro HiChIP and H3K27ac experiments. RG and JME 643 
assisted with EC specific analyses. REW and AA assisted with in vitro experiments. MUS, WQ, 644 
RA, and JME developed and applied scE2G. TQ, RG, RSYF, SH, and SJ provided guidance on 645 
GWAS mapping and data interpretation. All authors contributed to the experimental design, data 646 
analysis and interpretation as well as manuscript production. NOS is responsible for all aspects 647 
of this manuscript including experimental design, data analysis, and manuscript production. All 648 
authors approved the final version of the manuscript. 649 
 650 
Competing Interests 651 
 652 
JA, IE, TY, DL, YHH, SH, SJ, CML, and BA were or are employed by Amgen. 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 14 

References 661 
 662 
1. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify 663 

individuals with risk equivalent to monogenic mutations. Nature Genetics 2018 50:9 50, 664 
1219–1224 (2018). 665 

2. Uffelmann, E. et al. Genome-wide association studies. Nature Reviews Methods Primers 666 
2021 1:1 1, 1–21 (2021). 667 

3. Martin, S. S. et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global 668 
Data From the American Heart Association. Circulation 149, E347–E913 (2024). 669 

4. Kathiresan, S. & Srivastava, D. Leading Edge Review Genetics of Human Cardiovascular 670 
Disease. (2012) doi:10.1016/j.cell.2012.03.001. 671 

5. Erdmann, J., Kessler, T., Munoz Venegas, L. & Schunkert, H. A decade of genome-wide 672 
association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 114, 673 
1241–1257 (2018). 674 

6. Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and 675 
clinical translation. Nat Rev Genet 18, 331–344 (2017). 676 

7. Musunuru, K. & Kathiresan, S. Genetics of Common, Complex Coronary Artery Disease. 677 
Cell 177, 132–145 (2019). 678 

8. Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes 679 
for coronary artery disease in over a million participants. Nature Genetics 2022 54:12 54, 680 
1803–1815 (2022). 681 

9. Tcheandjieu, C. et al. Large-scale genome-wide association study of coronary artery 682 
disease in genetically diverse populations. Nature Medicine 2022 28:8 28, 1679–1692 683 
(2022). 684 

10. Shapiro, M. D., Tavori, H. & Fazio, S. PCSK9: From Basic Science Discoveries to 685 
Clinical Trials. Circ Res 122, 1420 (2018). 686 

11. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. 687 
Nature Genetics 2003 34:2 34, 154–156 (2003). 688 

12. Ridker, P. M. et al. Inflammation, Cholesterol, Lipoprotein(a), and 30-Year 689 
Cardiovascular Outcomes in Women. New England Journal of Medicine (2024) 690 
doi:10.1056/NEJMOA2405182/SUPPL_FILE/NEJMOA2405182_DATA-691 
SHARING.PDF. 692 

13. Karalis, D. G. Intensive Lowering of Low-Density Lipoprotein Cholesterol Levels for 693 
Primary Prevention of Coronary Artery Disease. Mayo Clin Proc 84, 345 (2009). 694 

14. Bayturan, O. et al. Clinical Predictors of Plaque Progression Despite Very Low Levels of 695 
Low-Density Lipoprotein Cholesterol. J Am Coll Cardiol 55, 2736–2742 (2010). 696 

15. Hartmann, K., Seweryn, M. & Sadee, W. Interpreting coronary artery disease GWAS 697 
results: A functional genomics approach assessing biological significance. PLoS One 17, 698 
(2022). 699 

16. Kessler, T. & Schunkert, H. Coronary Artery Disease Genetics Enlightened by Genome-700 
Wide Association Studies. JACC Basic Transl Sci 6, 610–623 (2021). 701 

17. Kamb, A., Harper, S. & Stefansson, K. Human genetics as a foundation for innovative 702 
drug development. Nat Biotechnol 31, 975–978 (2013). 703 

18. Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat Rev 704 
Drug Discov 18, 495–496 (2019). 705 

19. Haldar, S. M. Keeping translational research grounded in human biology. J Clin Invest 706 
134, (2024). 707 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 15 

20. Wang, X., Savic, D., Hovig, E., Trynka, G. & Cano-Gamez, E. Making sense of GWAS: 708 
using epigenomics and genome engineering to understand the functional relevance of 709 
SNPs in non-coding regions of the human genome. Epigenetics & Chromatin 2015 8:1 8, 710 
1–18 (2015). 711 

21. Cano-Gamez, E. & Trynka, G. From GWAS to Function: Using Functional Genomics to 712 
Identify the Mechanisms Underlying Complex Diseases. Front Genet 11, 505357 (2020). 713 

22. Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends 714 
Genet. 24, 133–141 (2008). 715 

23. Schuster, S. C. Next-generation sequencing transforms today’s biology. Nat. Methods 5, 716 
16–18 (2008). 717 

24. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods 718 
2009 6:5 6, 377–382 (2009). 719 

25. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The 720 
Technology and Biology of Single-Cell RNA Sequencing. Mol Cell 58, 610–620 (2015). 721 

26. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in 722 
human heart failure. Nature Cardiovascular Research 2022 1:3 1, 263–280 (2022). 723 

27. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature (2022) 724 
doi:10.1038/s41586-022-05060-x. 725 

28. Tucker, N. R. et al. Transcriptional and Cellular Diversity of the Human Heart. 726 
Circulation 142, 466–482 (2020). 727 

29. Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic 728 
cardiomyopathy. Nature (2022) doi:10.1038/S41586-022-04817-8. 729 

30. RC, W. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the 730 
TCF21 disease gene as revealed by single-cell analysis. Nat Med 25, 1280–1289 (2019). 731 

31. Zhao, Q. et al. A cell and transcriptome atlas of the human arterial vasculature. bioRxiv 732 
2024.09.10.612293 (2024) doi:10.1101/2024.09.10.612293. 733 

32. Amrute, J. M. et al. Targeting immune–fibroblast cell communication in heart failure. 734 
Nature 2024 1–11 (2024) doi:10.1038/s41586-024-08008-5. 735 

33. Amrute, J. M. et al. Defining cardiac functional recovery in end-stage heart failure at 736 
single-cell resolution. Nature cardiovascular research 2, 399–416 (2023). 737 

34. Turner, A. W. et al. Single-nucleus chromatin accessibility profiling highlights regulatory 738 
mechanisms of coronary artery disease risk. Nature Genetics 2022 54:6 54, 804–816 739 
(2022). 740 

35. Smith, E. L., Mok, G. F. & Münsterberg, A. Investigating chromatin accessibility during 741 
development and differentiation by ATAC-sequencing to guide the identification of cis-742 
regulatory elements. Biochem Soc Trans 50, 1167 (2022). 743 

36. Sun, Y., Miao, N. & Sun, T. Detect accessible chromatin using ATAC-sequencing, from 744 
principle to applications. Hereditas 156, 29 (2019). 745 

37. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory 746 
epigenome. Nat Rev Genet 20, 207–220 (2019). 747 

38. Duren, Z. et al. Regulatory analysis of single cell multiome gene expression and 748 
chromatin accessibility data with scREG. Genome Biol 23, 1–19 (2022). 749 

39. Wang, S. K. et al. Single-cell multiome of the human retina and deep learning nominate 750 
causal variants in complex eye diseases. Cell Genomics 2, 100164 (2022). 751 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 16 

40. Mitra, S. et al. Single-cell multi-ome regression models identify functional and disease-752 
associated enhancers and enable chromatin potential analysis. Nature Genetics 2024 56:4 753 
56, 627–636 (2024). 754 

41. Zhu, K. et al. Multi-omic profiling of the developing human cerebral cortex at the single-755 
cell level. Sci Adv 9, (2023). 756 

42. Badia-i-Mompel, P. et al. Gene regulatory network inference in the era of single-cell 757 
multi-omics. Nat Rev Genet 24, 739–754 (2023). 758 

43. Mathys, H. et al. Single-cell multiregion dissection of Alzheimer’s disease. Nature 2024 759 
632:8026 632, 858–868 (2024). 760 

44. Xiong, X. et al. Epigenomic dissection of Alzheimer’s disease pinpoints causal variants 761 
and reveals epigenome erosion. Cell 186, 4422-4437.e21 (2023). 762 

45. Ma, S. et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and 763 
Chromatin. Cell 183, 1103-1116.e20 (2020). 764 

46. Gschwind, A. R. et al. An encyclopedia of enhancer-gene regulatory interactions in the 765 
human genome. bioRxiv (2023) doi:10.1101/2023.11.09.563812. 766 

47. Schnitzler, G. R. et al. Convergence of coronary artery disease genes onto endothelial cell 767 
programs. Nature 626, 799–807 (2024). 768 

48. Nathan, A. et al. Single-cell eQTL models reveal dynamic T cell state dependence of 769 
disease loci. | Nature | 606, (2022). 770 

49. Rao, S. S. P. et al. A three-dimensional map of the human genome at kilobase resolution 771 
reveals principles of chromatin looping. Cell 159, 1665 (2014). 772 

50. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome 773 
architecture. Nat Methods 13, 919–922 (2016). 774 

51. Gate, R. E. et al. Genetic determinants of co-accessible chromatin regions in activated T 775 
cells across humans. Nature Genetics 2018 50:8 50, 1140–1150 (2018). 776 

52. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression 777 
variation. Nature 2012 482:7385 482, 390–394 (2012). 778 

53. Xiong, X. et al. Epigenomic dissection of Alzheimer’s disease pinpoints causal variants 779 
and reveals epigenome erosion. Cell 186, 4422 (2023). 780 

54. Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-781 
cell genomics meets human genetics. Nat Rev Genet 24, 535 (2023). 782 

55. Fitzgerald, T., Jones, A. & Engelhardt, B. E. A Poisson reduced-rank regression model for 783 
association mapping in sequencing data. BMC Bioinformatics 23, (2022). 784 

56. Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data 785 
portal. Nucleic Acids Res 48, D882–D889 (2020). 786 

57. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. 787 
Nature 489, 57–74 (2012). 788 

58. Phanstiel, D. H. et al. Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs 789 
during Macrophage Development. Mol Cell 67, 1037-1048.e6 (2017). 790 

59. Rustamaji, H. C., Kusuma, W. A., Nurdiati, S. & Batubara, I. Community detection with 791 
Greedy Modularity disassembly strategy. Scientific Reports 2024 14:1 14, 1–17 (2024). 792 

60. Nikpay, M. et al. A comprehensive 1000 Genomes–based genome-wide association meta-793 
analysis of coronary artery disease. Nature Genetics 2015 47:10 47, 1121–1130 (2015). 794 

61. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: 795 
shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 796 
(2022). 797 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 17 

62. Litviňuková, M. et al. Cells of the adult human heart. 588, 466–472 (2020). 798 
63. Reichart, D. et al. Pathogenic variants damage cell composition and single-cell 799 

transcription in cardiomyopathies. Science (1979) 377, (2022). 800 
64. Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. 801 

Cell Genomics 2, 100166 (2022). 802 
65. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of 803 

single-cell multi-omics. Nature Reviews Molecular Cell Biology 2023 24:10 24, 695–713 804 
(2023). 805 

66. GitHub - EngreitzLab/sc-E2G: Pipeline to run sc-E2G. https://github.com/EngreitzLab/sc-806 
E2G. 807 

67. Aguet, F. et al. The GTEx Consortium atlas of genetic regulatory effects across human 808 
tissues. Science (1979) 369, 1318–1330 (2020). 809 

68. Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with 810 
RASQUAL and ATAC-seq. Nat Genet 48, 206–213 (2016). 811 

69. Alencar, G. F. et al. Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC 812 
Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis. 813 
Circulation 2045–2059 (2020) doi:10.1161/CIRCULATIONAHA.120.046672. 814 

70. Allahverdian, S., Chaabane, C., Boukais, K., Francis, G. A. & Bochaton-Piallat, M. L. 815 
Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 114, 540 (2018). 816 

71. Zhao, Y. et al. “Stripe” transcription factors provide accessibility to co-binding partners in 817 
mammalian genomes. Mol Cell 82, 3398-3411.e11 (2022). 818 

72. Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body 819 
regeneration. Science (1979) 363, (2019). 820 

73. Schleif, R. DNA looping. Annu Rev Biochem 61, 199–223 (1992). 821 
74. Matthews, K. S. DNA looping. Microbiol Rev 56, 123 (1992). 822 
75. Hansen, A. S., Cattoglio, C., Darzacq, X. & Tjian, R. Recent evidence that TADs and 823 

chromatin loops are dynamic structures. Nucleus 9, 20 (2018). 824 
76. Grubert, F. et al. Landscape of cohesin-mediated chromatin loops in the human genome. 825 

Nature 2020 583:7818 583, 737–743 (2020). 826 
77. Xu, J. et al. Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature 827 

2022 611:7935 611, 387–398 (2022). 828 
78. Heffel, M. G. et al. Temporally distinct 3D multi-omic dynamics in the developing human 829 

brain. Nature 2024 17, 1–9 (2024). 830 
79. Lambuta, R. A. et al. Whole-genome doubling drives oncogenic loss of chromatin 831 

segregation. Nature 2023 615:7954 615, 925–933 (2023). 832 
80. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 833 

2021 593:7858 593, 238–243 (2021). 834 
81. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-835 

deficient GISTs. Nature 2019 575:7781 575, 229–233 (2019). 836 
82. Erdmann-Pham, D. D. et al. Tracing cancer evolution and heterogeneity using Hi-C. 837 

Nature Communications 2023 14:1 14, 1–17 (2023). 838 
83. Yang, J. et al. Analysis of chromatin organization and gene expression in T cells identifies 839 

functional genes for rheumatoid arthritis. Nature Communications 2020 11:1 11, 1–13 840 
(2020). 841 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 18 

84. Ron, G., Globerson, Y., Moran, D. & Kaplan, T. Promoter-enhancer interactions 842 
identified from Hi-C data using probabilistic models and hierarchical topological domains. 843 
Nature Communications 2017 8:1 8, 1–12 (2017). 844 

85. Schöpflin, R. et al. Integration of Hi-C with short and long-read genome sequencing 845 
reveals the structure of germline rearranged genomes. Nature Communications 2022 13:1 846 
13, 1–15 (2022). 847 

86. Ing-Simmons, E. et al. Independence of chromatin conformation and gene regulation 848 
during Drosophila dorsoventral patterning. Nature Genetics 2021 53:4 53, 487–499 849 
(2021). 850 

87. Schmitt, A. D. et al. A Compendium of Chromatin Contact Maps Reveal Spatially Active 851 
Regions in the Human Genome. Cell Rep 17, 2042 (2016). 852 

88. Mosquera, J. V. et al. Integrative single-cell meta-analysis reveals disease-relevant 853 
vascular cell states and markers in human atherosclerosis. (2023) 854 
doi:10.1016/j.celrep.2023.113380. 855 

89. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell 856 
chromatin accessibility analysis. Nature Genetics 2021 53:3 53, 403–411 (2021). 857 

90. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-858 
seq data using regularized negative binomial regression. Genome Biol 20, 1–15 (2019). 859 

91. Gaspar, J. M. Improved peak-calling with MACS2. doi:10.1101/496521. 860 
92. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-861 

wide association summary statistics. Nat Genet 47, 1228–1235 (2015). 862 
93. Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids 863 

Res 34, (2006). 864 
94. Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. 865 

Nature 627, 347–357 (2024). 866 
95. Roychowdhury, T. et al. Genome-wide association meta-analysis identifies risk loci for 867 

abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target. Nat Genet 55, 868 
1831–1842 (2023). 869 

96. Keaton, J. M. et al. Genome-wide analysis in over 1 million individuals of European 870 
ancestry yields improved polygenic risk scores for blood pressure traits. Nat Genet 56, 871 
778–791 (2024). 872 

97. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects 873 
identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50, 524–537 874 
(2018). 875 

98. Murphy, A. E., Schilder, B. M. & Skene, N. G. MungeSumstats: a Bioconductor package 876 
for the standardization and quality control of many GWAS summary statistics. 877 
Bioinformatics 37, 4593–4596 (2021). 878 

99. Das, S. et al. Next-generation genotype imputation service and methods. Nat Genet 48, 879 
1284–1287 (2016). 880 

100. Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium 881 
panel. Nat Genet 48, 1443–1448 (2016). 882 

101. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative 883 
modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet 93, 884 
278–288 (2013). 885 

102. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 886 
(2015). 887 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 19 

103. Benaglio, P. et al. Mapping genetic effects on cell type-specific chromatin accessibility 888 
and annotating complex immune trait variants using single nucleus ATAC-seq in 889 
peripheral blood. PLoS Genet 19, (2023). 890 

104. Munz, M. et al. Qtlizer: comprehensive QTL annotation of GWAS results. Sci Rep 10, 891 
(2020). 892 

105. Zhou, W. et al. Efficient and accurate mixed model association tool for single-cell eQTL 893 
analysis. medRxiv (2024) doi:10.1101/2024.05.15.24307317. 894 

106. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from 895 
thousands of CRISPR perturbations. Nature Genetics 2019 51:12 51, 1664–1669 (2019). 896 

107. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics 897 
pipelines. Nat Biotechnol 38, 276–278 (2020). 898 

108. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. 899 
Genome Biol 16, (2015). 900 

109. Marchal, C., Singh, N., Corso-Díaz, X. & Swaroop, A. HiCRes: a computational method 901 
to estimate and predict the genomic resolution of Hi-C libraries. Nucleic Acids Res 50, 902 
E35 (2022). 903 

110. Abdennur, N. et al. Cooltools: Enabling high-resolution Hi-C analysis in Python. PLoS 904 
Comput Biol 20, (2024). 905 

111. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals 906 
principles of chromatin looping. Cell 159, 1665–1680 (2014). 907 

112. Kaul, A., Bhattacharyya, S. & Ay, F. Identifying statistically significant chromatin 908 
contacts from Hi-C data with FitHiC2. Nat Protoc 15, 991–1012 (2020). 909 

113. Xu, W. et al. CoolBox: a flexible toolkit for visual analysis of genomics data. BMC 910 
Bioinformatics 22, (2021). 911 

114. Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large 912 
networks. (2004). 913 

115. Bioconductor - RBGL. https://bioconductor.org/packages/release/bioc/html/RBGL.html. 914 
116. Anene-Nzelu, C. G. et al. Assigning Distal Genomic Enhancers to Cardiac Disease-915 

Causing Genes. Circulation 142, 910–912 (2020). 916 
117. Wingett, S. et al. HiCUP: Pipeline for mapping and processing Hi-C data. F1000Res 4, 917 

(2015). 918 
118. Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution 919 

Hi-C Experiments. Cell Syst 3, 95–98 (2016). 920 
119. Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification of significant 921 

chromatin contacts from HiChIP data by FitHiChIP. Nat Commun 10, (2019). 922 
120. Tan, W. L. W. et al. Epigenomes of Human Hearts Reveal New Genetic Variants 923 

Relevant for Cardiac Disease and Phenotype. Circ Res 127, 761–777 (2020). 924 
121. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler 925 

transform. Bioinformatics 25, 1754–1760 (2009). 926 
122. Kumar, V. et al. Uniform, optimal signal processing of mapped deep-sequencing data. Nat 927 

Biotechnol 31, 615–622 (2013). 928 
123. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed Engineering and Analysis of 929 

Combinatorial Enhancer Activity in Single Cells. Mol Cell 66, 285-299.e5 (2017). 930 
124. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for 931 

CRISPR screening. Nat Methods 11, 783–784 (2014). 932 
  933 
 934 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317257doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317257
http://creativecommons.org/licenses/by/4.0/


 20 

Materials and Methods 935 
 936 
Ethical Approval for Human Specimens 937 
The study is compliant with all relevant ethical regulations and has been approved by the 938 
Washington University School of Medicine Institutional Review Board (IRB #201104172). 939 
Informed consent was obtained from each patient prior to tissue collection by Washington 940 
University School of Medicine and no compensation was provided in exchange for subject 941 
participation in the study. All demographic and clinical data has been de-identified and provided 942 
in Supplementary Table 1. Patients included in this study span diverse race, age, and sex to 943 
provide an inclusive trans-ethic study population. 944 
 945 
Inclusion Criteria 946 
Prior to tissue collection, specific inclusion criteria were employed to ensure well controlled study 947 
groups. Any patients with HIV or hepatitis and known genetic cardiomyopathies were excluded 948 
from this study. The left anterior descending coronary artery was isolated, and flash frozen from 949 
donor hearts: patients with stable ejection fractions, no known history of cardiac disease and 950 
experienced a non-cardiac cause of death/transplant and from patients with chronic heart failure. 951 
For all samples the proximal left anterior descending coronary artery was used. 952 
 953 
Nuclei isolation for Multiome sequencing 954 
The left anterior descending coronary artery was dissected from explanted hearts, epicardial fat 955 
removed, and arteries were flash frozen using liquid nitrogen. Identical regions from the proximal 956 
left anterior descending artery were used from all patients. Single nuclei suspensions were 957 
generated as previously described32. Nuclei were isolated according to 10x Genomics protocol 958 
(CG00375; Nuclei Isolation Complex Sample for ATAC GEX Sequencing RevB) and flow 959 
cytometry for 7-AAD (Sigma; SML1633-1ML) positive nuclei was used for sorting using a BD 960 
FACS Melody (BD Biosciences) with a 100uM nozzle. Protocol CG000338 from 10x Genomics 961 
was used for Chromium Next GEM Single Cell Multiome ATAC + Gene Expression. Briefly, 962 
following nuclei isolation, permeabilization was performed, followed by transposition, GEM 963 
generation and barcoding using ChipJ (10x Genomics; PN1000234), post-GEM clean up, pre-964 
amplification PCR, cDNA amplification, library construction, and sequencing. Gene expression 965 
and ATAC libraires were sequenced to a read depth of 50,000 and 25,000 respectively using a 966 
NovaSeq 6000 platform (Illumina) at the McDonnel Genome Institute.   967 
 968 
Multiome data processing 969 
Raw fastq files were aligned to the human GRCh38 reference genome (v) using CellRanger ARC 970 
(10x Genomics, v6.1). ArchR89 (https://www.archrproject.com) was used to process the ATAC 971 
fragments and Seurat was used to process RNA. Quality control was performed to keep nuclei 972 
with the following: TSS enrichment > 2, nFrags > 1000, 200 < nUMI GEX < 50,000, and percent 973 
mito < 5%. Post-QC nuclei were used for doublet removal in ArchR (ATAC information) and then 974 
using scrublet (RNA information). Raw RNA counts were normalized and scaled using 975 
SCTransform90 regressing out percent mitochondrial reads and nCount_RNA. Principal 976 
component analysis, harmony batch integration (by sample), nearest neighbor clustering, and 977 
UMAP embedding construction was then performed in Seurat. Cell types were annotated using 978 
different expression and knowledge of canonical gene markers. The RNA annotations and 979 
normalized gene expression matrix was added to the ArchR project onto the nuclei with the same 980 
barcodes. ArchR was used to construct pseudobulk replicates across ATAC clusters and peaks 981 
were called using MACS291. The ArchR getMarkerFeatures function was used to identify peaks 982 
that are unique to each cell type. The addPeak2GeneLinks function from ArchR was then used 983 
to calculate peak to gene links using gene expression and accessibility from the same nucleus 984 
with a correlation cut-off of 0.3. To visualize the correspondence between the p2g links, a heatmap 985 
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was constructed which shows ATAC and RNA z-scores with rows clustered using k-means 986 
clustering through the ArchR package plotPeak2GeneHeatmap. We have computed the Pearson 987 
correlation coefficient for all genes between the gene expression and accessibility vectors. The 988 
ArchR peak 2 gene linkage function was used to identify putative CREs for each gene. In ArchR 989 
the addIterativeLSI function was used on the RNA and ATAC modalities respectively with default 990 
parameters followed by harmony integration to get modality specific clustering and dimensional 991 
reductions. To generate a joint RNA/ATAC embedding, the ArchR addCombinedDims function 992 
was used and this combined embedding was used for subsequent UMAP construction and 993 
clustering. To compare how the ATAC derived cell clustering compares to the RNA and joint 994 
embedding, we generated a confusion matrix. 995 
 996 
LDSC and GWAS Variant Overlap 997 
To test for enrichment of disease risk in the four major cell types, stratified LD score regression 998 
was used to partition heritability in cell-type marker peaks92. First, cell-type specific marker peaks 999 
(FDR < 0.01, log2FC > 1) were obtained using ArchR and converted to GRCh37 coordinates 1000 
using liftover93. GWAS summary statistics for coronary artery disease8, diabetes94, abdominal 1001 
aortic aneurysms95, diastolic/systolic blood pressure96, and stroke97 were obtained, and their 1002 
formats were standardized using MungeSumStats package in R. Stratified LD score analysis was 1003 
then carried out with --h2-cts flag for cell-type specific analyses. To examine overlap between 1004 
CAD GWAS variants and ATAC peaks, lead variants from 241 genome-wide significant (p < 5 x 1005 
10-8) loci and 897 conditionally independent variants meeting FDR cutoff (FDR < 0.01) were 1006 
obtained from Aragam et al8,98. Additional variants that are in high LD (r2 > 0.80 within 250KB) 1007 
with these lead variants were obtained from the 1000 Genomes European panel using plink --tag-1008 
r2 flag. Additionally, these variants were combined with the functional fine-mapped credible set 1009 
variants from Aragam et al. to create a superset of GWAS variants [cite Aragam et al.] to be tested 1010 
for overlap. These variants were overlapped with ATAC peak regions using findOverlap function 1011 
in IRanges R package. 1012 
 1013 
Genotyping 1014 
To obtain high quality genotypes from patients, DNA from peripheral leukocytes of all individuals 1015 
was genotyped using Illumina GSA-24-V3 SNP array. Following initial processing using Illumina 1016 
GenomeStudio software, variants with both 1) minor allele frequency > 5% and call rate < 95% or 1017 
2) minor allele frequency < 5% and call rate < 99% were excluded. No individuals were excluded 1018 
by the call rate exclusion filter (<95%). Additional genotypes were further imputed from the 1019 
TOPMED panel on the Michigan Imputation Server v. 1.7.1 using minimac4-1.0.299 and phasing 1020 
with EAGLE100. Following imputation, variants with imputation R2 < 0.3 and MAF > 0.05 were 1021 
further filtered for caQTL analysis for a final dataset containing 7,250,405 variants. To conduct 1022 
combined caQTL mapping, the VCF files from Turner et al34 were merged with the imputed 1023 
genotype dataset, and only shared SNPs in two datasets were kept for downstream analysis. 1024 
Turner et al34 carried out low coverage whole genome-sequencing; further details are available in 1025 
the original publication34. Following the merge, 5,229,397 variants were available for QTL 1026 
analysis. Local ancestries were inferred using RMMix2101 with default settings. YRI (n=186) and 1027 
CEU (n=183) from the 1000 Genome Project102 were used as AFR / EUR reference populations, 1028 
respectively. 1029 
 1030 
Pseudobulk Chromatin Accessibility QTL discovery 1031 
Similar to previous studies for single cell caQTL discovery34,103, we used RASQUAL68 to identify 1032 
pseudobulk caQTLs in four major cell types (SMC, Endothelial, Myeloid, Fibroblast). RASQUAL 1033 
maximizes power for caQTL discovery by simultaneously modeling allelic imbalance and total 1034 
read counts in each locus. To generate fragment counts within each ATAC peak regions, we 1035 
loaded each fragment object and used Signac’ s FeatureMatrix function to generate a cell-by-1036 
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fragment count matrix for all cells within each cell type68. This matrix was subsequently 1037 
aggregated at a sample pseudobulk level using rollup function from R slam package. For 1038 
RASQUAL’s allele-specific modeling, createASVCF.sh script in paired-read mode was used to 1039 
generate allele-specific fragment counts at each site with additional BAM flag of -F 1280 to 1040 
exclude secondary or PCR duplicate reads. For each cell type, only samples with at least 20 cells 1041 
of that cell type and only peaks with at least 5 reads on average across all samples were included 1042 
for the final analysis.  1043 

 1044 
For the caQTL association analysis, all variants within a +/-10KB cis-window of the peaks were 1045 
tested for association. Total library size for each sample was was included as an offset. Age, sex, 1046 
sequencing site, and first four principal components of genotype data (generated from plink --pca) 1047 
were included as covariates. For multiple testing correction, we employed a two-step correction 1048 
procedure recommended by RASQUAL. First, to correct for locus-wide multiple testing, a q-value 1049 
corresponding to SNP level FDR was calculated using Benjamin-Hochberg method, and the SNP 1050 
with the lowest q-value was selected for each locus. For multi-locus multiple testing correction, 1051 
an empirical null distribution was calculated by running RASQUAL four times with --random-1052 
permutation flag, which performs association analysis with randomly permuted genotypes. The 1053 
four runs were averaged to estimate a null-distribution of locus-level q-values, which was 1054 
subsequently used to obtain q-value cutoffs that would correspond to 1%, 5%, and 10% genome-1055 
wide FDR. The caQTL variants were subsequently queried in a database of bulk eQTL datasets 1056 
using the Qtlizer package104. 1057 
 1058 
Pseudobulk caQTLs for the major cell types can be found in Supplementary Tables 14, 16, 18, 1059 
and 20 at the FDR 5% cut-off. Pseudobulk caQTLs overlapping with GTEx arterial eQTLs at the 1060 
FDR 5% cut-off can be found in Supplementary Tables 15, 17, 19, and 21. 1061 

 1062 
Single Cell Chromatin Accessibility QTL Discovery 1063 
In addition to the pseudobulk caQTL model, we utilized a Poisson mixed effect (PME) single cell 1064 
model to map caQTLs in smooth muscle cells. This approach models cell-level fragment counts 1065 
with random effect covariates to account for relatedness shared by cells from the same sample 1066 
and batch. Such attempts to model discrete count distributions at a single cell-level has been 1067 
shown to generally boost power in single-cell QTL discovery compared to pseudobulk and/or 1068 
linear regression frameworks48,55,105. Our PME model was adapted from the Poisson mixed effect 1069 
model utilized by Nathan et al48 for single cell eQTL mapping as follows: 1070 
 1071 
log(A) = 	β!X! + β"#$X"#$ +	β%$&X%$& +	β'()"#%log	(X'()"#%) +	β*++,')-./X*++,')-./ +1072 
	∑ β"..012X"..0123
245 +	∑ β#$'6012X#$'6012 + (φ7	|	d) 	+ (ϵ%|	s)3

245 + 	θ  1073 
 1074 

Where ATAC fragment counts (A) was modeled with fixed effect covariates (G=genotype, 1075 
nFrags=number of fragments per cell, TSSEnrich=TSS enrichment per cell, accPC=principal 1076 
components of single-cell ATAC counts, genoPC=principal components of genotype data), 1077 
random effect covariates (d=donor ID, s=sequencing site), and intercept (θ). All quantitative 1078 
covariates were scaled and centered prior to the regression analysis. Significance of the genotype 1079 
effect term (βG) was tested by likelihood ratio test (LRT) of the full model containing the genotype 1080 
term and a null model without the genotype term. Due to the high computational load of running 1081 
Poisson regression analysis on all cells, this analysis was restricted to lead caQTLs variants from 1082 
the pseudobulk RASQUAL analysis, which models the fragment counts using a negative binomial 1083 
model. All Poisson models were fit using glmer function from the lme4 R package. We confirmed 1084 
that our data is generally not over-dispersed by plotting the mean variance relationship between 1085 
a random subset of peaks. Similarly, utilizing a zero-inflated Poisson regression model or a 1086 
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negative binomial model on a subset of our hits revealed little differences in overall regression 1087 
estimates. Given that a small proportion of our pseudobulk hits likely represent null results, we 1088 
did not conduct FDR correction due to our inability to accurately estimate the proportion of results 1089 
from the null distribution. Instead, we compared Z-values between our pseudobulk and PME 1090 
models.  1091 
A key benefit of modeling individual cells instead of sample-level pseudobulk is our ability to 1092 
simultaneously model cell-state covariates (e.g. differentiation trajectories, gene/protein 1093 
expression) as well as potential interaction between genotypes and cell-state covariates. We 1094 
defined fibromyocyte (FMC) identity score by calculating the gene activity of the top 100 1095 
fibromyocyte (modulated SMC) marker genes defined by Wirka et al30 from our integrated 1096 
snATAC-seq meta map using ArchR’s addGeneScoreMatrix() function. To test for “dynamic” 1097 
caQTL where the genotype effect is modified by SMC cell state, we then added the FMC score 1098 
and a genotype-FMC score interaction term as covariates in the following model: 1099 

 1100 
log(A) = 	β!X! + β"#$X"#$ +	β%$&X%$& +	β'()"#%log	(X'()"#%) +	β*++,')-./X*++,')-./ +1101 
	∑ β"..012X"..0123
245 +	∑ β#$'6012X#$'6012 + (φ7	|	d) 	+ (ϵ%|	s)3

245 + β(81X(81 +1102 
β(81	&	!X(81	&	! + 	θ  1103 

 1104 
Again, this analysis was carried out just on the significant (FDR<5%) lead variants from the 1105 
pseudobulk caQTL analyses, though it is entirely possible that there are non-significant 1106 
pseudobulk caQTLs (i.e. genotype effect is near zero for average FMC score) that may have 1107 
significant interaction terms. The significance of the interaction term was tested by likelihood ratio 1108 
test of PME models with and without the interaction term. The LRT p-values were then corrected 1109 
for multiple testing using the Benjamin-Hochberg method.  1110 
 1111 
Dynamic caQTLs can be found in Supplementary Tables 22. 1112 
 1113 
scE2G model predictions 1114 
We used the scE2GMultiome model66 to predict enhancer–gene connections in 11 cell types from 1115 
10x Multiome data (Maya Sheth, Wei-Lin Qiu, Robin Andersson, and Jesse Engreitz, in 1116 
preparation). In each cell type, scE2G scores every candidate element–gene pair (where 1117 
candidate elements are ATAC peaks within 5 Mb of the transcription start site of the gene) by 1118 
integrating several features. Regulatory enhancer–gene interactions were defined as element–1119 
gene pairs with a score greater than 0.171. 1120 
 1121 
The scE2GMultiome model is a supervised classifier adapted for multiomic data from ENCODE-1122 
rE2G46. It integrates eight features, including 1) a pseudobulk Activity-By-Contact (ABC) score106, 1123 
where 3D contact is estimated by an inverse function of genomic distance; 2) the Kendall 1124 
correlation across single cells between element accessibility and gene expression; 3) whether the 1125 
gene is “ubiquitously expressed,” and 4) several other measures of genomic distance and 1126 
chromatin accessibility around the element and promoter. The score threshold of 0.171 was 1127 
determined as the score yielding 70% recall when evaluating predictions in K562 cells against 1128 
CRISPRi-validated enhancer-gene pairs46. 1129 
 1130 
scE2G predictions for all cell types can be found in Supplementary Tables 3-13. 1131 
 1132 
Human coronary artery Hi-C Data Collection and Processing 1133 
Bulk in-situ Hi-C libraries for 16 different coronary artery samples across a multi-ethnic cohort 1134 
were generated with the Arima-HiC kit, according to the manufacturer’s protocols. Specifically, 1135 
one Hi-C library was created from each biological sample, with an input of ~800k cells each. 1136 
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Restriction enzymes cutting at ^GATC and G^ANTC were utilized in library construction, and 1137 
approximately 600 million reads were sequenced on an Illumina HiSeq 4000 per library. 1138 
 1139 
To process the data, we used version 2.0.0 of the nf-core107 Hi-C pipeline (Zenodo: 1140 
https://doi.org/10.5281/zenodo.7556794). While we largely used default parameters, we did 1141 
modify the pipeline by following a recommendation from Arima to trim the first 5 bases from the 1142 
5’ end of each adapter sequence, which we accomplished with Cutadapt version 3.4 1143 
(https://doi.org/10.14806/ej.17.1.200). Arima recommended this change to help increase the 1144 
mapping rate when using pipelines such as HiC-Pro108, and we did observe an increase in 1145 
percentage of successfully mapped reads upon implementation. We also set the nf-core pipeline 1146 
parameter min_mapq to 0, to maximize our retained reads prior to further filtering. Briefly, the 1147 
pipeline aligned paired-end sequencing reads to human genome hg38, and trimmed unaligned 1148 
reads with a ligation junction before attempted re-alignment (“rescue” of chimeric reads). 1149 
Ultimately, ICE-normalized contact maps at 2kb, 5kb, 10kb, 50kb, 100kb, 500kb, and 1Mb 1150 
resolutions were generated. We assessed maximum library resolution using HiCRes version 1151 
2.0109, and ultimately decided to focus our analyses on the 10kb maps based on the range of 1152 
inferred resolutions across samples. 1153 
 1154 
To assess significant loops within each Hi-C library, we used two different algorithms: the 1155 
cooltools version 0.7.1110 “dots” function (based on HiCCUPS111), and FitHiC version 2.0.8112. For 1156 
cooltools, we analyzed loops at 2kb, 5kb, and 10kb resolutions, using default parameters for each 1157 
and donut-based kernels of w=(7, 7, 5) and p=(4, 4, 2), respectively. For FitHiC,we analyzed the 1158 
same resolutions, and performed a single spline pass per sample, allowing for bias values down 1159 
to a minimum of 0 based on our observed biases across samples. In both methods, we retained 1160 
identified loops with q-values ≤ 0.05 as significant. To interrogate topologically associating 1161 
domains (TADs), we employed cooltools insulation score algorithm, with window sizes of 150kb, 1162 
250kb, and 500kb. We kept the boundaries identified as “strong” at each window size to define 1163 
genomic intervals representing TAD bodies. To visualize genome-wide Hi-C contact maps, we 1164 
also used cooltools. For visualization of individual loci in concert with gene, loop, and TAD 1165 
annotations, we used coolbox version 0.3.8113. In figures with TAD annotations, TADs across all 1166 
tested window sizes are shown, whereas significant loop annotations focus on 10kb loop calls 1167 
only. Intra-chromosomal loop and TAD sizes within each sample were calculated by subtracting 1168 
the lower bin’s start coordinate from the higher bin’s start coordinate. These data were then 1169 
visualized using ggplot2. 1170 
 1171 
HiC network analysis 1172 
We kept loops detected in at least 2 patient coronaries for this analysis. To construct an un-biased 1173 
connected chromatin network58, we detected communities of interacting HiC loop anchors using 1174 
a fast greedy modularity optimization algorithm59,114. Using the matrix of connected DNA loops, 1175 
we used the RBGL package (R interface for Boost graph library algorithms)115 – specifically, we 1176 
used the ftM2graphNEL function to create a graph from the connected matrix and then the 1177 
connectedComp function to build a connected network graph where each node is a HiC loop and 1178 
the edges are linking loops to other loops whose anchors overlap. Visualization of the graphs was 1179 
done using the Rgraphviz package in R. To construct a variant-to-enhancer-to-network (V2E2N) 1180 
map, we identified loops where any anchor in the network contains a V2E + ENCODE coronary 1181 
artery H3K27ac peak. Finally, to build a catalogue of all genes predicted to be regulated within a 1182 
chromatin network, we overlapped all HiC anchors in a network with the E2G to construct a final 1183 
V2E2N with implicated genes. 1184 
 1185 
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H3K27ac HCASMC and HCAEC HiChIP 1186 
HiChIP was adapted from previously published protocols with some modifications50,116. Briefly, at 1187 
least one million human healthy coronary artery smooth muscle cells (HCASMC) (Thermo 1188 
Scientific, Product code C-017-5C, Lot. 1689414) and human healthy coronary artery endothelial 1189 
cells (HCAEC) (ATCC, Product code PCS-100-020, Lot 62382179) were crosslinked with 1% 1190 
Formaldehyde.  The initial Hi-C portion followed the Arima HiC protocol described in the Arima 1191 
High Coverage Hi-C Kit (Arima Genomics, Material Part Number: A410110). For the 1192 
immunoprecipitation step, sheared chromatin after the Hi-C portion of the protocol was 1193 
immunoprecipitated with 5 μg of H3K27ac antibody (Abcam, ab4729) with 50 μl of protein G 1194 
Dynabeads (Invitrogen 10004D) and allowed to incubate overnight at 4ºC. The protein G 1195 
Dynabeads were washed and the immunoprecipitated DNA was de-crosslinked at 67ºC for 2 1196 
hours and eluted (50 mM sodium bicarbonate, 1% SDS). Subsequently, Dynabeads MyOne 1197 
Streptavidin C1 beads (Invitrogen 65002) were used to enrich ligated junctions as per Hi-C 1198 
protocol. Library preparation was performed using the NEB Ultra II library preparation kit (NEB, 1199 
E7645L), according to the manufacturer’s protocol. 12 PCR cycles were performed using indexed 1200 
primers and subsequently DNA fragments between 300 to 500 bp were size selected using the 1201 
Omega MagBind NGS cleanup Magnetic beads (Omega M1378).  The libraries were sequenced 1202 
by paired-end sequencing with at least 300 million read pairs at 2 x 151 bp read length on illumina 1203 
HiSeq 4000 platforms. Raw paired-end reads in Fastq format for respective samples were 1204 
processed using the HiCuP pipeline117 (Version 0.7.4). The hg38 human genome was used as 1205 
reference to generate the HiCuP Digest file using two restriction motifs GATC and GANTC via 1206 
the hicup_digester command for running the HiCuP pipeline. Paired contacts were extracted from 1207 
aligned filtered bam files using Samtools (Version 1.13) and used as input for the pre function in 1208 
juicer package to generate .hic files118. Paired interaction counts at 5kb resolution were extracted 1209 
from the matrix, and High-confidence chromatin loops were identified using the FitHiChIP tool as 1210 
previously described using default parameters119. Using HCASMC and HCAEC ChIP-Seq peak 1211 
files as input, and initial paired interaction files, high-confidence peak-to-all interactions with a 5kb 1212 
bin size were processed using the bash FitHiChIP_HiCPro.sh script (https://ay-1213 
lab.github.io/FitHiChIP/). High-confidence chromatin interactions were sorted and indexed in bed 1214 
format and converted to long-range format for visualization on the WashU browser. The overlay 1215 
of HiChIP, ChIP-seq, and GWAS data was plotted using the locuszoomr package (version 0.3.5) 1216 
and R (version 4.3.1). Raw Fastq files and processed HiChIP data will be uploaded to NCBI SRA 1217 
upon publication of the manuscript. 1218 
 1219 
H3K27ac Chromatin Immunoprecipitation (ChIP-Seq) 1220 
Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed as previously 1221 
described with minor optimisations120. Briefly, one million human coronary artery smooth muscle 1222 
cells (HCASMC) and human coronary endothelial cells (HCAEC) from the same lot used for 1223 
HiChIP experiments were crosslinked with 1% Formaldehyde for 10 min at room temperature and 1224 
quenched with glycine (125mM) for 5 min. The cells were rinsed twice with cold 1XPBS and 1225 
sonicated in nuclei lysis buffer (50mM HEPES-KOH, pH 7.5, 150mM NaCl, 1mM EDTA, 1% Triton 1226 
X, 0.1% Sodium deoxycholate, 1% SDS, Takara, 1x protease inhibitor) using the Bioruptor 1227 
sonicator to obtain chromatin fragments between 200 to 500 bp. The fragmented chromatin was 1228 
immunoprecipitated overnight at 4ºC, with 5 μg of H3K27ac antibody (Abcam, ab4729) and 50 μl 1229 
of protein G beads (Invitrogen, 10004D). Subsequently, the beads were washed and 1230 
immunoprecipitated DNA was de-crosslinked and eluted in elution buffer (50 mM Tris-HCI, pH7.5, 1231 
and 10 mM EDTA). Eluted ChIP fragments were isolated using Phenol-Chloroform extraction 1232 
method, and DNA was purified by ethanol precipitation. Library preparation was performed on the 1233 
eluted ChIP DNA using the NEB Ultra II library preparation kit, according to the manufacturer’s 1234 
protocol. 10 PCR cycles were performed using indexed primers and the library of DNA fragments 1235 
with sizes between 300 to 500 bp was selected using the Omega MagBind NGS cleanup Magnetic 1236 
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beads (Omega M1378). The libraries were sent for paired end sequencing with at least 50 million 1237 
read pairs at 2 x 151 bp read length on the illumina HiSeq 4000 platform. Paired-end sequencing 1238 
reads were aligned to human genome (hg38) using BWA mem version 0.7.5121, and reads were 1239 
deduplicated using Picard MarkDuplicates function. Aligned mapped reads in BAM file were used 1240 
as input for peak-calling using Dfilter122 to identify significant H3K27ac peaks using the following 1241 
setting: -ks=60, -bs=100, -Ipvalue=8. Bigwig tracks were normalized for sequencing depths and 1242 
the sum of normalized binned tag-count represents the peak height.  Raw Fastq files and 1243 
processed ChIP-seq data will be uploaded to NCBI SRA upon manuscript publication. 1244 
 1245 
Culture of HCAEC and HCASMC primary cells 1246 
human healthy coronary artery smooth muscle cells (HCASMC) (Thermo Scientific, Product code 1247 
C-017-5C, Lot. 1689414) are cultured in human vascular smooth muscle (VSMC) basal medium 1248 
(Gibco, M231500), in Smooth Muscle Growth Supplement (SMGS) (Gibco, S00725) and 1% 1249 
penicillin/streptomycin. human healthy coronary artery endothelial cells (HCAEC) (ATCC, Product 1250 
code PCS-100-020, Lot 62382179) are cultured in Endothelial Cell Growth medium MV2 1251 
(PromoCell, C-22022). 1252 
 1253 
Construction of lentiviral sgRNA plasmids and Lentivirus production 1254 
The Lentiguide-Puro plasmid was obtained as a gift from Feng Zhang (Addgene #52963, 1255 
LentiGuide-Puro) in which the Non-Targeting Control sgRNAs and sgRNAs targeting the TSS and 1256 
Regulatory enhancer were annealed and ligated into the Esp3I cut-site of the Lentiguide-Puro 1257 
vector using T4 Ligase (NEB, M0202) as per manufacturer’s instructions. Ligation products were 1258 
transformed into One Shot Stbl3 Chemically competent E.coli (Invitrogen, C737303), and 1259 
plasmids of positive clones were isolated using FavorPrep Plasmid DNA Extract Kit (Favorgen, 1260 
FAPDE001-1). The CRISPR interference expression vector for Lenti-dCas9-KRAB-blast 1261 
(Addgene, #89567) was a gift from Gary Hon. For lentivirus production, HEK293T cells were 1262 
cultured in DMEM+10% FBS until 70% confluency prior to transfection. 10ug of individual 1263 
plasmids, 7.5ug of pMDLg/RRE, 2.5ug of pRSV-Rev and 2.5ug of pMD2.G lentivirus packaging 1264 
plasmids were co-transfected with 50ul of Polyethylenimine (PEI) diluted in 3ml of Opti-MEM™ I 1265 
Reduced Serum Medium (#31985070, ThermoFisher Scientific). Medium was refreshed overnight 1266 
with reduced 5% FBS in DMEM medium, and the expended medium was collected twice after 1267 
24hr and 48 hr respectively. Pooled supernatant was filtered through a PES 0.45uM filter and viral 1268 
particles were concentrated using Viro-PEG Lentivirus Concentrator (Ozbiosciences, #LVG100) 1269 
as per manufacturer’s instructions.  1270 
 1271 
The sgRNAs are listed below: 1272 
Non-Targeting Control_sgRNA_F: CACCGAACGTGCTGACGATGCGGGC 1273 
Non-Targeting Control_sgRNA_R: AAACGCCCGCATCGTCAGCACGTTC 1274 
AMOTL2_TSS_sgRNA_F: 5’-CACCGGCGCGAACAGCCAGAGCGT-3’ 1275 
AMOTL2_TSS_sgRNA_R: 5’- AAACACGCTCTGGCTGTTCGCGCC-3’ 1276 
AMOTL2_Enhancer_sgRNA1_F: 5’- CACCGTATTCATAGACATCACTAA-3’ 1277 
AMOTL2_Enhancer_sgRNA1_R: 5’- AAACTTAGTGATGTCTATGAATAC-3’ 1278 
AMOTL2_Enhancer_sgRNA2_F: 5’- CACCGATCCCTATGGAATCCTTGG-3’ 1279 
AMOTL2_Enhancer_sgRNA2_R: 5’- AAACCCAAGGATTCCATAGGGATC-3’  1280 
 1281 
Transduction of primary cells for CRISPR interference and gene expression analysis 1282 
At least two independent sgRNAs targeting a single regulatory element were tested against the 1283 
non-targeting control. sgRNA targeting the transcription start site (TSS) was used as positive 1284 
control. Both human healthy coronary artery smooth muscle cells (HCASMC) (Thermo Scientific, 1285 
Product code C-017-5C, Lot. 1689414) and human healthy coronary artery endothelial cells 1286 
(HCAEC) (ATCC, Product code PCS-100-020, Lot 62382179) were co-transduced in 5ug/ml 1287 
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polybrene with lentiviral particles packaged from Lenti-dCas9-KRAB-blast (Addgene, #89567)123, 1288 
and individual sgRNAs cloned into Lentiguide-Puro backbone (Addgene, #52963)124 at multiplicity 1289 
of infection of 3. Respective HCASMC and HCAEC growth media were refreshed after 24h of 1290 
infection, and co-selection with 10ug/ml blasticidin (Gibco, A1113903), and 1ug/ml puromycin 1291 
(Gibco, A1113803) was performed after 72h post-infection. Selected cells were allowed to recover 1292 
and expanded for 2 weeks before RNA isolation using Trizol Reagent (Gibco, 15596026) and 1293 
Direct-Zol RNA miniprep (Zymo Research, R2052) as per manufacturer’s instructions. cDNA 1294 
conversion was performed with at least 200ng RNA using HiScript III RT SuperMix (Vazyme 1295 
Biotech, R323-01) and RT-PCR was performed using gene-specific primers to assess for gene 1296 
expression. 1297 
 1298 
Below are the following RT-PCR primers used: 1299 
 1300 
AMOTL2_F: AGTGAGCGACAAACAGCAGACG 1301 
AMOTL2_R: ATCTCTGCTCCCGTGTTTGGCA 1302 
ANAPC13_F: GATTGATGATGCTTGGCG 1303 
ANAPC13_R: GTAAGGCTAAGTCTGTCC 1304 
CEP63_F: TGGGAAGGACGTACACATGC 1305 
CEP63_R: ACATCCAACTGACTCCTAAGACT 1306 
GAPDH_F: GTGGACCTGACCTGCCGTCT 1307 
GAPDH_R: GGAGGAGTGGGTGTCGCTGT 1308 
PPIA_F: CACCGTGTTCTTCGACATTG 1309 
PPIA_R: TTCTGCTGTCTTTGGGACCT 1310 
 1311 
Data Availability 1312 
Raw and processed sequencing files can be found on the Gene Expression Omnibus super series 1313 
(). 1314 
 1315 
Code Availability 1316 
Scripts used for analysis in this manuscript can be found at (https://github.com/jamrute). 1317 
 1318 
 1319 
 1320 
 1321 
 1322 
 1323 
 1324 
 1325 
 1326 
 1327 
 1328 
 1329 
 1330 
 1331 
 1332 
 1333 
 1334 
 1335 
 1336 
 1337 
 1338 
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Figure 1. Multiomic profiling of human coronary arteries. (a) Study design. (b) UMAP embedding 1339 
plot of integrated data clustered by RNA. (c) Cell type composition stack plot by sample. (d) 1340 
Dotplot of canonical RNA marker genes by cell type; colored by average expression and dot size 1341 
indicates percent of cells in the cluster which express the gene. (e) Multiome peaks grouped by 1342 
distal, exonic, intronic, and promoter from macs2 peak calls split by cell type. (f) Differentially 1343 
accessible marker peaks heatmap by cell type; statistically significant peaks (FDR < 0.1 and 1344 
log2FC > 0.5). (g) Number of shared enhancers heatmap from single cell enhancer-gene map; 1345 
defined as the number of enhancers where more than 50% of the peak width overlaps with 1346 
another cell types/number of total enhancers. (h) Linkage disequilibrium score regression for 1347 
cardiometabolic traits by cell type. (i) HiC heatmap connectivity matrix genome-wide and zoomed 1348 
in on chromosome 20. 1349 
 1350 
Figure 2. Single-cell chromatin accessibility QT discovery. (a) Schematic of sc caQTL discovery 1351 
with disease enrichment. (b) Number of pseudobulk caQTL by number of nuclei colored by cell 1352 
type at various FDR cut-offs. (c) sc caQTL overlap with GTEx arterial eQTL by cell type. (d) GTEx 1353 
(v8 coronary artery) versus caQTL effect size for FDR < 10% list in SMCs. Rasqual effect sizes 1354 
are estimated by pi parameter which is centered at 0.5 (less than 0.5 is negative; greater than 0.5 1355 
is positive) (e) Box plot of pseudobulk accessibility for peak chr15:78752467-78752967 in SMCs 1356 
containing disease SNP rs7182567 by genotype. (f) UMAP embedding plot of SMC cell state 1357 
annotations (left) and dotplot of ADAMTS7 expression by SMC cell state. (g) Box plot of 1358 
pseudobulk accessibility for peak chr14:75123953-75124453 in endothelial cells containing 1359 
disease SNP rs8017642 by genotype. (h) UMAP embedding plot of endothelial cell state 1360 
annotations (left) and dotplot of NEK expression by endothelial cell state. (i) Number of 1361 
overlapping sc caQTLs with CAD GWAS loci by cell type. (j) CAD GWAS loci and caQTL 1362 
Manhattan plot. (k) snATAC-seq tracts with E2G link centered at the rs658956 locus showing 1363 
SMC specific enrichment of the enhancer with a E2G link to HSD52. (l) Ref (G) to Alt (T) at 1364 
rs658956 disrupts a TF binding site for BACH1 in SMCs. (m) Violin plot showing normalized 1365 
expression by genotype for rs658956 and HSD52 in tibial arteries from GTEx bulk data (p-value 1366 
= 1.1x10-41). 1367 
 1368 
Figure 3. Dynamic QTL discovery in SMC de-differentiation in atherosclerosis. (a) FMC gene set 1369 
score (top 100 genes from Wirka et al30 for FMC marker gene) in integrated SMC meta-map. (b) 1370 
Nuclei binned into tertiles based on FMC score. (c) Dynamic single cell caQTL modeling strategy 1371 
using the PME model for cell-state dependent single nuclei caQTL analysis. Covariate adjustment 1372 
and interaction between a continuous FMC cell state score (binned into low, medium and high) 1373 
and genotype (see Methods). (d) SMC single cell dynamic caQLTs volcano plot showing -1374 
log10(adjusted p-vaue) by interaction coefficient (𝛽total = 𝛽G + FMC score × 𝛽FMC); dots are colored 1375 
by: black = not significant, blue/red = adjusted p-value < 0.05, where blue and red represent 𝛽total 1376 
< 0 and 𝛽total > 0 respectively. (e) Genes linked to dynamic caQTLs which are CAD GWAS loci 1377 
using E2G grouped by biological category using ChatGPT. (f) Interaction coefficient of the 1378 
rs11838776 caQTL for COL4A1 in SMCs with FMC score. (g) Box plots show the caQTL effect 1379 
for SMCs in the bottom (left), middle (center), and top (right) thirds of FMC scores. (h) rs11838776 1380 
eQTL in tibial artery (left) and cultured fibroblasts (right) for COL4A1 showing no correlation in 1381 
tibial arteries but a negative correlation in fibroblasts by genotype. (i) rs11838776 ref (G) to alt (A) 1382 
removes a EGR1/2 binding site. (j) EGR1 + 2 and COL4A1 + 2 gene set score dotplot by SMC 1383 
cell state showing greatest expression in CMC/FMC cell states. 1384 
 1385 
Figure 4. Building a single cell variant to enhancer to gene (scV2E2G) map of coronary artery 1386 
disease. (a) Model schematic for single cell V2E2G mapping using a supervised classifier. (b) 1387 
Number of CAD GWAS variants mapping to snATAC-peaks and linked genes across cell types 1388 
with overlapping caQTLs. (c) 41 SMC scV2E2G and caQTL grouped by biological category using 1389 
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ChatGPT; genes highlighted in blue are also genes linked to a dynamic caQTL peak. (d) FMC 1390 
gene set score (top 100 genes from Wirka et al30 for FMC marker gene) in SMC UMAP embedding 1391 
plot. (e) Correlation between FMC score and combined gene-set score for 325 genes identified 1392 
from V2E2G map in SMCs colored by p-value. (f) Heatmap for SMC V2E2G links positively 1393 
correlated with FMC which are also single cell caQTLs by grouped by SMC cell state showing 1394 
increasing expression in diseased SMC cell states; blue indicates genes linked to a dynamic 1395 
caQTL peak. (g) Gene Set score for the 325 genes identified from V2E2G map in SMCs grouped 1396 
by SMC cell state. (h) ENCODE coronary artery H3K27ac and snATAC-seq SMC tract at 1397 
rs7246865 SNP with scE2G link to MYO9B and HAUS8. 1398 
 1399 
Figure 5. Building a variant to enhancer to network (scV2E2G) map of coronary artery disease. 1400 
(a) Analysis framework for constructing interconnected graph networks using scV2E and genome 1401 
wide tissue HiC. (b) Number of distinct network graphs identified from HiC loop connectivity (left) 1402 
and filtered for networks which contain a cell specific V2E. (c) Number of loops in all networks 1403 
and disease enriched networks (networks where any HiC anchor contains a CAD GWAS variant 1404 
inside a coronary artery enhancer) by cell type. (d) SMC V2E2N: number of linked genes in 1405 
networks which contain a disease variant (V2E) in SMCs. (e) Disease variant rs4887091 super 1406 
chromatin interactome showing SMC snATAC-seq and coronary HiC heatmap with looping 1407 
between chr15:71374954-79178639. (f) Genes in the rs4887091 super chromatin interactome; 1408 
heatmap showing expression by cell type, caQTL/GTEx eQTL/scE2G for rs4887091, and CMD 1409 
GWAS related genes. (g) rs4887091 ref (T) to alt leads to increased CTCF binding. (h) CTCF 1410 
ChIP-seq in HCASMCs overlaid with SMC snATAC-seq and scE2G at the rs4887091 locus. 1411 
 1412 
Figure 6. rs9876658 distally linked to AMOTL2 in SMCs. (a) snATAC-seq tracts and genome 1413 
wide coronary HiC loops showing rs9876658 lies within a non-immune peak linked distally to the 1414 
AMOTL2 transcription start site. (b) Manhattan plot for rs9876658 overlaid on HiChIP-seq and 1415 
H3K27ac from primary SMC and endothelial cells showing rs9876658 lies within a SMC specific 1416 
enhancer and is linked to the AMOTL2 TSS in SMCs but not endothelial cells. (c) CRISPRi for 1417 
enhancer containing the rs9876658 variant in SMCs and endothelial cells shows that rs9876658 1418 
regulates expression of AMOTL2 and ANAPC13 in SMCs but not endothelial cells. CRISPRi for 1419 
a non-targeting (negative control) and TSS (positive control) shown as reference. 1420 
 1421 
 1422 
 1423 
 1424 
 1425 
 1426 
 1427 
 1428 
 1429 
 1430 
 1431 
 1432 
 1433 
 1434 
 1435 
 1436 
 1437 
 1438 
 1439 
 1440 
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Extended Data Figure 1. Multiome quality control. (a) Experimental workflow to isolate nuclei 1441 
from flash frozen coronary arteries with flow cytometry to sort for 7-AAD+ nuclei with final 1442 
morphology. (b) Scrublet score after doublet removal. (c) Quality control metrics for RNA (number 1443 
of UMI counts, number of genes, mitochondrial RNA ratio, and ribosomal RNA ratio per nucleus) 1444 
and ATAC (TSS enrichment and number of fragments per nucleus) grouped by sample. (d) 1445 
snATAC-seq fragment size distribution per sample. 1446 
 1447 
Extended Data Figure 2. Multimodal clustering of Multiome data. (a) Gene set scores for marker 1448 
genes (adjusted p-value < 0.05 and log2FC > 0.58) in each cell type. (b) DotPlot of marker gene 1449 
set score form (a) grouped by cell type. (c) UMAP embedding and clustering using ATAC LSI, 1450 
RNA LSI, RNA/ATAC integrated with harmony batch correction, and RNA/ATAC integrated with 1451 
harmony batch correction with annotations from RNA based clustering. Confusion matrix for 1452 
cluster annotations in (d) RNA and ATAC clustering and (e) RNA/ATAC integrated with harmony 1453 
batch correction and RNA. (f) Motif enrichment using chromVar by major cell types using 1454 
differentially accessible peaks (FDR < 0.1 and log2FC > 0.5). 1455 
 1456 
Extended Data Figure 3. HiC quality control. Number of significant (a) loops called b FitHiC and 1457 
(b) TADs identified at different resolutions by sample. (c) Loop and (d) TAD size distributions by 1458 
sample. (e) Number of loops called using FitHiC at various anchor resolutions. (f) Average loop 1459 
size at various anchor resolutions. 1460 
 1461 
Extended Data Figure 4. Genotyping and pseudobulk caQTL discovery. (a) PC1 and 2 for 1462 
genotyping data (post imputation from the TOPMED panel and filtering for variants with imputation 1463 
R2 < 0.3 and MAF > 0.05) panel for each sample. (b) Local ancestry inference (YRI (n=186) and 1464 
CEU (n=183) from the 1000 Genome Project102 were used as AFR / EUR reference populations, 1465 
respectively.) genetic proportion stack plot by sample. (c) Correlation heatmap for ancestry PCs 1466 
and ATAC count PCs. (d) Multi-trait pseudobulk Manhattan plot for caQTL colored by cell type 1467 
genome wide. (e) Distance from caQTL to the regulated peak colored by cell type. 1468 
 1469 
Extended Data Figure 5. Cell type and state regulation of molecular traits. Pseudobulk 1470 
accessibility by genotype plots for (a) ADAMTS7, (b) NEK9, (c) SMAD7, and (d) FDX are cell type 1471 
specific caQTLs for SMCs, endothelium, fibroblasts and myeloid cells respectively. (e) DotPlot of 1472 
canonical marker genes for endothelium cell biology grouped by mapped cell state annotation. (f) 1473 
Pathway enrichment for statistically significant genes upregulated in EndoMT (adjusted p-value < 1474 
0.05 and log2FC > 0.58). (g) Endothelium acting loci from V2G2P in Schnitzler et al47 gene set 1475 
score grouped by EC state. (h) Program 8 gene set score from Schnitzler et al47 in UMAP 1476 
embedding plot (left) and DotPlot grouped by EC state (right). 1477 
 1478 
Extended Data Figure 6. Dynamic caQTL modeling. (a) SMCs integrated from Turner et al34 and 1479 
Multiome snATAC-seq to construct a meta-map for dynamic single cell QTL modeling grouped 1480 
by dataset. (b) FMC marker genes gene activity score split by dataset. (c) Framework for single 1481 
cell dynamic caQTL modeling with a Poisson Mixed Effect model showing an FMC state 1482 
dependent effect of genotype on chromatin accessibility. (d) Gene set score for dynamic caQTLs 1483 
overlapped with CAD GWAS variants linked to genes with scE2G grouped by SMC state. (e) 1484 
HSD52 betas for dynamic caQTL at rs658956 in UMAP embedding (left) and pseudobulk box 1485 
plots by genotype and FMC score tertile (right). 1486 
 1487 
Extended Data Figure 7. Each point represents enhancer-gene predictions by scE2GMultiome in 1488 
one cell cluster (N = 11). All properties were computed on binarized predictions omitting promoter 1489 
elements. (a) Average number of unique ATAC fragments per cell by number of cells per 1490 
cluster. (b) Number of enhancer-gene links by number of unique ATAC fragments per cluster. T 1491 
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(c) Mean enhancer width by number of unique enhancer elements regulating at least one distal 1492 
gene. (d) Mean distance between enhancer element and target gene transcription start site. (e) 1493 
Mean number of enhancers per gene by mean number of genes per enhancer. (f) Number of 1494 
genes with at least one non-promoter enhancer by number of unique ATAC fragments. 1495 
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