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Abstract

Transcriptome-wide association studies (TWAS) are commonly used to prioritize causal genes
underlying associations found in genome-wide association studies (GWAS) and have been
extended to identify causal genes through multivariable TWAS methods. However, recent
studies have shown that widespread infinitesimal effects due to polygenicity can impair the
performance of these methods. In this report, we introduce a multivariable TWAS method named
Tissue-Gene pairs, direct causal Variants, and Infinitesimal effects selector (TGVIS) to identify
tissue-specific causal genes and direct causal variants while accounting for infinitesimal effects.
In simulations, TGVIS maintains an accurate prioritization of causal gene-tissue pairs and
variants and demonstrates comparable or superior power to existing approaches, regardless of the
presence of infinitesimal effects. In the real data analysis of GWAS summary data of 45
cardiometabolic traits and expression/splicing quantitative trait loci (eQTL/sQTL) from 31
tissues, TGVIS is able to improve causal gene prioritization and identifies novel genes that were

missed by conventional TWAS.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

Over the past two decades, genome-wide association studies (GWAS) have identified thousands
of genetic variants associated with complex traits 3. However, most GWAS signals are detected
in non-coding regions and have been shown to have complex regulatory landscapes across
different tissues and cell types®, making it challenging to pinpoint causal variants and genes
driving these GWAS signals. Joint GWAS and expression quantitative trait loci (eQTL) data
analysis methods, such as colocalization®, transcriptome-wide association studies (TWAS)®, and
cis-Mendelian randomization (cis-MR)’, have been developed to prioritize causal genes at
GWAS loci®. Colocalization simultaneously examines the expression of a gene and a trait to
determine whether they share common causal genetic variants at a locus®. Both TWAS and cis-
MR assume a causal diagram where eQTLs regulate tissue-specific gene expression that
subsequently affects a trait, and they identify these tissue-specific causal genes by testing the
significance of the causal effect estimates. Furthermore, these methods have been extended to a
broader range of molecular phenotypes, such as splicing events® and protein abundance!®, with
regulatory QTLs being splicing QTLs (sQTLs) and protein QTLs (pQTLs), which we call

XQTLs in general.

Nevertheless, colocalization, TWAS, and cis-MR are all univariable methods that statistically
measure the marginal correlations of genetic effect sizes between a trait and a tissue-specific
expression of a gene. Non-causal gene-tissue pairs may be falsely detected by these univariable
methods due to the cis-gene-tissue co-regulations with causal gene-tissue pairs®*%2, The
underlying mechanism may come in the following respects: the tissue-specific eQTLs of a causal
gene are in linkage disequilibrium (LD) with (1) the eQTLs of nearby non-causal genes®® and (2)

the eQTLs of causal genes expressed in non-causal tissues®. In addition, some variants can
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influence a trait independently of causal gene-tissue pairs, which are frequently denoted as direct
causal variants®® and horizontal pleiotropy®®. The non-causal gene-tissue pairs may be incorrectly

detected when their eQTLs are in LD with direct causal variants.

Multivariable TWAS methods, such as causal TWAS (cTWAS)*® and Tissue-Gene Fine-
Mapping (TGFM)*, have been proposed to address these issues. Specifically, cTWAS identifies
causal genes and direct causal variants among multiple candidates using the sum of single effects
(SUSIE)%!4 by examining tissues separately. TGFM extends cTWAS to allow multiple tissues to
be analyzed simultaneously and can identify the trait-relevant tissues beyond the causal variants
and genes. However, Cui et al.1” recently reported that current Bayesian fine-mapping methods,
including SuSiE'®!8 and FINEMAP?*®, have a high replication failure rate (RFR) in practice. Cui
et al.}” discovered that the widespread infinitesimal effects, which may stem from the
polygenicity of complex traits, are the sources of the high RFR, and accounting for the
infinitesimal effects can reduce the RFR and improve statistical power. Similarly, the
polygenicity can also lead to inflating the test statistics in standard TWAS? and traditional
linkage studies?. Thus, due to the lack of modeling infinitesimal effects, it is expected that

cTWAS and TGFM can be vulnerable to spurious prioritization and reduced statistical power.

We present the Tissue-Gene pair, direct causal Variants, and Infinitesimal effect Selector
(TGVIS), a multivariable TWAS method to identify causal gene-tissue pairs and direct causal
variants while incorporating infinitesimal effects. TGVIS employs SuSiE*®** for fine-mapping
causal gene-tissue pairs and direct causal variants, and uses restricted maximum likelihood
(REML)? to estimate the infinitesimal effects. In addition, we introduce the Pratt index? to rank

the importance for improving the prioritization of causal genes and variants. We applied TGVIS
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to identify causal cis-gene-tissue pairs and direct causal variants for 45 cardiometabolic traits
using GWAS datasets with the largest sample sizes to date®>?422, by incorporating the eQTL and
sQTL summary statistics from 28 tissues from genotype-tissue expression (GTEX)*?, and the
eQTL summary statistics of kidney tubulointerstitial®, kidney glomerular®, and pancreatic
islets® tissues. We summarized the causal gene-tissue pairs and direct causal variants,
highlighted the pleiotropic effects at the gene-tissue level, and demonstrated the different
functional activity® of eQTLs/sQTLs mediated through gene-tissues and the direct causal
variants. Moreover, we mapped the trait-relevant major tissues and demonstrated the
enrichments of genes identified by TGVIS in terms of colocalization®, on the silver standard of
lipid genes®®, FDA-approved drug-target genes®®, and genes detected through pQTL summary
data®®. Our study reveals a broader picture of gene and tissue co-regulations, which can provide

novel biological insights into complex traits.
Results
Overview of method

Figure 1A illustrates the causal diagram assumed in this report. Specifically, we hypothesize that
a set of xQTLs influence the products of genes (e.g., expressions and splicing events) at a locus.
Gene co-regulation®!2, i.e., the correlation of xQTL effects among multiple gene products, can
emerge due to shared xQTLs or being in LD among them. Meanwhile, tissue co-regulation!3"-3,
defined as the correlation of gene expression across multiple tissues, can arise because of the
same mechanism. In the gene and tissue co-regulation network, certain gene-tissue pairs directly
influence a trait without mediation by other gene-tissue pairs, which are referred to as causal
gene-tissue pairs. In addition, some genetic variants may directly influence the trait, which we

consider as direct causal variants. Besides these direct causal variants which have relatively large
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89 effects, we assume there are polygenic or infinitesimal effects that can be modeled through a

90 normal distribution with mean zero and small variance’ (Method).

91  The curse of dimensionality poses a substantial challenge in the multivariable TWAS model.
92  Figure 1B illustrates this challenge by an example of the association evidence with low-density
93 lipoprotein cholesterol (LDL-C)* at the PCSK9 locus, where dozens of coding genes and long
94  non-coding ribonucleic acids (RNASs) are located, along with multiple potential direct causal
95 variants. Conventional statistical methods cannot precisely identify causal gene-tissue pairs and
96  variants because there are many correlated candidates which frequently range from hundreds to
97  thousands'®. The proposed TGVIS enables to overcome the curse of dimensionality. Figure 1C
98  describes the workflow of TGVIS, where the inputs are the GWAS summary statistics of a
99  trait, xQTL summary statistics of gene-tissue pairs, and a reference LD matrix of the
100 variants at the locus. TGVIS utilizes a profile-likelihood approach to estimate the causal
101  effects of gene-tissue pairs and directly causal variant effects with SuSiE1618 and model the
102  infinitesimal effects via REMLZ22, This profile-likelihood iterates until all estimates are

103  converge. The details are described in the Methods and the Supplementary Materials.

104  In practice, another challenge arises when selecting a causal gene-tissue pair based solely on its
105  posterior inclusion probability (PIP) because many gene-tissue pairs share the same sets of

106  xQTLs at a locus, making them statistically indistinguishable. SUSIE groups these pairs into a
107  credible set during fine-mapping and introduces a single effect to describe the contributions of
108 the variables in the same credible set. Therefore, all inferences should be made based on the
109 single effects defined by SuSIE's credible sets. To quantify the contribution of each gene-tissue
110  pair and direct causal variant, we introduce the Pratt index? as a metric parallel to PIP. While

111  PIP measures the significance of variables from a Bayesian viewpoint, the Pratt index quantifies
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112  their predictive importance. In the application, we calculated the cumulative Pratt index of
113  variables in a 95% credible set (CS-Pratt) and filtered out the credible sets with low CS-Pratt
114  values (Methods and Supplementary Materials). We observed that this procedure improved

115  the precision of causal gene and variant identification.
116  Simulation

117  We compared the TGVIS with 4 multivariable MR and TWAS methods: cisIVW®°, Grant20224,
118  cTWAS?® and TGFM. We applied the following criteria for determining the causality: the
119  95% credible set for TGVIS, TGFM, and cTWAS; P < 0.05 for cislVW; and selection by lasso
120 in the Grant2022. We did not consider univariable methods because of their high type-I error
121  rates when the goal is to identify causal genes, given that xQTL effect sizes for multiple genes
122  are often correlated'®. Detailed information on the settings and results can be found in the

123 Methods and Supplementary Materials.

124 We first assessed the accuracy of causal effect estimation for gene-tissue pairs. When

125 infinitesimal effects were absent, TGVIS showed a mean square error (MSE) for causal effect
126  estimates similar to that of cTWAS, and TGFM, while both cislVW and Grant2022 exhibited
127  substantially larger MSE (as shown in the left two panels in Figure 2A). However, when

128 infinitesimal effects were present, TGVIS demonstrated a visibly lower MSE compared to the
129  other methods, with cTWAS and TGFM showing approximately 32% higher MSE than TGVIS
130  (as shown in the right two panels in Figure 2A). These results indicate that TGVIS generally

131  outperforms its competitors by accounting for infinitesimal effects.

132  We then compared the true negative rate (TNR) and true positive rate (TPR) of these five

133  methods. A true negative is defined as a method that correctly identifies all 98 non-causal gene-
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134  tissue pairs. Similarly, a true positive is defined as a method that correctly identifies the 2 causal
135  gene-tissue pairs. Across all the scenarios (Figure 2B), TGVIS achieved the highest TNR, with
136  an average of 0.614, followed by TGFM and cTWAS, with average TNRs of 0.513 and 0.499,
137  respectively. CisIVW and Grant2022 performed worst, with averages TNR of 0.064 and 0.013,
138  respectively, indicating that these two methods are prone to identifying a substantial number of
139  false positive gene-tissue pairs. On the other hand, TGVIS exhibited a similar TPR (average
140 TPR =0.667) as TGFM, cTWAS, and cisIVW (average TPRs of 0.649, 0.667, and 0.661,

141  respectively), while Grant2022 had the highest TPR (averages TPR=0.831) (Figure 2C), which

142  is not surprising given that Grant2022 also has lowest TNR.

143 We further assessed the performance in detecting direct causal variants. In scenarios where no
144  direct causal variants were present, the TGVIS identified fewer direct causal variants, with an
145  average number of 0.92, compared to 2.39 for TGFM and 2.38 for cTWAS (Figure 2D). When
146  there were two direct causal variants present, TGVIS identified an average of 2.86 direct causal
147  variants, compared to 3.58 for both cTWAS and TGFM. The averaged correlations between the
148  estimated and true direct causal effects across simulations were high for all three methods

149  (Figure 2E). However, predicting infinitesimal effects remains challenging, as evidenced by an
150  average correlation of 0.663 between the predicted and true infinitesimal effects in TGVIS

151  (Figure 2F).

152  Searching potentially causal gene-tissue pairs and variants for 45 cardiometabolic traits

153  We systematically analyzed 45 cardiometabolic traits and eQTL/sQTL summary statistics (Table
154  S1-S2) to identify potential causal gene-tissue pairs and direct causal variants. For the TVGIS,
155  we considered whether a gene-tissue pair or direct causal variant was causal if (1) it was within a

156  95% credible set and (2) had a CS-Pratt > 0.15. The criteria of CS-Pratt >0.15 was established
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157  based on the empirical evidence (Methods). For TGFM, we followed the authors’
158  recommendation of considering individual PIP > 0.5 as indicative of causality. Additionally, we

159  did not compare with cTWAS because it analyzes tissues separately™®.

160 TGVIS and TGFM identified a median of 119.5 and 227.5 causal gene-tissue pairs, and 42 and
161 183 causal variants per trait (Figure 3A, Table S3-S6), respectively. Additionally, TGVIS

162  detected a median of 0.313 causal gene-tissue pairs and 0.115 direct causal variants per locus,
163  while TGFM identified a median of 0.469 causal gene-tissue pairs and 0.466 direct causal

164  variants per locus (Figure 3C). Overall, TGVIS reduced the number of causal gene-tissue pairs
165 by a median of 55.7% and the number of direct causal variants by 24.5% per trait compared to

166  TGFM, representing the improved resolution of TGVIS over TGFM.

167  We expected that general causal gene-tissue pairs detected by TGVIS and TGFM would likely
168  be included among those identified by univariable TWAS methods such as S-PrediXcan®.

169  Surprisingly, among the causal pairs identified by TGVIS, a median of 34.3% were undetected
170 by S-PrediXcan, and this proportion was 60.1% for TGFM (Figure 3A, Table S22). For

171  example, TGVIS identified SCN2A-Nerve_Tibial as a novel causal gene-tissue pair for 17 traits
172 (Figure S37) but missed by TWAS. Both TGVIS and TWAS identified SCN2A-Nerve_Tibial for
173  type 2 diabetes. Our findings suggest SCN2A may regulate a wide range of metabolic traits.

174  These results indicate that TGVIS not only fine-maps causal genes detected but also uncovers

175  novel genes by modeling multiple tissue-gene pairs simultaneously.

176  We investigated how many traits can be influenced by a causal gene-tissue pair, reflecting the
177  pleiotropic effect at the gene-tissue level. Among the causal gene-tissue pairs falling in credible

178  sets of size less than 2, 22.4% identified by TGVIS and 16.7% by TGFM exhibit pleiotropic
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179  effect (Figure 3D, Table S7-S8), indicating that many of these causal genes contribute to shared

180  biological mechanisms across multiple traits.

181  We further examined whether the direct causal variants and xQTLs mediated by causal gene-
182 tissue pairs differ in functionality using functional annotations® (Methods). Significant

183  differences were observed between these two types of variants identified by either TGVIS or
184  TGFM across multiple annotations (Table S11). As shown in Figure 3E and 3F, the direct

185  causal variants generally have higher FathmmXF and h3k9me3 scores than the xQTLs mediated
186 by causal gene-tissue pairs (Wilcoxon signed-rank test, P<2.2E-16), suggesting distinct

187  Dbiological mechanisms for many of these variants.

188  We observed that multiple eGenes and sGenes often shared the same set of variants as their

189  xQTL, highlighting the importance of making inferences based on credible sets rather than

190 individual variables. Most credible sets consisted of 2 to 4 gene-tissue pairs (60.5%), although
191  some credible sets included more than 10 (11.5%) for TGVIS (Figure 4A, Table S12). In

192  comparison, TGFM resulted predominantly featured single gene-tissue pairs (56.0%) and 2 to 4
193  pairs (41.7%) per credible set (Figure S18, Table S12). On the other hand, most of the credible
194  sets only had one xQTL (66.6%), followed by two xQTLs (12.6%) for TGVIS (Figure 4B,

195  Table S13). As for TGFM, these percentages were 26.9% for one xQTL and 24.4% for two

196  xQTLs (Figure S20, Table S13). These differences arise because TGFM resampled all xQTLs
197  inthe 95% credible sets, typically incorporating more variants, whereas TGVIS applied a stricter

198  criterion for selecting xQTLs (Methods, Figure S18-S19).

199  We investigated the proportions of identified causal eGenes and sGenes for the 45
200  cardiometabolic traits (Methods). TGVIS showed eGenes and sGenes proportions of 58.1% and

201 41.9%, respectively, while TGFM resulted in 63.5% for eGenes and 36.5% for sGenes (Figure
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202  4C, Figure S21). These results align with the proportions observed in the GTEx Consortium
203 (63% cis-eQTL vs. 37% cis-sQTL)*2, with TGFM’s proportions being slightly closer. A potential
204  explanation is that TGVIS’ eGenes and sGenes were more likely enriched for causal genes

205  specific to cardiometabolic traits, leading to a slight difference, though this difference is not

206  substantial.

207  We calculated the Pratt index of gene-tissue pairs, direct causal variants, and infinitesimal effects
208  based on its additive property (Figure 4D, Table S15), which helps measure the contributions of
209 these three potentially correlated components (Methods). For TGVIS, the median of the Pratt
210 index was 0.161, 0.059, and 0.182 for gene-tissue pairs, direct causal variants, and infinitesimal
211  effects, respectively, with a median sum of the Pratt index of 0.403. In comparison, for TGFM,
212  the median of the Pratt index was 0.145 for gene-tissue pairs and 0.114 for direct causal variants,
213  with a median sum of the Pratt index of 0.262. These results support the existence of widespread

214  infinitesimal effects.
215  Major relevant tissue map of cardiometabolic traits

216  We searched the major relevant tissues by counting their numbers to the causal gene-tissue pairs
217  incredible sets identified by TGVIS and TGFM (Methods). We ranked the top relevant tissues
218  according to their contributions and clustered similar traits and tissues based on the similarity of
219 the identified causal gene-tissue pairs (Figure 5A-5B, Figure S22-S23). Overall, we observed
220  similar major relevant tissues and clustering patterns using both methods, although there were
221  some notable differences. TGVIS tended to cluster similar traits more closely together than

222  TGFM. For instance, TGVIS grouped all blood pressure traits into close clusters, placing them
223 near coronary artery disease (CAD), whereas TGFM positioned systolic and diastolic blood

224 pressures (SBP and DBP) farther from pulse pressure (PP) and CAD. Similarly, serum lipid traits
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225  were clustered together by TGVIS, but not by TGFM. On the other hand, arterial tissues

226  consistently emerged as the major tissue for blood pressure traits and CAD, while heart tissues
227  were the major tissue for the QRS complex, atrial fibrillation, QT interval, and JT interval.

228  Fibroblasts were highlighted as an important tissue for many traits, aligning with recent findings
229  about their role in tissue integrity and chronic inflammation, alongside other tissues such as

230  adipose tissue and liver®?.

231  We considered several lipids traits, including LDL-C, HDL-C, TC, triglyceride,

232 apolipoprotein A1 (APOAL), and apolipoprotein B (APOB), as examples to illustrate the

233  proportional counts of each tissue identified in the credible sets. For HDL-C and triglycerides,
234 the most relevant tissue was subcutaneous adipose (Figure 5C). In contrast, liver tissue was

235  consistently the most relevant tissue for LDL-C, APOB, and TC, despite the small sample size
236  for the liver tissue gene expression data®?. For APOAL, the two most relevant tissues were the
237  liver and subcutaneous adipose tissue. Figures S24-S32 display the plots of major tissues for the

238  rest of the traits. Overall, the TGVIS and TGFM produced in general consistent results.
239  Evaluation of the identified gene-tissue pairs

240  To evaluate the accuracy of the prioritization of causal gene-tissue pairs, we first compared the
241  colocalization evidence of the causal credible sets identified by TGVIS and TGFM through

242 Coloc-SuSiE®. Since a credible set could include multiple tissue-gene pairs, we defined a

243  colocalization of a credible set in two criteria: (1) the credible set contained at least one gene-
244  tissue pair that is colocalized with the trait; (2) more than 50% of the gene-tissue pairs in the

245  credible set were colocalized with the trait (Method). TGVIS had much higher proportions of
246  colocalized credible sets (the median proportions across traits were 93.1% and 77.8% for the two

247  criteria, respectively) than TGFM (the median proportions across traits were both 40.9% for two


https://doi.org/10.1101/2024.11.13.24317250
http://creativecommons.org/licenses/by-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2024.11.13.24317250; this version posted December 10, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-ND 4.0 International license .

248  criteria) (Figure 6A and Table S16-S17), suggesting a substantial number of causal tissue-gene

249  pairs identified by TGFM do not have colocalization evidence.

250  We next followed the previous analysis strategy™® to assess the causal genes for LDL-C

251  identified by TGVIS and TGFM. Precision was evaluated using the 69 known lipid-related genes
252 asthe silver standard positive gene set, and nearby genes within a 1MB-radius region as the

253  negative set, as studied by Zhao et al.'®. We disregarded the tissue part of the identified causal
254  gene-tissue pairs and then calculated how many causal genes were within the lists of sliver and
255  nearby genes. TGVIS demonstrated a precision of 60.0% (9 out of 15), outperforming TGFM,

256  which had a precision of 37.5% (10 out of 28) (Table S18 and Figure S33).

257 Itis reasonable to assume that causal genes are more likely to be druggable targets. We utilized
258  the published list of 6,690 FDA/EMA-approved non-cancer drugs (Table S1 provided by

259  Trajanoska et al.*®) to calculate the enrichment of the identified causal genes in the drug list

260  (Figure 6B and Table S19-S20). Although the number of causal genes identified by TGVIS in
261  the drug-targeted gene list was only 74.3% of that identified by TGFM, the enrichment identified

262 by TGVIS was 1.43 times more than that by TGFM (P = 1.56E-3).

263  We hypothesized that causal genes detected through eQTLs/sQTLs may be more likely to

264  demonstrate association evidence in protein data. To test this, we conducted univariable MR

265  analysis of protein abundances (pGenes) in blood tissue for genes identified by TGVIS and

266  TGFM, using both trans- and cis-pQTLs as instrument variables (Figure 6C and Table S21). On
267  average, 18.1% of pGenes identified by TGVIS showed significant causal evidence, compared to
268  13.7% of pGenes for TGFM (P = 3.1E-3). However, this proportion is lower than the estimated
269  true positive association rate of 27.8% between predicted cis-regulated gene expression and

270  plasma protein abundances®. The discrepancy may arise from the fact that pGenes are
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271  influenced by widespread trans-pQTLs', whereas predicted gene expression is predominantly
272  contributed by cis-eQTLs, and its trans-regulated effects are much more difficult to detect. This
273  result suggests that eGenes/sGenes and pGenes may represent distinct biological processes

274  related to complex traits®.
275  Fine-mapping of causal gene-tissue pairs and variants in GWAS loci

276  We exemplified four loci associated with LDL-C, CAD, and BMI. The first locus contains the
277  PCSK9 gene for LDL-C (Figure 7A). TGVIS identified three 95% credible sets, including

278  PCSK9-Whole Blood and two direct causal variants rs11591147 and rs11206517 (Figure 7B).
279  After applying the threshold of CS-Pratt > 0.15, PCSK9-Whole_Blood (CS-Pratt = 0.17) and
280  rs11591147 (CS-Pratt = 0.492) remained. In contrast, TGFM identified nine gene-tissue pairs
281  and direct causal variants with PIPs > 0.5 (Figure 7C), including the MROH7-

282  Esophageal Mucosa which has no clear connection to the biology of LDL-C. Applying the CS-
283  Pratt threshold, PCSK9-Whole_Blood (CS-Pratt = 0.204) and rs11591147 (CS-Pratt = 0.524)
284  remained, consistent with the results yielded by TGVIS. This example demonstrates how TGVIS
285  reduces false positives by modeling infinitesimal effects and applies the Pratt Index as an

286 additional criterion.

287  The second locus contains the HMGCR gene causal** to LDL-C (Figure 7D). TGVIS identified
288  five 95% credible sets (Figure 7E). The first credible set (the darkest green) includes 9 gene-
289  tissue pairs, such as HMGCR-Muscle_Skeletal and five of its sGenes in esophagus mucosa,

290 nerve tibial, fibroblasts, and adipose visceral, all sharing the same xQTL rs2112653. When we
291  applied the threshold of individual PIP > 0.5, none of the pairs in this credible set were selected
292 although they were all in a 95% credible set. However, this set had the highest CS-Pratt of 0.322

293  among the five 95% credible sets. Conversely, TGFM identified POLK-Lung (CS-Pratt = 0.684)
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294  but missed the crucial HMGCR gene (Figure 7F). This is likely a false discovery, as HMGCR
295 inhibitor is a key component of statins, which works by inhibiting HMG-CoA reductase and thus

296  reduces LDL-C in the blood**.

297  In the third example, we focused on the PHACTR1 locus related to CAD (Figure 7G). Both

298 TGVIS and TGFM identified a major credible set at this locus, including PHACTR1-

299  Artery_Coronary and PHACTR1-Artery_Aorta, with CS-Pratt values of 0.632 and 0.612,

300 respectively (Figure 7H-71). In TGVIS, the individual PIPs of them were both 0.5 and the

301 cumulative PIP for this credible set was 1. In contrast, TGFM resampled both the eQTL effect
302  estimates and the PIPs (Methods), resulting in a higher individual PIP and Pratt index for

303 PHACTR1-Artery_Aorta (PIP = 0.597, Pratt = 0.472) than PHACTR1-Artery_Coronary (PIP =
304 0.222, Pratt = 0.053). However, as noted by Strober et al.1#, this resampling process tends to

305  favor gene-tissue pairs with larger sample sizes, which may explain the exclusion of PHACTR1-
306  Artery_Coronary. TGVIS adheres to the original interpretation of SuSIE that the variables within

307 acredible set cannot be distinguished from the available data.

308  The final exemplary locus is the FTO locus associated with BMI (Figure 7J). TGVIS identified
309 only two direct causal variants rs7206790 and rs3751813 and did not find any gene-tissue pairs
310 atthis locus (Figure 6K). In contrast, TGFM identified four gene-tissue pairs:

311 FTO_Kidney Glomerulus, FTO_Thyroid, FTO_Artery Tibial, and IRX3-

312  Adipose_Subcutaneous, and five direct causal variants (Figure 7L). However, the associations
313  between obesity and the expression of the FTO gene in the kidney glomerulus, thyroid, and tibial
314  artery are not well-established in the literature. After applying the Pratt index threshold, only two
315  direct causal variants rs7206790 and rs3751813, remained, consistent with the result from the

316 TGVIS. When we reduced the locus radius from 1MB to 500KB and re-ran the analysis, both
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317 TGVIS and TGFM identified the sGene of FTO-Pancreas as causal, with CS-Pratt values of
318 0.345 and 0.407, respectively (Figure S35). The sQTLs of this FTO sGene are rs7206790 and
319  rs11642841, which have been reported by Xu et al.*. This example suggests that when applying

320  multivariable TWAS methods, the size of a cis-region can be sensitive and need to be calibrated.
321 Discussion

322 Inthis report, we developed TGVIS to identify causal gene-tissue pairs and direct causal variants
323 inloci identified through GWAS by integrating XQTL summary statistics. Compared to

324  cTWAS! and TGFM*, TGVIS not only analyzes multiple tissue-specific xQTL summary data
325  simultaneously to pinpoint causal gene-tissue pairs and direct causal variants, but also models the
326  widespread presence of infinitesimal effects underlying polygenic traits to reduce false discovery
327  rates in detecting causal molecular phenotypes'’. In addition, TGVIS quantifies the importance
328  of a causal variable by the Pratt index, which has been well established in statistics and has

329  recently been applied to estimate the gene-by-environment contribution?. Through simulations,
330  we demonstrated that under the presence of infinitesimal effects, TGVIS has lower MSE and
331 higher TPR and TNR compared to both cTWAS and TGFM (Figure 2). In real data analysis,
332  TGVIS outperformed TGFM in the following four aspects: (1) identifying more interpretable
333  major trait-relevant tissues (Figure 5); (2) resulting in a higher proportion of colocalized causal
334  credible sets (93.1% vs 40.9%, Figure 6A); (3) achieving notably higher precision in the 'silver
335  standard’ sets of lipids (60.0% vs 37.5%, Table S15); and (4) demonstrating significantly greater
336 enrichment evidence based on druggable genes (1.43 times, Figure 6B) and causal proteins (1.31

337  times, Figure 6C).

338  Our analysis of 45 cardiometabolic traits provides several key insights. First, we identified a

339  median of 34.3% causal gene-tissue pairs that were missed in univariable TWAS analysis,
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340  suggesting that TGVIS is able to identify novel genes besides fine-mapping the genes detected
341 by conventional TWAS (Figure 3A), representing a significant advance in TWAS. Second, we
342  observed that infinitesimal effects can make a substantial contribution to local genetic variation
343  of traits besides the gene-tissue pairs and direct variant (Figure 4D), which is consistent with
344  recent studies'’?14®, Beyond underlying biological mechanisms such as the polygenicity of

345  human complex traits, the emergence of infinitesimal effects may also be attributed to non-

346  biological factors, particularly estimation errors in the LD matrix, XxQTL effect sizes, and trait
347  GWAS imputation (Method). Both empirical observations and theoretical investigation

348  underscore the importance of including infinitesimal effects in future genetic researches and
349  methodological developments. Third, our study indicates that a significant proportion of causal
350 gene-tissue pairs (22.4%) exhibit pleiotropic effects at the gene-tissue level, suggesting shared
351  biological mechanisms across multiple traits (Figure 3D, Table S7-S8). Fourth, our findings
352  suggest that for most traits, only a limited number of relevant major tissues are involved (Figure
353  4A), implying that concentrating multi-omics data analyses on these relevant major tissues can
354  be more powerful and efficient, as well as it can make the findings more biologically

355 interpretable. For example, when the analysis is focused on the four major blood-pressure-

356 relevant tissues, i.e., adrenal gland, artery, heart, and kidney, it leads to the identifications of
357  more causal gene-tissue pairs, with an increased Pratt index for blood pressure traits*’. Fifth, our
358  results indicate that only 18.1% of causal genes from eQTL/sQTL analyses also show causal
359 evidence in univariable MR using pQTL summary data (Figure 6C), suggesting that gene

360  expressions and protein abundance represent distinct biological processes in complex traits*:.
361 Finally, we identified an average of 0.304 causal gene-tissue pairs per locus and failed to identify

362 any causal gene-tissue pairs in many GWAS loci (Figure 3A), which is consistent with the
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363  recent study showing that the GWAS and eQTL studies are systematically biased toward
364 different types of variants®. Interestingly, the eQTLs/sQTLs of causal gene-tissue pairs and direct
365  causal variants have substantially different functional annotations (Figure 3E-3F, Table S11),

366  warranting further investigation.

367  Our study has some limitations. Due to the data and computational constraints, we only analyzed
368  genes using cis-eQTL/sQTL summary statistics, limiting our ability to distinguish between genes
369 that share cis-eQTLs/sQTLS, which may lead to false discoveries. This issue could potentially be
370  addressed by incorporating trans-eQTLs/sQTLS, although this would require much larger sample
371  sizes. In addition, we observed that a credible set often contains 2-4 gene-tissue pairs (Figure
372 3C), likely due to the small sample size in the GTEXx data, which results in only 1 or 2

373  eQTL/sQTL for most gene-tissue pairs (Figure 4B). In other words, while TGVIS was able to
374  narrow down to a range of causal gene-tissue pairs, it could not always pinpoint the exact causal
375  pair(s) in some loci. Incorporating external information, such as colocalization evidence with
376  TGVIS, may aid in distinguishing these pairs*. Furthermore, our eQTL/sQTL analysis relies on
377  bulk tissue expression data, which may limit our ability to identify cell-type-specific causal

378  genes®. For example, recent studies increasingly suggest that FTO may not be the causal gene
379  for BMI; instead, experimental evidence indicates that IRX3 and IRX5 are the causal genes®.
380  However, the causality of IRX3 and IRX5 was observed in experiments using preadipocytes,

381 rather than bulk subcutaneous adipose tissue, which may explain why TGVIS failed to identify
382 these genes (Figure S36). Moreover, we used the Pratt index?® to rank the importance of

383  variables, but it has inherent statistical limitations®. In simulations, the Pratt index slightly

384  underestimates the true contribution, although this underestimation becomes negligible as the

385  sample size increases (Figure S1-S8). In real data analysis, we used an empirical cutoff learned
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386 by K-means (CS-Pratt = 0.15) to extract important causal variables, which gives us higher

387  precision but may have potentially hindered the discovery of causal gene-tissue pairs with small
388  to moderate causal effects. Last, as suggested in previous studies'*, the inference of causality
389  Dbased on statistical methods comes with a caveat, assuming no model misspecification and no

390 potential causal elements are missing from the model.

391 Insummary, our developed TGVIS and accompany software pipeline provide a valuable tool in

392  fine-mapping and interpreting GWAS findings.
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393  Methods
394  Multivariable TWAS model

395  The causal diagram shown in Figure 1A can be described by the following multivariable TWAS

396 model:

J T
397 y=ZZX]t9]t+G Y+v)+e (D)

j=1t=1

398  where y isatrait, X, is the jt™ gene-tissue pair, G = (G, ..., Gy,) T isan (M x 1) vector of

399  genetic variants in the cis-region, 6 = (011, s BJT)T isan (JT x 1) vector of causal effects with
400 6, being the causal effect of the (j, t)th tissue-gene pair, y = (y4,...,¥a) " isan (M x 1) vector

401  of direct causal effects, v = (vq, ..., vy) " isan (M x 1) vector of infinitesimal effects, and € is

402 the random error. Let B, = (ﬁjtl, ...,,Bth)T isan (M x 1) vector of the cis-eQTL effects of JT

403  tissue-gene pairs. Then we have
404 X =BjG+ep (2

405  where €, is the noise of the j¢t*™" gene-tissue pair. The reduced form of (1) is then given by:

T
406 y=G' ZZB” e +yY+v|+e (3)

407 where mathematically € = & + X}_, X7, €;¢ 6.

408  An alternative version of (1) based on summarized statistics® is
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] T
409 a~nN|R ZZBﬁejt+y+u 2R |, (3)

j=11i=1

410  where & = (d, ..., day)" represents the GWAS effects of the outcome, Ris an (M x M) LD
411 matrix of the M variants, and o7 is the variance of this model. The eQTL effect vector B,

412  follows the model based on summarized statistics below:
413 b ~ N (RB ,-t,a,fth), (5)

414  where bj, = (bjsy, .., Bth)T represents the marginal cis-eQTL effect estimates for the jt"

415  tissue-gene pair, and al%jt denotes the variance of this model.

416  To resolve this curse of dimensionality, we utilized the three sparsity conditions that are

417  commonly assumed in current fine-mapping methods*®*°: (SP1) one or small number of variants
418  causally contribute to tissue or cell-type specific gene expression'?; (SP2) one or small number
419  of gene-tissue pairs causally contribute to the trait'>'4; (SP3) one or small number of direct

420  causal variants exist with relatively large effect sizes™>4. In terms of statistical model: SP1

421  corresponds to B, being sparse for all j and t; SP2 corresponds to 0 being sparse; SP3

422  corresponds to y being sparse. In addition, we incorporated that variants can have infinitesimal
423 effects: v is normally distributed with a mean 0 and a small, unknown variance *’. To our best
424  knowledge, infinitesimal effects have not been modeled in current multivariable TWAS

425  methods.

426  Estimation of cis-regulatory effect
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427  TGVIS first applies SUSIE*® to estimate the non-zero eQTL effect for each gene-tissue pair,

428  based on the fine-mapping model (Equation 5). Specifically, we set L = 3 for each pair and

429  determined the non-zero cis-regulatory effects based on two criteria: (1) if they are within any
430  95% credible set and their PIPs exceeds 0.25, and (2) if their individual PIPs are greater than 0.5.
431  The rationale behind this approach is that SUSIE’s 95% credible set can sometimes include too
432 many weakly correlated variants (even after removing highly correlated ones using LD

433  clumping), leading to low PIPs for each variant. Therefore, we used a moderate threshold to filter
434  out credible sets with too many variants. Additionally, due to the low power of detection, the
435  maximum PIP of credible sets might fall below 0.95, so we retained variants with individual

436  PIPs greater than 0.5. Since a locus often contains over 10,000 gene-tissue pairs (mostly sGenes),
437  dynamically selecting using BIC would be computationally burdensome. Additionally, with

438  GTEx sample sizes under 200, only 1-2 gene-tissue pairs can be identified for most gene-tissue

439  pairs. Therefore, we choose to fix L = 3.

440  Joint modelling of causal tissue-gene pairs, direct causal variants, and infinitesimal effects

441  using profile likelihood

442  TGVIS estimates 0, y, and v using a profile likelihood approach. Given the estimate v from

443  the sth iteration, we considered the following fine-mapping model:
444 a— Rv® ~ »(Ry + RBO,02ZR), (6)

445  where B = (11, ..., Bj¢, -, Byr) is an M x JT matrix consisting of estimated cis-regulatory
446  effects. To update y and @ simultaneously, we applied the same scheme as cTWAS and TGFM,

447  using the function susie_rss(:). The input z-score vector is computed as:
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T

Bl.a Bra
"t ! lall""aM ) (7)
,/BLRBu /B]TTRB/T

449  and the other elements of input correlation matrix are computed as:

448 Zz/
\

U
- - RB 7, r
450 cor(GiBje GiBjer) = —= 'i” BA” =
JBIRB. (B0 RBw
. RB;
451 cor(GiB., G; =L, cor(G) =R, (8)
B}—tRB]t

452  The outputs are denoted as y*? and 0+,
453  Next, we consider the following model:
454 a—nCtYv ~ N (Rv,62R), v~N(0,c2D, (9)

455  where n¢*D = R(BOD + y(5+D), The penalized quasi-likelihood (PQL) of v is

(s)2
g,
456 v+ = argmin {(ﬁ —n&*+D — Ru) 'R™1(4 — G+ — Rv) + oz v i3, (10
v o
v
457  which results in
52 1
458 W6+ = (R + U‘Zs)z l) (@a-n&), @
v

459  where ao(f)z is the current variance estimate. The variance 055)2 is updated by REML.:
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(s+1)2 (ol , 1 1
460 oy = argmin {———=—— + Mlog(oy) + logdet oz R+t =211 (12)
% Tu Oq Oy
461  which simplifies to
oy 1 1 (92 \ T
s+1)2 _ © (s+1) 124 — a
462 oy = D B (R W 1) , (13)

463  where M is the number of variants. We replace ;2 in the last term by its current estimate alfs)z to

(s)2

464  obtain a close-form expression. Note that in Equation (13), % is usually replaced by ﬁ to
0‘1} O-‘U

465  avoid non-identifiability issues??.

466  When the profile likelihood converges, TGVIS estimates o as follows:

467 glstD2

a

468 = %(a — R(BOGHD 4 y(+D 4 u(5+1)))T R (a— R(BOCHD +y0+D 4 uCHD)) . (14)

469  Bayesian Information Criterion for Summary Data
470  Based on Equation (3), we define the BIC for summary data:

logM
471 BIC = log(c?) + Tdf, (15)

472 where M is the number of IVs and df is the degree of freedom of the model®2. In practice, o2 is
473  replaced by its empirical estimate 62, and df is the sum of non-zero causal effect estimates and
474  non-zero direct causal variant estimates. Our default setting assumes L can be 2,3,4,5,6,7, or 8

475  and uses BIC to select the optimal L among them. We found that when considering the
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476 infinitesimal effect, it tends to capture variants with very small effects that SuSIE does not

477  identify, making it rare for L to exceed 8 in practice.
478  Pratt index

479  We use the Pratt index to assess the contribution of a gene-tissue pair. For a general linear
480 model: y; = Z’}’zlxjﬁj + €;, the Pratt index of x;; is defined as V; = B; X b;, where b; =

481  cov(y,X;). This definition assumes standardization where E(y) = E(X;) = 0 and var(y) =
482  var(X;) = 1,1 <j < p. The Pratt index measures the contribution of a variable in a linear
483  model because R* = ¥7_, V; where R = var(X_, X;$8; )/var(y) . In practice, the Pratt index

484  can be estimated by V; = f3; x b;, where b; is the sample correlation between X; and .

485  The proportion of variance explained (PVE) is defined as PVE; = ﬁjz, assuming that all variables

486  are standardized. The Pratt index has two key advantages over PVE: (1) Pratt indices are additive
487  across variables, and (2) the sum of Pratt indices is the total trait variance explained by

488  covariates. In contrast, PVE lacks these advantages.
489  Pratt Index in TGVIS

490  Wee show how to yield the Pratt index V. in practice. We first estimate the marginal correlation:

~ o~ —~ ~ _ B}—tﬁ
491 i = cor(Bj.,a) = —— . (16)
Bj.RB;;VaTR™'a

492  As for the causal effect estimate éjt, we apply the transformation

493 it = O ~—=, (17)
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494  since the Pratt index requires the covariates and trait are all standardized. Thus, the Pratt index of

495  the (j, t)th gene-tissue pair is

. _ . . PBlLa
496 Vie = 8 X 8¢ = 0jp =2

(18)

>
-
o
[
>

497  Since Pratt indices are additive, the Pratt index of a credible set is simply calculated as

498 Vs, = Z V. (19)

JEcs]

499  Note that the Pratt index is only comparable within the same locus, as it represents the ratio of

500 the variance explained by the variable to the total variance of the trait.

501 Itis worth comparing the gene-tissue pair, direct causal variant, and infinitesimal effect
502  contributions at a locus. To simplify the estimation, we consider the linear predictors of all gene-

503 tissue pairs and pleiotropy:

1 1 1
504 iy = RZBO, i, =Rz}, 1, =R20. (20)

1 1 -
505 and a = R 24, where Rz is specified to remove the correlations of B and a. Then, the Pratt

506 indices for the gene-tissue pairs, direct causal variants, and infinitesimal effects are

=T =Tx =T
~ a ~ a ~ a

507 7, ="~L2, = LA QR U . (21)
lalls Ialls; hals

508 Threshold of Pratt index

509  We used the empirical data to determine the threshold for Pratt index to enhance the precision of
510 causal selection. Specifically, we employed K-means clustering with clusters to group the CS-

511  Pratt indices of all gene-tissue pairs and direct variants identified by TGVIS within the 95%
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512  credible sets. We hypothesize that one cluster contains credible sets with smaller CS-Pratt

513  values, which are more likely to include falsely causal variables. Interestingly, regardless of
514  whether we focus on gene-tissue pairs, direct causal variants, or both, the minimum value in the
515  cluster with the larger centroid consistently remains at 0.15 (Figure S34). Consequently, we set
516 the threshold at CS-Pratt = 0.15 to prioritize the gene-tissue pairs and direct causal variants

517 identified by TGVIS, considering variables with CS-Pratt > 0.15 to have a higher likelihood of

518  being true causal.
519 Score test of variance of infinitesimal effects

520 In implementation, dynamically determining whether to consider the infinitesimal effect is a
521 clever empirical measure. Therefore, we apply the score test of the variance of the random effect
522 inthe linear mixed model to test whether the variance of the infinitesimal effect is zero.

523  Specifically, we consider the following hypothesis testing problem:
524 Hy: 62 =0, v.s. H;:02>0. (22)
525  The testing statistics of this hypothesis test is constructed according to Zhang and Lin®3. Let A =

~ T - - ~
526 (RBMB, RMy) and 9 = (e%g,y}fy) . When ¢2 = 0 and 62 > 0, the covariance matrix of @ —

527 Adare
528 cov(@ — A9) = 62R, cov(@ — A9) = 62R + 0ZR?, (23)

529  respectively. Similar to estimating a,,, we replace o2 by 1 to avoid non-identifiability. The score

530 described in Zhang and Lin® defined the following three statistics:

1 1 1
531 u=3 |l @— A9 |2, e = Etr(PRZ), h = Etr(PRZPRZ), (24)
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532 whereP =R —RIA(ATRIA)"tATR™1, Under the null hypothesis, u ~ k2 where k =

533  h/(2e) and v = 2e?/h. If the null hypothesis is accepted, we enforce v+ = 0.
534  Potential reasons leading to Infinitesimal effects

535  Here we listed four possible reasons that can lead an infinitesimal effect. First, it has been

536  gradually understood that even within the same ethnic group, such as the European population,
537 different subgroups may have different genetic architectures, leading to different LD structures.
538  Therefore, it is natural to suspect that the LD structures of populations in the GTEX consortium

539 and those in traits GWAS differ, which results in
540 E(@) = Rye(BO +v), E(bj) = RoresBjr-  (25)

541  When we try to estimate B, using Ry, then ﬁjt is biased to B, which generates infinitesimal
542  effectv =Y (Bjc — Bj¢) 0j¢. It should be noted that the small sample size in the GTEx

543  consortium can also cause biased eQTL effect estimates, resulting in the appearance of

544  infinitesimal effects. There are other possible sources raising infinitesimal effects, such as (2) the
545  estimation errors of LD matrix, (3) the imputation errors of outcome GWAS effect sizes, and (4)

546  the absence of direct causal variants of outcome, which are shown in Supplementary Materials.
547 c¢TWAS and TGFM programs

548  For cTWAS, since its software is designed to be user-friendly to practical projects, it involves
549  complex settings that are not ideal for simulations, such as requiring a reference panel in BED
550 format and a .db file of eQTL fine-mapping data. Therefore, we directly utilize the principles of
551 cTWAS to develop an R function that employs SuSiE for the first-stage selection of cis-

552 regulatory effects and the second-stage selection of causal and horizontally pleiotropic effects.
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553 At the time of writing this paper, the TGFM software has not yet been released. Therefore, we
554  did not consider the first step of cTWAS to estimate two universal prior parameters using the EM
555 algorithm across all loci in the genome. Instead, we restrict cTWAS simulations to a single locus.
556  Inaddition, we applied the following setting for cTWAS, TGFM and TGVIS: for the prior

557  weight 7 in SUSIE, we applied = = p~1 for gene-tissue pairs and = = M~! for variants, where

558  p represents the number of gene-tissue pairs and M the number of variants.

559  To improve computational efficiency, we applied a slightly different resampling scheme

560 compared the original TGFM. Specifically, we first resampled the eQTL effects from the
561  posterior for 25 times, calculated their mean as Bjtt" and used these means to estimate %

562 and P. This procedure was repeated 100 times, recording the estimates and PIP for each

563 iteration. We then compute the mean of t; X t, resampled eQTL effects, [?};GF M and estimate the

564  empirical 87¢"M and PT¢FM, The PIPs of 87¢F™ and PT¢FM were taken as the empirical PIPs
565  given by SuSIE in each resampling iteration. Finally, we recorded the credible sets of variables
566  from the final step and calculated the PIPs and Pratt indices of credible sets by summing the

567 individual PIPs and Pratt indices of variables within each credible set.
568  Simulation Settings

569  We simulated 20 genes across 5 tissues, resulting in p = 100 gene-tissue pairs. Correlations were
570  simulated both within and between genes across tissue. The first and last gene-tissue pairs were
571  designated as causal, with effect sizes of 8; = 1 and 6,,, = —1, respectively. The total number
572  of variants was M = 400, with only 1,2,3 or 4 of them being eQTLs with non-zero effects for
573  each gene-tissue pair, while the remaining variants were associated with the trait due to LD. We

574  set 4 different sample sizes for the eQTL data (n.qr, = 100, 200, 400, 800) and a fixed trait
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575  GWAS sample size n;.q;; = 0.5M. Infinitesimal effect were generated from a normal

576  distribution, and gene-tissue pairs, direct causal variants, and infinitesimal effects together were
577  setto explain the trait heritability. For example, when only gene-tissue pairs and infinitesimal
578  effects are present, they each explain 50% of the local heritability for the outcome. When all
579  three are present, each explains 33% of the local heritability for the outcome. The detailed

580  settings, along with corresponding R codes, are provided in Section 2 of the Supplementary

581 Materials.
582 GWAS summary data

583  We conducted a meta-analysis on a subset of the 45 metabolic and cardiovascular traits. The
584  publicly available data for these traits are listed in Table S1, while the MVP GWAS summary
585  statistics can be accessed through doGAP under accession number phs001672.v7.pl. For the
586  pleiotropy traits of SBP and DBP, we applied the approach developed in Zhu et al.*? using the
587  most recent GWAS summary statistics of SBP and DBP. To perform the meta-analysis, we used
588 METAL®. We performed the meta-analysis on the Z-scores, weighting by the sample sizes of
589 the meta-analysis datasets. For binary trait, we always use the effective sample size n.g. We

590 used CHR:BP (in GRCH37) as the identifier.
591 EQTL summary data

592  We utilized bulk eQTL and sQTL summary statistics from 28 tissues provided by GTEx!? (with
593  sample size N ranging from 34.4 (Lymphocytes) to 179.5 (Muscle Skeletal)), as well as
594  additional eQTL summary statistics from tubulointerstitial®® (N=311), kidney glomerular?

595  (N=240), and islet** (N=420) tissues (Table S2).

596 Linkage Disequilibrium Reference Panel
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597  Our study used variants from the UKBB project conducted by Neale’s lab, which initially

598 includes 13 million SNPs. We selected approximately 9.3 million SNPs with a minor allele
599 frequency greater than 0.01 for our analysis. We also identified the top 9,620 unrelated

600 individuals from approximately 500,000 individuals in the UKBB (Field ID: 22828), consisting
601  of 5,205 females and 4,475 males. Data from these 9.3 million SNPs were extracted for these

602 individuals to construct our LD reference panel.
603  Clumping and Thresholding

604  We restricted the studied regions to those within 1MB of the genome-wide significant loci for
605  these traits. These loci were identified using the clumping and thresholding (C+T) method in

606  PLINK®: --clump-kb 1000, --clump-p1 5E-8, --clump-p2 5E-8, and --clump-r2 0.01.

607  We recommend using C+T to filter out variants in high LD, which prevents the inclusion of

608  numerous highly correlated or redundant variants in the analysis, which can unnecessarily

609 complicate the model and result in multiple credible sets consisting of these variants. We

610 evaluated the minimum P-value of each variant across gene-tissue pairs in eQTL/sQTL data. In
611 PLINK, we applied the C+T with the following parameters: --clump-kb 1000, --clump-p1 1E-5, -
612  -clump-p2 1E-5, and --clump-r2 0.5. Given that the true causal variant for a trait might not be
613 included in the eQTL/sQTL variants, we combined these variants from outcome GWAS

614  satisfying P < 5E-8 and r?<0.5.
615 Removing gene-tissue pairs based on significance in S-Predixcan

616  We used the minimum P-value from S-Predixcan and a modifier accounting for direct causal
617  variants (Supplementary Materials) to exclude eGenes/sGene with P > 0.05. These weak filters

618  will eliminate redundant gene-tissue pairs, thereby reducing the model's dimensionality. Since
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619  our goal is fine-mapping the causal gene-tissue pairs and identifying direct causal variants on the

620  GWAS loci with significant signals, it will not induce a winner's curse.
621  Searching causal gene-tissue pairs missed by univariable TWAS

622  We compared the causal gene-tissue pairs identified by TGVIS and TGFM with the significant
623  gene-tissue pairs identified by S-PrediXcan. We considered genes with P < 0.05/20,000 as
624  significant gene-tissue pairs in tissue specific S-PrediXcan analysis. We did not adjust for

625  number of tissues. We then searched the gene-tissue pairs identified by TGVIS or TGFM but

626  missed by S-PrediXcan.
627  Obtaining annotation scores from FAVOR and performing differential annotation tests

628  We combined the direct causal variants and xQTLs of causal gene-tissue pairs identified by

629 TGVIS or TGFM across all 45 traits into two separate files and uploaded them to the FAVOR
630  online platform3 to obtain annotation scores for these variants. We performed Wilcoxon signed-
631 rank test with both "less" and "greater" as alternative hypotheses for determining the direction of
632  shift location and calculated corresponding P-values. We used the R package FDREstimation to
633  convert the P-values to FDR Q-values using the Benjamini—Yekutieli (BY) procedure.

634  Annotations with Q-values less than 0.05 were considered to have significantly different scores.
635  Mapping major trait relevant tissues

636  For TGVIS, a 95% credible set often includes multiple gene-tissue pairs. In such cases, we

637  calculated the proportion of each tissue appearing among these pairs, allowing the number of
638  tissues in a causal credible set of gene-tissue pairs to be fractional. For TGFM, we first removed
639  the gene-tissue pairs with PIPs < 0.5, and then applied the same procedure to map the dominant

640  tissues.
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641 Enrichment of identified causal genes in lipids silver gene list and druggable gene database

642  We applied the following strategy to map silver genes. First, we checked each credible set to see
643  if any genes are part of the silver gene list; if so, we counted 1. If no silver gene was present, we
644  then checked if any genes in the credible set were among the nearby genes; if so, we also

645  counted 1. In other words, each credible set of gene-tissue pairs was counted only once. For
646  TGFM, we first removed the gene-tissue pairs with PIPs < 0.5, and then applied the same

647  procedure as TGVIS to count the silver and nearby genes. Similar to the mapping procedure for
648  silver genes, we examined each credible set identified as causal to see if it contained any

649  druggable genes. If a druggable gene is present, we count it once.

650  We used the following statistics to compare the enrichments of TGVIS and TGFM. For example,
651 regarding TGVIS and a given trait, we consider three metrics: the number of causal genes

652 identified by TGVIS, the overlap between genes identified by TGVIS and those in the drug-

653  target list, and the ratio of these two metrics (referred to as Ratio hereafter). To compare whether
654  TGVIS or TGFM had a higher enrichment across traits, we performed a paired t-test using two

655  vectors of Ratio.
656  Colocalization of credible sets

657  We use colocalization to evaluate the causal credible sets identified by TGFM and TGVIS.

658  Within each region, we select variants from the outcome GWAS with P-values less than 5E-5
659 and r? < 0.81 for colocalization analysis. We perform fine-mapping on both the outcome and the
660  gene-tissue pairs within credible sets using SuSIE, then calculate the posterior probability for
661  hypothesis H,, i.e., both traits are associated and share the same single causal variant, between

662  each outcome and exposure pair using Coloc-SuSiE. We use a posterior probability of H, greater
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663  than 0.5 as the threshold to determine colocalization evidence between gene-tissue pairs and the

664  outcome; notably, as long as at least one variant meets this criterion, it suffices.
665  Mendelian Randomization using pQTL summary data

666  We performed both univariable and multivariable MR using pQTLs of protein abundance as 1Vs
667  to evaluating the identified causal tissue-gene pairs. Because to the lack of tissue-specific protein
668  data, we focused on a subset of pGenes identified in blood tissues provided by Sun et al.*°. We
669  selected independent, genome-wide significant pQTLs for each protein as 1Vs. The selection
670  method for independent IVs was C+T (--clump-kb 1000 --clump-p1 5e-8 --clump-p2 5e-8 --

671  clump-r2 0.01 using PLINK), with LD reference panels consisting of the 9,680 individuals and
672  9.3M variants from UKBB. We applied five univariable MR methods: MRMedian®¢, IMRP®’,
673 MRCML®*®, MRCUE®, and MRBEE®’. Both MRCUE and MRBEE account for sample overlap,
674  with sample overlap correlations estimated using insignificant variants. We used the R package
675  FDREstimation to convert the P-values obtained by these methods to FDR Q-values, using “BY”
676  asthe adjustment method. A pGene was considered significant if it was identified as such by at
677 least four methods. We also conducted an analysis comparing the enrichments of TGVIS and
678 TGFM, where the three corresponding metrics are: the overlap between causal genes identified
679 by TGVIS or TGFM and the pGenes reported in Sun et al.%°, the number of significant pGenes

680 identified in univariable MR analysis, and the ratio of these two metrics.
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Figure 1: Overview of TGVIS. A: A hypothetical causal diagram illustrating the relationships between
variants (including xQTLs, direct causal variants, and non-causal variants), tissue-specific gene expressions,
and an outcome in a cis-region, where the arrows indicate the flow of causal effects in the causal diagram.
Variants may be in LD, with only a subset having cis-regulatory effects. Gene expressions or splicing events
are tissue-specific and form a complex co-regulation network. Only molecular phenotypes directly connected
to the outcome are considered causal. B: Locus-zoom plot of the LDL-C GWAS in the PCSK9 locus. The
bottom panel displays the coding regions of genes located within this locus, including PCSK9, UPS24, BSND,
etc. C: Workflow of TGVIS, consisting of three main steps. (I) Input, including GWAS summary data, eQTL
summary data from multiple tissues, and LD matrix. (II) Preprocessing, including eQTL selection and pre-
screening. We applied S-Predixcan to pre-screen some noise pairs, aiming to reduce the dimension of the
multivariable TWAS model to a reasonable scale. (IIT) Estimation, where TGVIS first selects the causal gene-
tissue pairs and direct causal variants via SuSiE and then estimates the infinitesimal effect via REML. (IV)
Output, including the causal effect estimate, direct causal effect estimate, and infinitesimal effect estimates.
We output plots demonstrating the causal gene-tissue pairs, direct causal variants and predicted infinitesimal
effects: (1) the Pratt indices and other statistics such as PIPs, estimates, SEs of causal gene-tissue pairs in
the 95% credible sets, (2) the Pratt indices of the direct causal variants in the 95% credible sets, and (3)
the best linear unbiased predictors of infinitesimal effects. The non-zero variance in output III in this figure
suggests the non-zero contribution of infinitesimal effects.
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Figure 2: Simulation results comparing the performances of TGVIS, TGFM, ¢cTWAS, Grant2022, and
cisIVW with xQTL sample size = 200. A: The MSE of causal effect estimates under no pleiotropy, in
the presence of direct causal variants, infinitesimal effects, and both. B: The true negative rate of identify-
ing all 98 non-causal gene-tissue pairs under different scenarios i.e., no pleiotropy, in the presence of direct
causal variants, infinitesimal effects, and both. This is equivalent to that if a method incorrectly identifies
any non-causal pairs as causal, it will not be counted as a true negative event. C: Bar plots display the
true positive rates of identifying all 2 causal gene-tissue pairs under different scenarios. D: The averaged
number of identified direct causal variants by the different methods. The number of true causal variants were
set to 0, 2, 0, and 2 for no-pleiotropy, direct-causal-variant, infinitesimal-effects, and direct-causal-variant
and infinitesimal-effects, respectively. E: The averaged correlation of the true and estimated direct causal
effects across simulations. F: The averaged correlation of the true and predicted infinitesimal effects across

simulations.
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Figure 3: Summary of the identification of causal gene-tissue pairs and direct causal variants. A-B: The
number and proportion of causal and likely novel causal gene-tissue pairs identified by TGVIS and TGFM,
respectively. Likely novel gene-tissue pairs are defined as those not present in the list of significant gene-tissue
pairs identified by univariable S-PrediXcan (P < 0.05/20000). The proportion refers to the average number
of causal and likely novel causal gene-tissue pairs per locus. C: The number and proportion of direct causal
variants identified by TGVIS and TGFM. D: The distribution of the number of traits affected by causal
gene-tissue pairs. E-F: The distributions of scores for FathmmXF and Encode H3K9me3Sum annotations.
Raincloud plots illustrate four classes: direct causal variants and xQTLs of causal gene-tissue pairs identified
by TGVIS and TGFM. Pairwise Wilcoxon signed-rank test P-values are displayed at the top, while medians
of annotation scores are shown at the bottom.
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Figure 4: Genetic architecture inferred from the identification of causal gene-tissue pairs and direct causal
variants. A: The ratio of identified causal gene-tissue pairs per credible set by TVGIS. Different gene-tissue
pairs may share the same set of xQTLs, and end in the same credible set. B: The ratio of the number of
causal eQTLs over the number of sQTLs per causal gene-tissue pair, indicating the distribution of eQTLs
and sQTLs contributing to the gene-tissue pairs. C: The distribution of eGene and sGene in credible sets
identified by TGVIS and TGFM. When a credible set contains multiple gene-tissue pairs, we calculate the
proportion of eGenes and sGenes. D: The distribution of Pratt Index estimates for different traits, with a
comparison between TGVIS and TGFM. In the boxplot, each point represents the Pratt Index of various
molecular phenotypes within a single locus.


https://doi.org/10.1101/2024.11.13.24317250
http://creativecommons.org/licenses/by-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2024.11.13.24317250; this version posted December 10, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-ND 4.0 International license .

A. Major Tissue Map of Cardiometabolic Traits inferred by TGVIS  B. Major Tissue Map of Cardiometabolic Traits inferred by TGFM

e =y SOy .y N
4,7 omplex

o | l QT inverval '
= vl Folton Tiovervr | |
e | - Qr nteral o1s QRS Complex |
T Interval Atrial Fibrillation 015
abdominal Aortic Aneurysm 1| w ‘Abdominal Aortic Aneurysm
Coronary Aoy s o CoramaryArey Doson o
Pelotiops (55 0 566) Peiotopy (556 0 059
e Presure olsePrssune
u Pllotropy (DBP to SBP) 005 Pleiotropy (DB t0.587) 005
Diastolic Bload Pressure | Basophils
Syl slood Presaure . Toanapnis .
TG Rals Nesraphis
— | Total Bilirubin Lymphocytes
| Apolipoprotein & Monocytes

onine aminoteansterase White Blood clls
Sex Hormone Bning Globuin ] Toa ilrubin
Comma Gl Tranferae oparate minotansterase
aine phospmatsse anine Aminoanserase
Lo Cholenerol o Hormone Bining Gibulin
ool Crteserl roolpoprarann

- rpolipoprten a1 ke Phosphatase

. o choloserel polpoprorans

Triglycerides GammarGlutamyl Transferase

Albumin

LDL Cholesterol
Total Cholesteral

Sacophis Hemagiobmate
Neutrophils % Type 2 Diabetes

Aspartate Aminotransferase

Eosinophils Standing Height
Lymphocytes
Monocytes
White Blood Cells

Body Mass Index
l Fasting Plasma Glucose.

Platelets

Venous Thromboembolism Albumin
o CystatinC HDL Cholesteral
Urate

Triglycerides
Serum Phosphate
FEVI/FVC Ratio

Diastolic Blood Pressure

| Blood Urea Nitrogen
0 | Creatinine-Based eGFR
| Serum Phosphate
Hemoglobin
Red Blood Cells

Systolic Blood Pressure
Cystatin C

Hemoglabin Alc Urate
Platelets

Standing Height

Blood Urea Nitrogen
Creatinine.Based eGFR
Fasting Plasma Glucose
Venous Thramboembolism

| Body Mass Index
Type 2 Diabetes

evoy iy

C. Major Tissues of Lipids Traits identified by TGVIS and TGFM
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Figure 5: Distribution of major tissues for cardiometabolic traits. A: Heatmaps display the major tissues
associated with each trait, identified by TGVIS. B: Heatmaps display the major tissues associated with each
trait, identified by TGFM. The major gene-tissue pairs are cataloged based on stringent criteria (CS-Pratt
> 0.15 for TGVIS and PIP > 0.5 for TGFM) and the proportions of major tissues derived from significant
gene-tissue pairs for each trait are quantified. Hierarchical clustering is applied to arrange the heatmaps,
utilizing the Ward2 method and Euclidean distance. C: Major tissues of lipid traits identified by TGVIS
and TGFM. This panel shows bar plots detailing the number of causal gene-tissue pairs for various lipid
traits, including HDL-C, LDL-C, TC, triglycerides, APOA1, and APOB, as identified by both TGVIS (top)
and TGFM (bottom).
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A. Proportions of causal credible sets with colocalization evidence
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B. Number/Proportion of causal genes in FDA-approved drug-target gene list
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C. Number/Proportion of genes significant in univariable MR analysis
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Figure 6: Evaluation of identified gene-tissue pairs. A: The colocalized proportions of causal credible sets

(under two criteria) yielded by TGVIS and TGFM, respectively. B: The numbers and proportions of causal

cis-genes in the list of FDA-approved drug-target genes provided by Trajanoska et al., identified by TGVIS

(left) and TGFM (right), respectively. C: The number of significant pGenes in univariable MR analysis and

the ratio of significant pGene in univariable MR analysis divided by significant eGenes/sGenes in eQTL/sQTL

analysis.
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A. Locus Zoom Plot of LDL-C GWAS in PCSK9 Locus D. Locus Zoom Plot of LDL-C GWAS in HMGCR Locus
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Figure 7: Locuszoom plots comparing the results of TGVIS and TGFM. A-C: LDL-C (PCSK9 locus).
D-F: LDL-C (HMGCR locus). G-I: CAD (PHACTRI1 locus), K-L: BMI (FTO locus). For each locus, we
included three plots: (1) the GWAS of the trait, (2) the PIP of gene-tissue pairs and direct causal variants
identified by the TGVIS and TGFM, and (3) the Pratt index of corresponding gene-tissue pairs and variants.
For TGVIS, causality is determined by (1) the variables are in a 95% credible set and (2) the Pratt index
of this credible set is larger 0.15. For TGFM, the causality is determined by (1) the individual PIP is larger
than 0.5.
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