Timing of decompressive craniectomy and in-hospital mortality in children following severe traumatic brain injury using the German Hospital Database.

Rayan Hojeij^{4,e}, MPH; Pia Brensing⁴²,MD; Bernd Kowall³,PhD; Andreas Stang³
Michael Nonnemacher³,PhD; Ursula Felderhoff-Müser^{1,2},MD; Philipp Damma
Marcel Dudda⁵, MD; Christian Dohna-Schwake^{1,2}, MD; Nora Br ,_{MP,}MD;
nn⁴,MD;
licine, Ped

Michael Nonnemacher",PhD; Ursula Felderhoff-Müser",",MD; Philipp Dammann",MD;
Marcel Dudda⁵, MD; Christian Dohna-Schwake¹², MD; Nora Bruns^{1,2},MD,PhD
Author's affiliations:
¹ Department of Pediatrics I, Neonatolog Marcel Dudda⁹, MD; Christian Dohna-Schwake⁴², MD; Nora Bruns⁴²,MD,PhD
Author's affiliations:
¹ Department of Pediatrics I, Neonatology, Pediatric Intensive Care Med
Neurology, and Pediatric Infectious Diseases, Un /
|
|
|
| Author's ammericant

1 Department of Pe

Neurology, and Pec

Duisburg-Essen, Esse

² C-TNBS, Centre fo

Essen, University of L t,

Neurology, and Pediatric Infectious Diseases, University Hospital Essen, University of
Duisburg-Essen, Essen, Germany
² C-TNBS, Centre for Translational Neuro- and Behavioural Sciences, University Hospital
Essen, Univers Duisburg-Essen, Essen, Germany
² C-TNBS, Centre for Translational Neuro- and Behavioural Sciences, University Hospital
Essen, University of Duisburg-Essen, Essen, Germany
³ Institute for Medical Informatics, Biometry a Puttury 2000, 2000 2

 3 Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen,

 4 Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of
Duisburg-Essen, Essen, Germany Essen, Emilian, The Barning Leevit, Leevit, Caman, 3

Institute for Medical Informatics, Biometry and Epid

University of Duisburg-Essen, Essen, Germany

⁴ Department of Neurosurgery and Spine Surgery, Un

⁵ Department Iniversity of Duisburg-Essen, Essen, Germany

Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of

Duisburg-Essen, Essen, Germany

Department of Trauma, Hand, and Reconstructive Surgery, ⁴ Department of Neurosurgery and Spine Surge
Duisburg-Essen, Essen, Germany
⁵ Department of Trauma, Hand, and Reconstru
Essen, Germany

*Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of
Duisburg-Essen, Essen, Germany
⁵ Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen,
Essen, Germany
 Sumaning Essen, Essen, Essen, Germany
Essen, Germany
Corresponding Author:
Ravan Hoieii °Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen,
Essen, Germany
Corresponding Author:
Rayan Hojeij
Address: Universitätsklinikum Essen, Hufelandstraße 55, 45147 . Essen

Corresponding Author:

Rayan Hojeij

Essen, German,
 Corresponding

Rayan Hojeij

Address: Univer.
Telephone Numl (
]
,
, Address: Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen Telephone Number: +49/201-2451 or -7192 Email: rayan.hojeij@uk-essen.de

 $\frac{1}{2}$ \overline{a} Word Count: 2985

Key points:

Question: Is there an association between the timing of decompressive craniectomy (DC)

pital mortality in children with severe traumatic brain injury (sTBI)?
Iarly DC (≤ 2 hours after admission) was associated with higher case fatality and
Innes but fewer days on mechanical ventilation in survivors compared **Finding:** Early DC (≤ 2 hours after admission) was associated with higher case
poor outcomes but fewer days on mechanical ventilation in survivors compare
(> 2 hours). **Finding:**comes but fewer days on mechanical ventilation in survivors compared to late DC
s).
Early DC (Sepange in part survival and recovery outcomes in pediatric sTBI, poor outcomes and carrying promotions to mechanical ventilation in survivors compared to late 2 =
(> 2 hours).
Suggesting the need to balance early intervention with potential risks.

(> 2 hours).
 Meaning: The timing of DC may impact survival and recovery outcome

suggesting the need to balance early intervention with potential risks. **Meaning:**

The times of $\frac{1}{2}$, $s_{\rm{c}}$ sure s and the need to balance early intervention with potential risks.

Abstract

Introduction: Decompressive craniectomy (DC) is a last tier to control refractory intracranial
pressure elevation in children with severe traumatic brain injury (sTBI), but the optimal
timing is unknown. This study aimed t timing is unknown. This study aimed to describe the association between timing of DC and

timing is summer that the study and the association of the association between timing of DC and
in-hospital mortality in children with sTBI in Germany.
Methods: A retrospective cohort study of the German national hospital in-horthods: A retrospective cohort study of the German
(2016-2022) was conducted for cases < 18 years. Children were extracted. Time from admission to DC were calcu (2016-2022) was conducted for cases < 18 years. Children undergoing DC following sTBI
were extracted. Time from admission to DC were calculated as complete hours and data
were compared between early (time to DC \leq 2 ho were extracted. Time from admission to DC were calculated as complete hours and data
were compared between early (time to DC \leq 2 hours) and late DC (> 2 hours). Hierarchic
logistic regression models evaluated the assoc were compared between early (time to DC \leq 2 hours) and late DC (> 2 hours). Hierarchica
logistic regression models evaluated the association of DC timing with in-hospital mortali
functional outcomes (Pediatric Complex were compared between earliers of DC $\frac{1}{2}$ hospital mortality
functional outcomes (Pediatric Complex Chronic Conditions (PCCC) ≥2)), poor outcome
(composite outcome of death or PCCC≥2), length of hospital stay, days o functional outcomes (Pediatric Complex Chronic Conditions (PCCC) 22)), poor outcome
(composite outcome of death or PCCC22), length of hospital stay, days on mechanical
ventilation (MV) and coding of seizures. for the solutional of death or PCCC≥2), length of hospital stay, days on mechanical
Ventilation (MV) and coding of seizures.
Results: Among 13,492,821 children hospitalized, 9,495 had sTBI. DC was performed in

(composite outcome of the composite outcome of the ventilation (MV) and coding of seizures.
Results: Among 13,492,821 children hospitalized, 9,495 had sTBI. DC was performed
cases with time to decompression ranging from 0 Results: Among 13,492,821 children hos
cases with time to decompression ranging
were performed within the first two host Results: Among 23,493222 children hospitalize, 9,492 had stead 1940. The was performed in the tode

cases with time to decompression ranging from 0 to 27 days. More than half of DCs (54.8%)

were performed within the first Exter with time to decompression ranging from 0 to 21 days. Here, that had on 0 to 27 days,
with a median time from admission to death of 2 days. Early DC had a higher case-fatality
(37.4%) compared to late DC (15.8%), wit with a median time from admission to death of 2 days. Early DC had a higher case-fatality
(37.4%) compared to late DC (15.8%), with higher odds of death (adjusted odds ratio [OR]
2.89; 95% confidence interval [95%CI] 1.43-(37.4%) compared to late DC (15.8%), with higher odds of death (adjusted odds ratio [OR]
2.89; 95% confidence interval [95%CI] 1.43-5.85) and poor outcome (OR 1.22; 95% CI 0.71-
2.21). However, in survivors, early DC was a (37.4%) compared to late DC (23.6%), with higher odds of death (adjusted odds ratio [OR]
2.89; 95% confidence interval [95%CI] 1.43-5.85) and poor outcome (OR 1.22; 95% CI 0.71-
2.21). However, in survivors, early DC was a 2.21). However, in survivors, early DC was associated with a shorter duration of MV. No
differences in functional outcomes were associated with the timing of DC.
Conclusion: Children undergoing early DC exhibited a higher

2.21).
2.21). However, in functional outcomes were associated with the timing of DC.
2012. Conclusion: Children undergoing early DC exhibited a higher risk of case fatality and poor
2012. Notion outcome, alongside with les differences in functional outcomes were associated with the timing of DC.
Conclusion: Children undergoing early DC exhibited a higher risk of case fat
outcome, alongside with less days on MV in survivors. Conclusion: Children undergoing early DC exhibited a higher risk of case fatality and poor
outcome, alongside with less days on MV in survivors. outcome, alongside with less days on MV in survivors.

Introduction

 $\frac{1}{1}$ Decompressive craniectomy (DC) has emerged as a rescue measure to relieve refractory
intracranial hypertension and prevent secondary cerebral ischemia or herniation in children
with severe traumatic brain injury (sTBI). Pr with severe traumatic brain injury (sTBI). Primary DC, performed in the initial phase when
swelling occurs or is anticipated, is often carried out concurrently with hematoma
evacuation following severe head trauma [1]. On swelling occurs or is anticipated, is often carried out concurrently with hematoma
evacuation following severe head trauma [1]. On the other hand, secondary DC serves as a
last-tier option to treat refractory elevation of swelling occurs or is anticipated, is often carried out concurrently with hematomatic
evacuation following severe head trauma [1]. On the other hand, secondary DC se
last-tier option to treat refractory elevation of intrac management (MM) during the clinical course [2].
Very few randomized controlled trials (RCT) have evaluated the effect of DC on outcomes in

last-tier option to treat refractory electron of intracranial pressure (ICP) despite intracranic
management (MM) during the clinical course [2].
Very few randomized controlled trials (RCT) have evaluated the effect of DC o management (MM) during the clinical controlled
Very few randomized controlled trials (RCT) have
adults and children with refractory or persistent K
included 27 children found that DC performed at a adults and children with refractory or persistent ICP elevation. The only pediatric RCT that
included 27 children found that DC performed at a median time of 17 hours after admission
was associated with good outcomes and s included 27 children found that DC performed at a median time of 17 hours after admissio
was associated with good outcomes and significant ICP reduction compared to the MM
group [3]. The DECRA trial was conducted among adu included 27 children found that DC performed at a median time of 27 hours after anti-children
was associated with good outcomes and significant ICP reduction compared to the MM
group [3]. The DECRA trial was conducted amon group [3]. The DECRA trial was conducted among adults with severe diffuse traumatic b
injury and ICP elevation above 20 mmHg for more than 15 min for a one-hour period wit
the first 72 hours after injury. Patients were ran injury and ICP elevation above 20 mmHg for more than 15 min for a one-hour period within
the first 72 hours after injury. Patients were randomized to either bifronto-temporo-parietal
DC or standard care [4, 5]. Early DC wa ingury and ICP electron above 21 min grow more and in the above 20 mm period with
the first 72 hours after injury. Patients were randomized to either bifronto-temporo-parietal
DC or standard care [4, 5]. Early DC was assoc DC or standard care [4, 5]. Early DC was associated with poorer functional outcomes at 6
months of follow-up[5], and higher vegetative state in survivors at 12 months of follow-
up[4]. In the RESCUEicp trial, patients \ge months of follow-up[5], and higher vegetative state in survivors at 12 months of follow-
up[4]. In the RESCUEicp trial, patients ≥ 10 years were randomized to undergo DC (as a la
tier) after optimized MM, or to receive ong frequencies of vegetative state than the medical care group. Due to these inconsistent trials up the RESCUE of the RESCUE.

Itier) after optimized MM, or to receive ongoing medical care if the ICP levels remained

above 25 mmHg for 1 to 12 hours [6]. Six-month outcomes yielded lower lethality but highe

frequencies above 25 mmHg for 1 to 12 hours [6]. Six-month outcomes yielded lower lethality but h
frequencies of vegetative state than the medical care group. Due to these inconsistent
regarding the timing of decompression and their c frequencies of vegetative state than the medical care group. Due to these inconsistent trials
regarding the timing of decompression and their contradicting results, recommendations frequencies of vectors of decompression and their contradicting results, recommendations
regarding the timing of decompression and their contradicting results, recommendations regarding the timing of decompression and their contradicting results, recommendations

at the discretion of the treating medical team.
With respect to the optimum timing of DC in pediatric TBI, observational studies comparing
the outcomes of "early" versus "late" DC have produced varying results. One systema With respect to the optimum timing of DC in p
the outcomes of "early" versus "late" DC have
review (including case series studies)[7], and t the outcomes of "early" versus "late" DC have produced varying results. One systematic
review (including case series studies)[7], and two retrospective studies reported that early
DC, defined as time to DC of less than 12 review (including case series studies)[7], and two retrospective studies reported that early
DC, defined as time to DC of less than 12 and 24 hours respectively, is beneficial in cases of
refractory ICP, reducing morbidity DC, defined as time to DC of less than 12 and 24 hours respectively, is beneficial in cases of
refractory ICP, reducing morbidity and mortality in children[8, 9], whereas Nagy et al. found
no association between timing of refractory ICP, reducing morbidity and mortality in children[8, 9], whereas Nagy et al. found refraction between timing of DC and outcomes in children [10]. Despite these
contradictory findings on the general relationship between timing and outcomes, the
literature lacks a universal definition for "early" or "late" contradictory findings on the general relationship between timing and outcomes, t
literature lacks a universal definition for "early" or "late" DC, as studies used varyin
times to define groups, ranging from 2 to 24 hours. Itterature lacks a universal definition for "early" or "late" DC, as studies used varying c
times to define groups, ranging from 2 to 24 hours. Further, the timing of DC is influer
by factors such as injury severity, neuro times to define groups, ranging from 2 to 24 hours. Further, the timing of DC is influenced
by factors such as injury severity, neurological status, individual patient characteristics,
health care system infrastructure, an the factors such as injury severity, neurological status, individual patient characteristics,
bealth care system infrastructure, and the neurosurgeon's decision.
The aim of this study was to assess the timing of DC and ass

by factors intended to the such as the seated of the alth care system infrastructure, and the neurosurgeon's decision.
The aim of this study was to assess the timing of DC and associated outcomes in the Ger
hospital datase The aim of this study was to assess the timing of DC and associated outcomes in the German
hospital dataset (GHD) in pediatric cases with sTBI. Using routine health care data on
hospitalizations of the entire country, this The applied dataset (GHD) in pediatric cases with sTBI. Using routine health care data on
hospitalizations of the entire country, this study provides information on timing aspects of
DC in pediatric TBI care. hospitalizations of the entire country, this study provides information on timing aspector.
DC in pediatric TBI care. hospitalizations of the entire country, this study provides international information of aspects of
DC in pediatric TBI care.

\blacksquare
Methodology:

wethodology:
Materials and r
udy Design: ו
ש

1. Materials and methods
Study Design: 2.1. Study Design:

Dataset (GHD) to investigate the association between timing of DC and in-hospital lethalit
in pediatric cases with severe traumatic brain injury (sTBI). The comprehensive nature of t
study and dataset allows an exhaustive In pediatric cases with severe traumatic brain injury (sTBI). The comprehensive nature of the study and dataset allows an exhaustive analysis of a large dataset, encompassing the entire public hospitals across the country. in pentatric cases with severe transmitive analysis of a large dataset, encompassing the entire
study and dataset allows an exhaustive analysis of a large dataset, encompassing the entire
public hospitals across the countr

study and dataset allows an embedded shally sellowing analysis of allowing and shall
public hospitals across the country.
German hospitals have been reimbursed based on diagnosis related groups (DRGs) since
2004. According public hospitals have been reimbut
1904. According to §21 KHEntgG, G
hospital admissions with the hospita Example print have been reinformation between the ingitive centre is energy (DRGs) and 2004. According to §21 KHEntgG, German hospitals are required by law to share data on hospital admissions with the hospital payment sys 2009. According to a set of the spital payment system (InEK). After passing plausibility
checks, these data are anonymized and sent to the Federal Statistical Office (FSO). As these
hospitalization data are mandatory for r checks, these data are anonymized and sent to the Federal Statistical Office (FSO). As the hospitalization data are mandatory for reimbursement, hospitals are strongly incentivity provide complete data sets. Detailed infor checks, these and are mandatory for reimbursement, hospitals are strongly incentivized to
provide complete data sets. Detailed information on the structure of the DRG dataset is
available at the FSO and further details on provide complete data sets. Detailed information on the structure of the DRG dataset is
available at the FSO and further details on the process of data access at
https://www.forschungsdatenzentrum.de/en/health/drg. provide complete data sets. Detailed internation on the structure of the ERD data sets.
available at the FSO and further details on the process of data access at
https://www.forschungsdatenzentrum.de/en/health/drg. https://www.forschungsdatenzentrum.de/en/health/drg.
2.2. Case selection:
2.2. Case selection:

2.2. Case selection:

https://www.forschungsdatenzentrum.de/en/health-dramaticalenzentrum.de/en/health-dramaticalenzentrum.
|-
| health/driversdatenzentrum.de/en/health-dramaticalenzentrum.de/en/health-dramaticalenzentrum.de/en/health-dr $\frac{1}{2}$ Inclusion criteria were cases and the public including to the public interpretent 2 string.)

Between 2016 and 2022 with sTBI who underwent DC. Selected cases had TBI as primary

discharge diagnosis (ICD-10 code: S06) iden discharge diagnosis (ICD-10 code: S06) identified via codes of the International-Classificat
of Disease, 10th edition, German modification (ICD-10-GM). We defined sTBI as an
Abbreviated Injury Scale (AIS) of the head ≥ 3 of Disease, 10^{th} edition, German modification (ICD-10-GM). We defined sTBI as an
Abbreviated Injury Scale (AIS) of the head ≥ 3. Patients who underwent decompressive
craniectomy were identified and selected via oper of Disease, 10"" edition, German modification (ICD-10-GM). We defined sTBI as an
Abbreviated Injury Scale (AIS) of the head ≥ 3. Patients who underwent decompres
craniectomy were identified and selected via operation and Abbreviated Injury Scale (AIS) of the head ≥ 3.7 Patients who underwent decompressive
craniectomy were identified and selected via operation and procedure (OPS) codes (5-C
5-0101, 5-0104) (Table 1). cranical crane is contained and selected via operation and procedure $(1, 1)$ codes (5-0104) codes (5-0120, $(1, 1)$ 5-0101, 5-0104) (Table 1).

2.3. Data Extraction:

|
|
|
| Complications, survival status at discharge and length of stay (LOS). Time and date
admission, discharge, surgery for DC and ICP monitoring were extracted from the
and time from admission until surgery/placement of ICP mon admission, discharge, surgery for DC and ICP monitoring were extracted from the dat
and time from admission until surgery/placement of ICP monitor or EVD were compu
The following type of head injury codes were extracted: t

and time from admission until surgery/placement of ICP monitor or EVD were computed.
The following type of head injury codes were extracted : traumatic cerebral oedema (ICD-10
GM : S06.1), traumatic subdural hemorrhage SH and the following type of head injury codes were extracted: traumatic cerebral oedema (ICD-1
GM: S06.1), traumatic subdural hemorrhage SH (ICD-10-GM: S06.5), traumatic epidural
hemorrhage EH (ICD-10-GM: S06.4) and traumati GM: S06.1), traumatic subdural hemorrhage SH (ICD-10-GM: S06.5), traumatic epidural
hemorrhage EH (ICD-10-GM: S06.4) and traumatic subarachnoid hemorrhage SAH (ICD-10-
GM: S06.6). CM: SO6.6).
hemorrhage EH (ICD-10-GM: S06.4) and traumatic subarachnoid hemorrhage SAH (ICD-
GM: S06.6).
Injury severity was quantified as previously described based on the AIS, injury severity s

hemorrhage EH (ICD-10-GM: 10-GM: 1
|-
|Injury severity was quantified as previously described based on the AIS, injury severity score
|-SM: SOC,
Injury severit
(ISS) and usir
used to cate_{ ISS) and using a validated ICD based injury severity score (ICISS) [11]. These scores were
used to categorize injuries and to adjust for injury severity. The ICISS is empirically derived
by calculating survival proportions (ISS) and to categorize injuries and to adjust for injury severity. The ICISS is empirically derive
by calculating survival proportions (or survival risk ratios SRR) for each injury diagnosis co
The ICISS was used to estim used to categorize injuries and to adjust for injury of the ICIS to the proportion, actived
by calculating survival proportions (or survival risk ratios SRR) for each injury diagnosis code
The ICISS was used to estimate in by calculating survival proportions (or survival risk ratios ority) or such thyse, yangitational The ICISS was used to estimate injury severity using SRR. A lower SRR value indicates higher
risk of death Single-ICISS was e The ICISS was extracted as the single worst injury (= lowest value) from all
trauma-related ICD codes for each case, while the multiplicative ICISS accounted for the
multiple injuries by multiplying the assigned values of risk of death single-ICIS in a throated as the single-ICIS injury (= lowest value) from all
trauma-related ICD codes for each case, while the multiplicative ICISS accounted for the
multiple injuries by multiplying the assi multiple injuries by multiplying the assigned values of all trauma-related ICD codes of ea
case.
The Pediatric Complex Chronic Conditions (PCCC) Classification was used to assess the

case.
The Pediatric Complex Chronic Conditions (PCCC) Classification was used to assess the
functional outcome at discharge with minor modifications that were necessary due to the The P
The P
functi
inhere The Pediatric Complex Chronic Community (PCCC) Chronications that were necessary due to
functional outcome at discharge with minor modifications that were necessary due to
inherent structure of the GHD [12] (eTable 1). The inherent structure of the GHD [12] (eTable 1). The PCCC was designed to identify and
inherent structure of the GHD [12] (eTable 1). The PCCC was designed to identify and
 $\frac{d}{dt}$ inherent structure of the GHD ϵ is the GHD control of the PCCC was designed to identify and

dysfunction was assessed and quantified by summing up extracted binary scores th
indicate organ dysfunction (eTable 2).
2.4. Timing of surgery dependence and quantified by summing up extracted and provident and provident in
indicate organ dysfunction (eTable 2).
Time from admission to DC was rounded to completed hours and categorized cases in

2.4. Timing of surgery
Time from admission to DC was round
groups: early (within the first 2 compl
than 2 hours post admission). This ca
commonly accepted definition of early
admission was used as an indicator fo 2.4. Thing of surgery
Time from admission to
groups: early (within th
than 2 hours post adm groups: early (within the first 2 completed hours after admission) and late (performed more
than 2 hours post admission). This categorization was primarily data-driven, as there is no
commonly accepted definition of early than 2 hours post admission). This categorization was primarily data-driven, as there is no
commonly accepted definition of early or late DC. The median number of hours to DC after
admission was used as an indicator for th than 2 hours post admission). This categorization was primarily data-driven, as there is no
commonly accepted definition of early or late DC. The median number of hours to DC after
admission was used as an indicator for th common, accepted definition of the DC. Median number of the IP and
admission was used as an indicator for the categorization.
2.5. Outcomes measures
The primary outcome was in-hospital death following DC. Secondary outcome

2.5. Outcomes measures

admission was used as an indicator for the categorization.
2.5. Outcomes measures
The primary outcome was in-hospital death following DC. Secondary outcomes included a
poor functional outcome, defined as PCCC ≥ 2, propose T
poor functional outcome, defined as PCCC \geq 2, proposed by Simon et al. as significant
chronic conditions affecting body systems that are expected to last at least a year[13].
This
cut-off has also been used in oth poor functional of the setting to the setting body systems that are expected to last at least a year[13].
Cut-off has also been used in other pediatric studies . Other secondary outcomes were
duration of mechanical ventila cut-off has also been used in other pediatric studies . Other secondary outcomes were LOS,
duration of mechanical ventilation in days, coding of seizures, and poor outcome, defined as
a composite outcome of death or PCCC cut-off has also been used in other pediatric studies . Other secondary substance in our LOS,
duration of mechanical ventilation in days, coding of seizures, and poor outcome, defined as
a composite outcome of death or PCC duration of mechanical ventilation in days, coding of seizures, and poor outcome, and is a
a composite outcome of death or PCCC ≥ 2 .
There were no missing data on age, main diagnosis, LOS, or survival at discharge. In

2.6. Missing data

ما
2.6. Missing data
There were no missing data on age, main dia
analyses, we had to assume that an ICD-cod analyses, we had to assume that an ICD-code or OPS code that was not documented me
that the diagnosis was not present, or the procedures was not done, respectively.
We nevertheless assume that extensively reimbursed proced

that the diagnosis was not present, or the procedures was not done, respectively.
We nevertheless assume that extensively reimbursed procedures such as DC are carefully
coded, which justifies our selection of these codes. that the diagnosis that the present, or the procedures that the theory respectively.
We nevertheless assume that extensively reimbursed procedures such as DC are c
coded, which justifies our selection of these codes. In ad coded, which justifies our selection of these codes. In addition, 9 patients with missing
coded, which justifies our selection of these codes. In addition, 9 patients with missing coded, which justifies our selection of these codes. In addition, 9 patients with missing

analysis.
2.7. Statistical Analysis: Descriptive statistics were used to summarize demographic and
clinical characteristics within each group. Continuous variables were described using me ana
2.7. Stati
clinical ch
and inter clinical characteristics within each group. Continuous variables were described using median
and interquartiles (Q1-Q3), while count data were presented as frequencies and
percentages. clinical characteristics within each group. Continuous variables were excreme as and
and interquartiles (Q1-Q3), while count data were presented as frequencies and
percentages.
Characteristics associated with time to DC we

percentages.
Characteristics associated with time to DC were described. Age, sex, type of head
coma, severity of the injury and organ dysfunction were considered as potential r
Characteristic
coma, severit
confounders coma, severity of the injury and organ dysfunction were considered as potential
confounders based on the theory of directed acyclic graphs [14, 15], that are recommended
for empirical pediatric and critical care research [

Hierarchical logistic regression models were used to estimate the odds of outcomes for empirical pediatric and critical care research [16, 17] (eFigure 1).
Hierarchical logistic regression models were used to estimate the odds of outcomes
associated with the timing of the intervention (early versus late Hierarchical logistic regression models were used to estimate the od
associated with the timing of the intervention (early versus late DC)
for the clustering of cases within centres (identified via the institutio
To accoun associated with the timing of the intervention (early versus late DC). This method co
for the clustering of cases within centres (identified via the institutional identifier) [1
To account for clustering, institutional ide for the clustering of cases within centres (identified via the institutional identifier) [18, 19].
To account for clustering, institutional identifiers were included as a random effect in the
model. Kaplan-Meier plots were for and successing of cases manned (included with the institutional spanned via the institutions), $[10, 19]$.
To account for clustering, institutional identifiers were included as a random effect in the
model. Kaplan-Meie To account on the clustering, institutional identifiers in the linear as a random effect in the
model. Kaplan-Meier plots were generated to illustrate 14-day all-cause case fatality base
on different time intervals to DC, on different time intervals to DC, with time starting from the date of DC. This ensures that
the time-to-event analysis accurately reflects the post-DC period. We performed a
sensitivity analysis of our primary outcome usi the time-to-event analysis accurately reflects the post-DC period. We performed a
sensitivity analysis of our primary outcome using the time ≤1 hour to surgery after
admission to categorize early and late DC. All calculati the time-to-event analysis and the time-to-event and performed as sensitivity analysis of our primary outcome using the time ≤ 1 hour to surgery after admission to categorize early and late DC. All calculations and ana sensitivity analysis of our primary outcome using the time ≤1 hour to surgery after
admission to categorize early and late DC. All calculations and analyses were perfor
using SAS release 9.4 and SAS Enterprise Guide 7.3 (S admission of the Using SAS release 9.4 and SAS Enterprise Guide 7.3 (SAS Institute, Cary, North Carolina,
USA). USA). $\overline{}$

Results

Between 2016 and 2022, and an 2016 personal cases the therm are managed from public
hospitals across Germany. Among these cases, 525,360 received a primary discharge
diagnosis of TBI, 9,495 of which were severe TBI cases w diagnosis of TBI, 9,495 of which were severe TBI cases with AIS head ≥3. 598 (6.3%) cannot be during their hospital stay, 323 (54.8%) within the first two hours and 4 (75.2%) within the first 24 hours of hospitalization (underwent DC during their hospital stay, 323 (54.8%) within the first two hours and 443
(75.2%) within the first 24 hours of hospitalization (Fig. 1).
The cases that received DC were predominantly male (67.1%) with a media

(75.2%) within the first 24 hours of hospitalization (Fig. 1).
The cases that received DC were predominantly male (67.1%) with a median age of 12 ye
(IQR 4 – 16) and a median hospital stay of 17 days. 27 % of cases died i The cases that received DC were predominantly male (67.:
(IQR 4 – 16) and a median hospital stay of 17 days. 27 % of
median time from admission to death of 2 days. The major
edema and subdural hemorrhage, affecting 64.9% (IQR 4 – 16) and a median hospital stay of 17 days. 27 % of cases died in hospital with a median time from admission to death of 2 days. The majority of DC cases involved brain edema and subdural hemorrhage, affecting 64. (IQR 4 – 16) and a median hospital stay of 17 days. 27 % of cases died in hospital with a
median time from admission to death of 2 days. The majority of DC cases involved brain
edema and subdural hemorrhage, affecting 64.9 edema and subdural hemorrhage, affecting 64.9% and 69.9%, of patients, reported as edema and subdural hemorrhage, and single mass subdural subseting to patients, reported as
separate findings respectively. One third of the cases were in coma (31.3%), and more t
half received invasive ICP monitoring (51.8

separate finding (51.8%).
half received invasive ICP monitoring (51.8%).
Most DCs (54.8%) were performed within two hours of hospital admission, with numbers
declining over the first 24 hours of admission (Fig. 2). Most DCs (54.8%) were performed within two
declining over the first 24 hours of admission (
Characteristics of patients receiving early, and

Most DCs (54.8%) were performed within the fields of the peak diministry, minimizing
declining over the first 24 hours of admission (Fig. 2).
Characteristics of patients receiving early, and late DC were largely similar (T Characteristics of patients receiving early, and late D
Differences were observed for lethality (37.5% in earl
hematoma evacuation (72.0 % vs. 52.6%). A shorter n
observed in the early DC group compared to 22 days
received Differences were observed for lethality (37.5% in early DC vs. 15.8% in late DC) and
hematoma evacuation (72.0 % vs. 52.6%). A shorter median hospital stay of 11 days
observed in the early DC group compared to 22 days afte Differences were served for letthality (37.5% in sample 3.7 mm)
hematoma evacuation (72.0 % vs. 52.6%). A shorter median hospital stay of 11 days
observed in the early DC group compared to 22 days after late DC. While half hematopole in the early DC group compared to 22 days after late DC. While half of the case:
received ICP monitoring in both the early and late DC group, 77.9% of the ICP monitoring
the late DC group was performed before DC received ICP monitoring in both the early and late DC group, 77.9% of the ICP monitoring i
the late DC group was performed before DC. The median time from admission to ICP
monitoring in the early DC group was 67 minutes, w the late DC group was performed before DC. The median time from admission to ICP
monitoring in the early DC group was 67 minutes, with 86% of ICP monitors being inserted
during the same surgery in which the DC was performe the late DC group was 67 minutes, with 86% of ICP monitors being instanting in the early DC group was 67 minutes, with 86% of ICP monitors being inst
during the same surgery in which the DC was performed. Similarly, we obs during the same surgery in which the DC was performed. Similarly, we observed that 58.6%
of those who received EVD were performed before the DC surgery in the late DC group, of those who received EVD were performed before the DC surgery in the late DC group,
of those who received EVD were performed before the DC surgery in the late DC group,

of the those who received \mathbb{R}^n whose who received \mathbb{R}^n in the late \mathbb{R}^n in the late \mathbb{R}^n

differences between the groups were observed (Table 1).
The cumulative case fatality after DC based on time to DC after admission in hours is shov
in Fig. 3 Postoperative cumulative mortality was higher when the time to cr The cumulative case fatality after DC based on time to DC
in Fig. 3 Postoperative cumulative mortality was higher wl
within the first hour of admission after injury relative to k
more).
Logistic regression showed higher ad in Fig. 3 Postoperative cumulative mortality was higher when the time to craniectomy was
within the first hour of admission after injury relative to longer hours (2 or 3 hours and
more).

within the first hour of admission after injury relative to longer hours (2 or 3 hours and
more).
Logistic regression showed higher adjusted odds for death (odds ratio (OR) 2.89 (95% CI:
1.43-5.85) and composite outcome (1 more).
Logistic regression showed higher adjusted odds for death (odds ratio (OR) 2.89 (95% C
1.43-5.85) and composite outcome (1.22 (0.71-2.21)) in early versus late DC groups (Fig ر
Logistic
1.43-5.
3). No o $1.43-5.85$) and composite outcome (1.22 (0.71-2.21)) in early versus late DC groups (Figure
3). No differences were observed between early and late DC with respect to functional
outcomes (PCCC \geq 2) and seizure codi 3). No differences were observed between early and late DC with respect to functional outcomes (PCCC \geq 2) and seizure coding (Fig. 4). The adjusted mean duration of mechanical ventilation was higher in the late DC (15 3). Noticomes (PCCC ≥ 2) and seizure coding (Fig. 4). The adjusted mean duration of mechand
ventilation was higher in the late DC (15 (95% Cl: 13.0-17.0)) compared to 11.5 (95% Cl:
13.5) in the early DC group (See e ventilation was higher in the late DC (15 (95% Cl: 13.0-17.0)) compared to 11.5 (95% Cl: 9.4-
13.5) in the early DC group (See eFigure 2). The sensitivity analysis showed higher odds for
death aOR: 1.75 (95%Cl: 0.96-3.22) ventilation was higher in the late DC (15 (95% CI: 13.0-17.0)) compared to 11.5 (95% CI: 9.4-
13.5) in the early DC group (See eFigure 2). The sensitivity analysis showed higher odds for
death aOR: 1.75 (95%CI: 0.96-3.22) $DC \left(> 1 \text{ hour} \right)$ groups.
Discussion

Discussion

death aOR: 1.75 (95%Cl: 0.96-3.22) in early (≤ 1 hour time to DC after admission) versus land
DC (> 1 hour) groups.
Discussion
The indication for DC and its optimum timing to control ICP and prevent brain herniation in
sev $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2$ $\frac{1}{2}$ Severe pediatric TBI remain undefined in medical practice guidelines, leaving the decision at
the treating team's discretion. This nationwide retrospective cohort study found that early
DC was associated with higher in-hos sexted the treating team's discretion. This nationwide retrospective cohort study found that early
DC was associated with higher in-hospital mortality, though survivors had fewer days on
mechanical ventilation and shorter the treating team's DC was associated with higher in-hospital mortality, though survivors had fewer days on
mechanical ventilation and shorter hospital stays compared to the late DC group. No clear
difference in functional Decision with the distribution with higher in-hospital stays compared to the late DC group. No clear
mechanical ventilation and shorter hospital stays compared to the late DC group. No clear
difference in functional outcom mechanical vention and shorter hospital states in functional outcomes was observed between groups.

Served to the late DC groups compared to the late DC groups. difference in functional outcomes was observed between groups.

secondary DC in adult populations. In children, one RCT, several case series, and
retrospective studies have evaluated the effect of DC on outcomes [3, 7, 8, 10, 20-24].
However, these studies often had limited sample size secondary 20 in adding populations. In antison, one restrict, exceptions (3, 7, 8, 10, 2)
retrospective studies have evaluated the effect of DC on outcomes [3, 7, 8, 10, 2)
However, these studies often had limited sample s However, these studies often had limited sample sizes, or compared DC to medical
management and had high risk of selection bias. A very limited number of pediatric TB
patients in retrospective studies has been compared reg However, interestance studies and these sample sizes, or compared to the interest
management and had high risk of selection bias. A very limited number of pediatric
patients in retrospective studies has been compared regar management and had high risk of selection bias. The pediatric Teperature Teperature Teperature
patients in retrospective studies has been compared regarding the timing effect of DC w
varying definitions of early and late s partying definitions of early and late surgery time differences [7, 10, 25]. Our study, the first
large-scale nationwide analysis on timing of DC in children and its association with
outcomes, found that most DCs were perf arge-scale nationwide analysis on timing of DC in children and its association with
outcomes, found that most DCs were performed on the first day following admission, with
half occurring within two hours of hospital admiss outcomes, found that most DCs were performed on the first day following admission.
half occurring within two hours of hospital admission.
Early DC performed parallel to mass lesion evacuation, without prior ICP monitorin

outcomes, found that most DCs were performed on the first day following admission,
half occurring within two hours of hospital admission.
Early DC performed parallel to mass lesion evacuation, without prior ICP monitoring, half occurring within the them over-princemments
Early DC performed parallel to mass lesion evacuation,
conducted within the first two hours after admission, a
extracranial injuries in our study. In previous studies, p Early DC performed parallel to mass lesion evacuation, making prior is intermeding, the
conducted within the first two hours after admission, and associated with more severe
extracranial injuries in our study. In previous extracranial injuries in our study. In previous studies, primary DC as a prophylactic meas
to prevent rapid ICP elevation post-mass lesion evacuation, generally involved patients
more severe TBI, including lower Glasgow Co extracraminal, and the station post-mass lesion evacuation, generally involved patients with
more severe TBI, including lower Glasgow Coma Scale scores, thicker hematomas, greater
midline shifts, and more significant extra to prevent rapid Impression comes Scale Scores, thicker hematomas, greater
to prevent rapid Inc. and more significant extracranial injuries [26-29]. In contrast, late DC was
the prequently associated with prior ICP monitor more severe TBI, including terms analysis Coma Scale scale scores, include its includential, greater
midline shifts, and more significant extracranial injuries [26-29]. In contrast, late DC was
more frequently associated w manned shifts, and more significant entertainming and the use of EVD indicating a mo
measured approach based on the progression of symptoms and ICP levels. Despite
guidelines recommending ICP monitoring to manage ICP level measured approach based on the progression of symptoms and ICP levels. Despite
guidelines recommending ICP monitoring to manage ICP levels in sTBI, only half of the
patients in our study received this continuous evaluation measured approach and on the progression or symptoms and ICP levels as TBI, only half of t
patients in our study received this continuous evaluation, which is particularly impo
the late DC cases, where elevated ICP can pro guidents in our study received this continuous evaluation, which is particularly importa
the late DC cases, where elevated ICP can prompt DC [30-32]. While there is no class I
evidence regarding ICP monitoring after primar patients in our states and occurred the continuous evaluation, then the particularly important in
the late DC cases, where elevated ICP can prompt DC [30-32]. While there is no class I
evidence regarding ICP monitoring aft evidence regarding ICP monitoring after primary DC, several retrospective studies in a
concluded its usefulness in guiding therapy postoperatively, especially in the presence
brain swelling, and to reduce in-hospital morta evidence regarding the intrinsiting after primary $=$ y contains the prepared retails in additional concluded its usefulness in guiding therapy postoperatively, especially in the presence of brain swelling, and to reduce i concluded its usefulness in guiding therapy postoperatively, especially in the presence of brain swelling, and to reduce in-hospital mortality [33-35].

DC timing in children or adults with sTBI makes comparison difficult. In our study, early DC
was associated with higher lethality and shorter time to death, with a marked percentage of
children undergoing hematoma evacuati Decisions associated with higher lethality and shorter time to death, with a marked percentage comparison difficult. In our study, the DECR children undergoing hematoma evacuation during the same surgery. Conversely, the D was associated with higher lemant, and shorter time to death, with a manufage procentage of
children undergoing hematoma evacuation during the same surgery. Conversely, the DECRA
trial, which defined early DC as less than trial, which defined early DC as less than 38 hours and refractory to first-tier treatment,
excluded patients with intracranial hemorrhage and reported equal mortality rates between
early DC and MM [5]. In the RESCUEicp st excluded patients with intracranial hemorrhage and reported equal mortality rates betweenly DC and MM [5]. In the RESCUEicp study, where DC was considered a last-tier there with a median time to randomization of 44.3 hours early DC and MM [5]. In the RESCUEicp study, where DC was considered a last-tier therapy
with a median time to randomization of 44.3 hours, demonstrated lower mortality rates. A
recent retrospective study by Nagy et al. al with a median time to randomization of 44.3 hours, demonstrated lower mortality rates. A
recent retrospective study by Nagy et al. also found that the acute intervention group in
children (defined as within 24 hours of adm recent retrospective study by Nagy et al. also found that the acute intervention group in
children (defined as within 24 hours of admission) had higher mortality compared to the
subacute group with no differences in functi children (defined as within 24 hours of admission) had higher mortality compared to the
subacute group with no differences in functional outcomes (33.3% vs. 18.2%, respectivel
[10]. However, multivariable analysis and thus subacute group with no differences in functional outcomes (33.3% vs. 18.2%, respectively
[10]. However, multivariable analysis and thus adjustment for confounders were not
performed due to the limited sample size. Two othe subacute group with the sadjustment for confounders were not

10]. However, multivariable analysis and thus adjustment for confounders were not

performed due to the limited sample size. Two other retrospective studies hav performed due to the limited sample size. Two other retrospective studies have evalu
the association between timing and outcomes in adults (defining early surgery as 3- a
hours from injury to surgery respectively) and show performed due to the limited sample state the studies retrospective studies the association between timing and outcomes in adults (defining early surgery as 3- and 4-
hours from injury to surgery respectively) and showed n the association between timing and outcomes in the anti-perming early surgery as 3- and 4-
hours from injury to surgery respectively) and showed no differences in mortality compare
to the late DC group [36, 37]. Another re hours from injury to surgery respective study that evaluated the association
between early DC (time from injury to surgery less than 12 hours) and 14 days in-hospital
mortality found that children with higher ISS had incre to the late DC group [36, 37]. Another retrospective study that evaluated the association
between early DC (time from injury to surgery less than 12 hours) and 14 days in-hospital
mortality found that children with higher between that children with higher ISS had increased odds of death, however there
were no comparison to a late DC group [22]. In our study, the increased lethality and rapi
progression to death observed in the early DC grou mortality found that children manipulation is that more structured or a samely increased $\frac{1}{2}$
were no comparison to a late DC group [22]. In our study, the increased lethality and rapid
progression to death observed i progression to death observed in the early DC group may reflect the severity of the initial
injury rather than the impact of the intervention itself. However, survivors of early DC had
shorter hospital stays and fewer days injury rather than the impact of the intervention itself. However, survivors of early DC had
shorter hospital stays and fewer days on mechanical ventilation compared to late DC,
suggesting a more rapid and less complicated shorter hospital stays and fewer days on mechanical ventilation compared to late DC,
suggesting a more rapid and less complicated recovery. suggesting a more rapid and less complicated recovery. suggesting a more rapid and less complicated recovery.

The present study is a set of the shock room and ICU, and medical
The present study present study management before and after surgery. Additionally, time-related information such as
duration from the accident to hospital a for DC timing, prijuting, the parameters from the shock room and the shock room.
The management before and after surgery. Additionally, time-related information such
duration from the accident to hospital admission are not management excels and after surgery. Additionally, time-related information surfactured
duration from the accident to hospital admission are not available. There is potential f
confounding by indication related to injury s confounding by indication related to injury severity and the factors leading to hematoma
evacuation with subsequent DC, as documentation on these factors may be lacking.
However, we attempted to adjust for available confou evacuation with subsequent DC, as documentation on these factors may be lacking.
However, we attempted to adjust for available confounders to the best of our ability,
recognizing that often a subset of confounders can effe evalue of the best of confounders to the best of our ability
recognizing that often a subset of confounders can effectively mitigate much of the
confounding. Future research should include prospective data collection and s recognizing that often a subset of confounders can effectively mitigate much of the re
confounding. Future research should include prospective data collection and standard
criteria for surgical decision-making to optimize confounding. Future research should include prospective data collection and standardized
criteria for surgical decision-making to optimize DC timing in pediatric sTBI. Despite these
limitations, this study includes a consi criteria for surgical decision-making to optimize DC timing in pediatric sTBI. Despite these criteria for surface of the criteria formulations, this study includes a considerable number of DC cases in children, providing a
comprehensive description of DC timing and associated outcomes after sTBI in Germany.
Primar

limitations, the mode of the comprehensive description of DC timing and associated outcomes after sTBI in Germany.
Primary versus secondary DC are two different entities with their own clinical
characteristics, timing, and Primary versus secondary DC are two different entities with their own clinical
characteristics, timing, and indication. Early DC is often necessitated during the initial
evacuation of intracranial mass lesions, but its ass Primary versus secondary 2 such the dimension statution in their state limition
characteristics, timing, and indication. Early DC is often necessitated during th
evacuation of intracranial mass lesions, but its association evacuation of intracranial mass lesions, but its association with higher lethality emphathe need for careful patient selection and individualized treatment strategies. A comprehensive risk assessment should guide clinical evacuation of intracramial mass lesion, but its assessment intringent lemant, purposes the need for careful patient selection and individualized treatment strategies. A
comprehensive risk assessment should guide clinical d the need for careful patient selection and individualized treatment strategies.

comprehensive risk assessment should guide clinical decision-making, weighing

potential long-term complications against this strategy. Poten comprehensive risk assessment that strategy. Potential complications, suctinfections, cerebrospinal fluid leaks, and the need for re-surgery, must be discussed parents to ensure informed decision-making regarding treatment infections, cerebrospinal fluid leaks, and the need for re-surgery, must be discussed with
parents to ensure informed decision-making regarding treatment strategy. parents to ensure informed decision-making regarding treatment strategy.
parents to ensure informed decision-making regarding treatment strategy.
Conclusion

parents to ensure informed decision-making regarding regarding to the conclusion-making regarding treatment str
Conclusion-making regarding transfer strategy. \overline{a}

This nationwide study of DC after severe pediatric TBI in Germany found that early DC, often necessary to evacuate a massive lesion, was associated with higher in-hospital mortality. Future research should focus on further developing timeline guidelines and incorporating standardized decision criteria to improve patient outcomes.

Acknowledgment: None

Research data statement: The data analyzed in this study is subject to the following

licenses/restrictions: the original dataset can be accessed after inquiry to the Federal Bureau of

Statistics of Germany. Requests to access these datasets should be directed to https://www.

forschungsdatenzentrum.de/de.

Fig. 1: Flowchart of included traumatic brain injury cases aged 0-17 years in Germany, 2016-2022

Fig. 2 : : Distribution of time within the initial 24 Hours from admission to decompressive craniectomy surgery. *Hours are shown as complete hours. This graph represents 75% of the patients who underwent DC surgery in the first 24 h of admission.

Fig. 3 Cumulative case fatality following time to DC in hours by time to death within 14 days of hospitalization after the DC surgery. *Days and hours are shown as complete days/hours

Fig. 4 Odds ratio of adverse outcomes for early versus late decompressive craniectomy in children with severe traumatic brain injury in Germany 2016-2022. Adjustment variables: age, sex, single ICISS, coma, POFI, ICP monitoring and type of injury. Composite outcome = in-hospital death or PCCC ≥2

Supplementary :

eTable 1: Extracted ICD- and OPS-Codes and newly calculated variables.

eTable 2:Calculation of Pediatric complex chronic conditions classification.

eFigure 1:Directed acyclic graph to identify the minimally sufficient adjustment set for multivariable analyses.

eFigure 2: Adjusted least square means of mechanical ventilation in days(a), length of stay (b) and PCCC (c) by early versus late DC survivors' cases. Adjusted model controlled for age, sex, single ICISS, coma, ICP monitoring, POFI and type of injury. Vertical bars denote 95% confidence intervals.

- 1. Kram
1. Kram
the U $\ddot{}$
- the Usual Indications Congraent with Those Evandace in Chinedi Trials? Neurocrit Care,
2016. 25(1): p. 10-9.
Young, A.M.H. and P.J.A. Hutchinson, *Decompressive Craniectomy in Pediatric Traumati*
Brain Injury, in Textbook 2016. 25(1): p. 10-9.
Young, A.M.H. and P.
Brain Injury, in Textb.
p. 1-17.
Taylor, A., et al., *A ra
traumatic brain injur.*
p. 154-62.
Cooper, D.J., et al., *P.*
- 1. Kramer, A.H., et al., *Decompressive Craniectomy in Patients with Traumatic Brain Injury:* Are
the Usual Indications Congruent with Those Evaluated in Clinical Trials? Neurocrit Care,
2016. **25**(1): p. 10-9.
2. Young, A Brammyary, in Textbook of Pediatric Neurosurgery. 2017, Spinger International Publishing.
P. 1-17.
Taylor, A., et al., A randomized trial of very early decompressive craniectomy in children with
traumatic brain injury and
- 2. Young, A.M.H. and P.J.A. Hutchinson, Decompressive Cramectomy in Pediatric Haumatic

Brain Injury, in Textbook of Pediatric Neurosurgery. 2017, Springer International Publishir

p. 1-17.

3. Taylor, A., et al., *A rando* Freedor, *F*
Taylor, *F*
traumat
p. 154-6
Cooper,
Craniect
Neurotr:
Cooper, 3. Taylor, A., et al., A randomized trial of very early decompressive cramectomy in children with
traumatic brain injury and sustained intracranial hypertension. Childs Nerv Syst, 2001. 17(3):
p. 154-62.
4. Cooper, D.J., e traumatic brain injury and sustained intracramal hypertension. Childs Nerv Syst, 2001. 17(3).

P. 154-62.

Cooper, D.J., et al., *Patient Outcomes at Twelve Months after Early Decompressive*

Craniectomy for Diffuse Trauma r
C*raniecton*
Neurotrau
Neurotrau
Cooper, D.
Med, 2011
Hutchinsor
Hypertensi
Elsawaf, Y. 4. Cooper, D.J., et al., Patient Outcomes at Twelve Months after Early Decompressive
Craniectomy for Diffuse Traumatic Brain Injury in the Randomized DECRA Clinical T.
Neurotrauma, 2020. 37(5): p. 810-816.
5. Cooper, D.J.,
-
-
- Craniectomy for Diffuse Traumatic Brain Infury in the Randomized DECRA Clinical Trial. 3

Neurotrauma, 2020. 37(5): p. 810-816.

Cooper, D.J., et al., *Decompressive craniectomy in diffuse traumatic brain injury.* N Engl J Neurotrauma, 2020. 37(5): p. 810-816.
Cooper, D.J., et al., *Decompressive cran*
Med, 2011. **364**(16): p. 1493-502.
Hutchinson, P.J., et al., *Trial of Decompiny errension*. N Engl J Med, 2016. **375**(
Elsawaf, Y., et al., 5. Cooper, D.J., et al., Decompressive cramectomy in anylose traumatic brain injury. N Engl J

1988. Hutchinson, P.J., et al., Trial of Decompressive Craniectomy for Traumatic Intracranial

Hypertension. N Engl J Med, 2016 Med, 2011. 364(16): p. 1493-302.
Hutchinson, P.J., et al., *Trial of Dec*
Hypertension. N Engl J Med, 2016.
Elsawaf, Y., et al., *Early Decompres*.
Brain Injury in the Pediatric Populc
Neurosurg, 2020. **138**: p. 9-18.
Ocas 6. Hutchinson, P.J., et al., Trial of Decompressive Craniectomy for Traumatic Intracranial
Hypertension. N Engl J Med, 2016. 375(12): p. 1119-30.
T. Elsawaf, Y., et al., *Early Decompressive Craniectomy as Management for S* Hypertension. N Engl 3 Med, 2010. 375(12): p. 1115-30.
Elsawaf, Y., et al., *Early Decompressive Craniectomy as I*
Brain Injury in the Pediatric Population: A Comprehensiv
Neurosurg, 2020. 138: p. 9-18.
Ocasio-Rodríguez, C
- 7. Elsawaf, Y., et al., Early Decompressive Cramectomy as Walnagement for Severe Traumatic
Brain Injury in the Pediatric Population: A Comprehensive Literature Review. World
Neurosurg, 2020. 138: p. 9-18.
8. Ocasio-Rodrígu Brain Injury In the Fediatric Population: A Comprehensive Literature Review. World
Neurosurg, 2020. 138: p. 9-18.
Ocasio-Rodríguez, C.M., A. Puig-Ramos, and R. García-De Jesús, Long-Term Pediatri
Outcomes of Decompressive Neurosurg, 2020. 138. p. 9-10.
Ocasio-Rodríguez, C.M., A. Puig
Outcomes of Decompressive Cr.
J, 2023. 42(2): p. 152-157. 8. Ocasio-Rodríguez, C.M., A. Puig-Ramos, and R. García-De Jesús, Long-Term Pedidatric
Outcomes of Decompressive Craniectomy after Severe Traumatic Brain Injury. P R He
J., 2023. 42(2): p. 152-157. U , 2023. 42(2): p. 152-157.
 U , 2023. 42(2): p. 152-157. $J, 2023.$ 42(2): p. 152-157.
-
- 9. Murray, C., et al., 739: DECOMPRESSIVE CRANIECTOMY IN CHILDREN WITH TRACHARITE

BRAIN INJURY IN THE U.S. FROM 2000 TO 2019. Critical Care Medicine, 2023. 51(1): p. 36

10. Laszlo Nagy1, R.D.M., Reagan A. Collins2, Abdur BRAIN MOONTIN THE U.S. FROM 2000 TO 2013. CHICCH CARE MECHAINE, 2023. 51(1): p. 360.
Laszlo Nagy1, R.D.M., Reagan A. Collins2, Abdurrahman F. Kharbat3, John Garza4, Muhittin
Belirgen1, *Impact of timing of decompressive cr*
-
- 10. Belirgen1, Impact of timing of decompressive craniectomy on outcomes in pediatric

11. Hojeij, R., et al., *Performance of ICD-10-based injury severity scores in pediatric trauma*

11. Hojeij, R., et al., *Performance* belirgen1, impact of timing of decompressive cramectomy on outcomes in pediatric
traumatic brain injury. Surgical Neurology International, 2023. 14(436).
Hojeij, R., et al., *Performance of ICD-10-based injury severity sco* traumatic brain injury. Surgical Neurology International, 2023. 14(436).
Hojelj, R., et al., *Performance of ICD-10-based injury severity scores in perients using the ICD-AIS map and survival rate ratios. medRxiv, 2023:
20* 11. Hojeij, R., et al., Perjormance of ICD-10-based injury severity scores in pediatric trauma
12. patients using the ICD-AIS map and survival rate ratios. medRxiv, 2023: p.
12. Feudtner, C., et al., Pediatric complex chro patients using the ICD-AIS map and survival rate ratios. Inclinativ, 2023. p.
2023.12.04.23299239.
Feudtner, C., et al., *Pediatric complex chronic conditions classification syst*
updated for ICD-10 and complex medical tec Feudtner, C., et al., *Pea*
updated for ICD-10 and
Pediatrics, 2014. **14**(1):
Simon, T.D., et al., *Pedi*
by medical complexity.
Greenland, S., J. Pearl, i
Epidemiology, 1999. **10**
Pearl, J., *Causal Diagra*. 12. Feudenci, C., et al., Pediatric complex chronic conditions classification system version 2:

updated for ICD-10 and complex medical technology dependence and transplantation. B

Pediatrics, 2014. 14(1): p. 199.

13. Si
-
-
-
- updated for ICD-10 and complex medical technology dependence and transplantation. BMC
Pediatrics, 2014. 14(1): p. 199.
Simon, T.D., et al., *Pediatric medical complexity algorithm: a new method to stratify children*
by med Simon, T.D., et al., *Pediatric me*
by *medical complexity*. Pediatri
Greenland, S., J. Pearl, and J.M.
Epidemiology, 1999. **10**(1): p. 3
Pearl, J., *Causal Diagrams for E.*
Lederer, D.J., et al., *Control of C*
Studies. G 13. Simon, T.D., et al., Pediatrics, 2014. 133(6): p. e1647-54.

14. Greenland, S., J. Pearl, and J.M. Robins, Causal diagrams for epidemiologic research.

14. Greenland, S., J. Pearl, and J.M. Robins, Causal diagrams for by medical complexity. Pediatrics, 2014. 133(0): p. e1647-54.
Greenland, S., J. Pearl, and J.M. Robins, *Causal diagrams for e*
Epidemiology, 1999. 10(1): p. 37-48.
Pearl, J., *Causal Diagrams for Empirical Research.* Biom 14. Greenland, S., J. Pearl, and J.M. Robins, Causal diagrams for epidemiologic research.

15. Pearl, J., Causal Diagrams for Empirical Research. Biometrika, 1995. **82**(4): p. 669-688

16. Lederer, D.J., et al., Control of Pearl, J., *Causal Diagrams for Empiric*
Pearl, J., *Causal Diagrams for Empiric*
Lederer, D.J., et al., *Control of Confol*
Studies. *Guidance for Authors from E*
Ann Am Thorac Soc, 2019. **16**(1): p. 2
Williams, T.C., et 15. Pearl, J., Causar Diagrams for Empirical Research. Biometrika, 1999. 82(4): p. 699-660.
16. Lederer, D.J., et al., Control of Confounding and Reporting of Results in Causal Inferenc
16. Studies. Guidance for Authors fr 16. Lederer, D.J., et al., control of Confounding and Reporting of Resalts in Causal Inference

16. Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journal

17. Williams, T.C., et al., D
-
- Studies. Guidance for Authors from Eurios of Respiratory, Sleep, and Critical Care Journals.
Ann Am Thorac Soc, 2019. **16**(1): p. 22-28.
Williams, T.C., et al., *Directed acyclic graphs: a tool for causal studies in paedia* 17. Williams, T.C., et al., Directed acyclic gruppis: a tool for classic staties in paediatrics. Pediatrics.

Res, 2018. 84(4): p. 487-493.

18. Austin, P.C., V. Goel, and C. van Walraven, An introduction to multilevel reg
- Ann Am Thorac Soc, 2015. 10(1): p. 22-28.
Williams, T.C., et al., *Directed acyclic graph*
Res, 2018. **84**(4): p. 487-493.
Austin, P.C., V. Goel, and C. van Walraven,
Can J Public Health, 2001. **92**(2): p. 150-4.
Sathya, C Rustin, P.C., V. Goel, and C. va
Can J Public Health, 2001. **92**
Sathya, C., et al., *Mortality Ar*
Types. JAMA Surg, 2015. **150** 18. Austrin, P.C., V. Goel, and C. van Walracch, An introduction to multilever regression models.

18. Sathya, C., et al., *Mortality Among Injured Children Treated at Different Trauma Center*

19. Sathya, C., et al., *Mor* Sathya, C., et al., *Mortality Among Injured*
Types. JAMA Surg, 2015. **150**(9): p. 874-81 19. Sathya, C., et al., Mortality Among Injured Children Treated at Different Trauma Center
Types. JAMA Surg, 2015. 150(9): p. 874-81. $T_Y p_{ES.}$ JAMA Surg, 2015. $150(9)$: p. 874-81.
-
-
- 20. Tear, W.X., et al., *Decompressive Craniectomy in Fediatric Traumatic Brain Injury: A*

21. Bruns, N., et al., *Functional Short-Term Outcomes and Mortality in Children with Sev*

21. Traumatic Brain Injury: Comparing Retrospective Cohort Study, Sournal of Pediatric Intensive Care, 2023.
Bruns, N., et al., *Functional Short-Term Outcomes and Mortality in Chi*
Traumatic Brain Injury: Comparing Decompressive Craniectomy and N
Neurotrauma, Traumatic Brain Injury: Companing Becompressive Cramectomy and Medical Management. 3
Neurotrauma, 2022. 39(13-14): p. 944-953.
Tang, Z., et al., *Fourteen-Day Mortality in Pediatric Patients with Traumatic Brain Injury Aft*
- 21. Bruns, N., et al., Functional Short-Term Outcomes and Mortality in Children with Severe

Traumatic Brain Injury: Comparing Decompressive Craniectomy and Medical Manageme

Neurotrauma, 2022. 39(13-14): p. 944-953.

22. Neurotrauma, 2022. 33(13-14). p. 344-353.
Tang, Z., et al., *Fourteen-Day Mortality in Pe*
Early Decompressive Craniectomy: A Single-
2018. 119: p. e389-e394.
Josan, V.A. and S. Sgouros, *Early decompres.*
treatment of ref 22. Tang, 2., et al., Fourteen-Day Mortanty in Fediatric Patients with Fraumatic Brain Injury After

2018. 119: p. e389-e394.

23. Josan, V.A. and S. Sgouros, *Early decompressive craniectomy may be effective in the*

23. Early Decompressive Cramectomy: A Single-Center Retrospective Stady. World Rectrosotig.
2018. 119: p. e389-e394.
Iosan, V.A. and S. Sgouros, *Early decompressive craniectomy may be effective in the*
treatment of refractory 2010. 119: p. e389-e394.
Josan, V.A. and S. Sgouros
treatment of refractory in
Nervous System, 2006. **22**
Ruf, B., et al., *Early decom*
hypertension in children: I
Lacerda, A., et al., *Decom*,
International Journal of 23. Josan, V.A. and S. Sgouros, Early decomplessive craniectomy may be effective in the
treatment of refractory intracranial hypertension after traumatic brain injury. Child's
Nervous System, 2006. 22(10): p. 1268-1274.
24
-
-
- treatment of refractory intracranial hypertension after traumatic brain injury. Child's
Nervous System, 2006. **22**(10): p. 1268-1274.
Ruf, B., et al., *Early decompressive craniectomy and duraplasty for refractory intracra* Nervous System, 2000. 22(10). p. 1200-1274.
Ruf, B., et al., *Early decompressive craniectom*
hypertension in children: results of a pilot stuc
Lacerda, A., et al., *Decompressive Craniectom*
International Journal of Pedia 24. Ruff, B., et al., Early decompressive cramectomy and duraplasty for refractory influenting

25. Lacerda, A., et al., Decompressive Craniectomy in Pediatric Severe Head Trauma.

26. International Journal of Pediatric Re mypertension in children: results of a pilot study. Chil cart, 2003. T(6): p. R133-8.
Lacerda, A., et al., *Decompressive Craniectomy in Pediatric Severe Head Trauma.*
International Journal of Pediatric Research, 2018. **4.** 25. Lacerda, A., et al., *Decompressive craniectomy in rediatric Severe Head Trauma.*

26. Jehan, F., et al., *Decompressive craniectomy versus craniotomy only for intracran*

26. Jehan, F., et al., *Decompressive craniect* Iehan, F., et al., *Decompressive craniectomy versus c*
hemorrhage evacuation: A propensity matched study
p. 1148-1153.
Hartings, J.A., et al., *Surgical management of traumc*
effectiveness study of 2 centers. J Neurosurg,
-
- 26. Jehan, F., et al., *Decompressive craniectomy versus cramictomy only for intracranial*

27. Hartings, J.A., et al., *Surgical management of traumatic brain injury: a comparative-*

27. Hartings, J.A., et al., *Surgical* nemorrhage evacuation: A propensity matched study. J Trauma Acute Care Surg, 2017. 83(6).
Partings, J.A., et al., Surgical management of traumatic brain injury: a comparative-
effectiveness study of 2 centers. J Neurosurg, Hartings, J.A.,
Hartings, J.A.,
effectiveness s
Li, L.M., et al.,
of craniotomy
1555-61.
Wong, G.K.-C.,
Hematoma Pa 27. Hartings, J.A., et al., Surgical management of traumatic brain injury: a comparative
effectiveness study of 2 centers. J Neurosurg, 2014. 120(2): p. 434-46.
13. Li, L.M., et al., Outcome following evacuation of acute s effectiveness study of 2 centers. J Wearosang, 2014. 120(2): p. 434-46.
Li, L.M., et al., Outcome following evacuation of acute subdural haemotof craniotomy with decompressive craniectomy. Acta Neurochir (Wien
1555-61.
Won
- 28. Li, L.M., et al., Outcome following evacuation of drate subdural heematomis. a comparison
of craniotomy with decompressive craniectomy. Acta Neurochir (Wien), 2012. 154(9): p.
1555-61.
Wong, G.K.-C., et al. Assessing t of cranicionly with decompressive craniectomy. Acta Neurochir (Wien), 2012. 154(9): p.
1555-61.
Wong, G.K.-C., et al. Assessing the Neurological Outcome of Traumatic Acute Subdural
Hematoma Patients with and without Primar 1111
Wong, G.
Hematon
Springer 29. Wong, G.K.-C., et al. Assessing the Wearological Outcome of Traumatic Acute Subdural
Hematoma Patients with and without Primary Decompressive Craniectomies. 2010. Vie
Springer Vienna. Hematoma Patients with and without Primary Decompressive Cramectorines. 2010. Vienna:
Springer Vienna. Springer Vienna.
-
-
- 30. Carney, N., et al., Guidelines for the Mindigelinent of Severe Traumatic Brain Injury, Fourth

31. Kochanek, P.M., et al., Management of Pediatric Severe Traumatic Brain Injury, 2019

31. Consensus and Guidelines-Based Edition: Neurosurgery, 2017: **30**(1): p. 6-15.
Kochanek, P.M., et al., *Management of Pedi*
Consensus and Guidelines-Based Algorithm
Care Med, 2019. **20**(3): p. 269-279.
Brensing, P., et al., *Current practice of intrac*
s 31. Kochanek, P.M., et al., *Management of Pediatric Severe Traumatic Brammyary: 2013*

Consensus and Guidelines-Based Algorithm for First and Second Tier Therapies. Pediat

Care Med, 2019. **20**(3): p. 269-279.

Brensing, Care Med, 2019. 20(3): p. 269-279.
Brensing, P., et al., *Current practice of intracranial pressure monitoring in children with*
severe traumatic brain injury-a nationwide prospective surveillance study in Germany. Fron
Pe Brensing, P., et al., *Current practice*
Brensing, P., et al., *Current practice*
severe traumatic brain injury-a nati-
Pediatr, 2024. **12**: p. 1355771.
Huang, Y.H. and C.Y. Ou, *Prognostic*
Decompressive Craniectomy for T 32. Brensing, Pr., et al., current practice of intracranial pressure momentum in emitted with
severe traumatic brain injury-a nationwide prospective surveillance study in Germany. F
Pediatr, 2024. 12: p. 1355771.
33. Huang
-
-
- severe traumatic brain injury-a nationwide prospective surveinance study in oermany. Front
Pediatr, 2024. 12: p. 1355771.
Huang, Y.H. and C.Y. Ou, *Prognostic Impact of Intracranial Pressure Monitoring After Primary*
Decom
- Pediatr, 2024. 12: p. 1355771.
Huang, Y.H. and C.Y. Ou, *Progn*
Decompressive Craniectomy fo
Benveniste, R., et al., *Intracran*
Head Trauma. World Neurosur
Picetti, E., et al., *Intracranial pr*
in traumatic brain injury: 33. Huang, 1.H. and C.H. od, Prognostic Impact of Intracranial Pressure Monitoring After Primary
Decompressive Craniectomy for Traumatic Brain Injury. World Neurosurg, 2016. 88: p. 59-63.
Benveniste, R., et al., Intracrani Decompressive Crainectomy for Traumatic Brain Injury. World Neurosurg, 2010. 88: p. 59-63.
Benveniste, R., et al., Intracranial Hypertension After Primary Decompressive Craniectomy for
Head Trauma. World Neurosurg, 2022. 1 34. Benveniste, R., et al., *Intracranial rypertension After Primary Becompressive Craniectomy Jof*

35. Picetti, E., et al., *Intracranial pressure monitoring after primary decompressive craniectomy*

35. Picetti, E., et 35. Picetti, E., et al., *Introdumen pressure monitoring after primary decompressive craniectomy*

in traumatic brain injury: a clinical study. Acta Neurochir (Wien), 2017. **159**(4): p. 615-622.

Park, J.H., et al., *Outco* in traumatic brain injury: a clinical staty. Acta Neurochir (Wien), 2017. 159(4): p. 615-622.
Park, J.H., et al., Outcomes of Ultra-Early Decompressive Craniectomy after Severe Traumat
Brain Injury-Treatment Outcomes after
- Picetti, E., et al., *Intracranial pressure monitoring after prin*
in traumatic brain injury: a clinical study. Acta Neurochir (V
Park, J.H., et al., *Outcomes of Ultra-Early Decompressive Cr*
Brain Injury-Treatment Outcom 36. Park, J.H., et al., Outcomes of Ortra-Early Decompressive Cramectomy after Severe Traumatic
Brain Injury-Treatment Outcomes after Severe TBI. Korean J Neurotrauma, 2014. 10(2): p.
112-8.
Oh, C.H., et al., *Early Decomp* Brammjury-Treatment Outcomes after Severe TBI. Korean J Koncorradina, 2014. 10(2): p.
112-8.
Oh, C.H., et al., *Early Decompression of Acute Subdural Hematoma for Postoperative*
Neurological Improvement: A Single Center Re Oh, C.F
Neurol
Neurot 37. Oh, C.H., et al., Early Decompression of Acute Subdural Hematoma for Postoperative
Neurological Improvement: A Single Center Retrospective Review of 10 Years. Korean
Neurotrauma, 2016. 12(1): p. 11-7. Neurotrauma, 2016. 12(1): p. 11-7.
Neurotrauma, 2016. 12(1): p. 11-7. N eurotrauma, 2010. $L(1)$: p. 11-7.

arrest, OHCA= Out of hospital cardiac arrest, DIC= Disseminated intravascular coagulation, PCCC=
Pediatric Complex Chronic Conditions, EVD=Extra ventricular drain, ICP= Intracranial pressure, PC
Postoperative Organ Failure arrest, Omplex Chronic Conditions, EVD=Extra ventricular drain, ICP= Intracranial pressure, POI
Pediatric Complex Chronic Conditions, EVD=Extra ventricular drain, ICP= Intracranial pressure, POI
Postoperative Organ Failure Pestoperative Organ Failure Index, ISS= Injury Severity Score , ICISS= International Classification
Postoperative Organ Failure Index, ISS= Injury Severity Score , ICISS= International Classification
Injury Severity Score, Postoperative Organ Failure Index, ISS= Interquartile range, xx= Censored data, NA=not available.
Injury Severity Score, IQR= Interquartile range, xx= Censored data, NA=not available. Injury Severity Score, IQR= Interquartile range, xx= Censored data, NA=not available. Single ICISS, median (IQR) $0.67(0.56-0.77)$ $0.62(0.50-0.77)$ $0.68(0.56-0.7)$

Multiple ICISS, median (IQR) $0.11(0.02-0.32)$ $0.11(0.02-0.31)$ $0.13(0.03-0.3)$

Abbreviations: DC= Decompressive craniectomy LOS= length Single ICISS, median (IQR) 0.11(0.02-0.32) 0.11 (0.02-0.31) 0.13 (0.03-0.34)
Multiple ICISS, median (IQR) 0.11(0.02-0.32) 0.11 (0.02-0.31) 0.13 (0.03-0.34)
Abbreviations: DC= Decompressive craniectomy LOS= length of stay, Multiple Interpretations: DC= Decompressive craniectomy LOS= length of stay, IHCA= Intrahospital cardia
arrest, OHCA= Out of hospital cardiac arrest, DIC= Disseminated intravascular coagulation, PCC
Pediatric Complex Chron

ICD=International classification of Diseases 10th edition, AIS= Abbreviated Injury Score, TBI $= Traumatic Brain Injury.$

