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Background and Aims: Diagnostic differentiation between Crohn's disease (CD) and ulcerative 74 

colitis (UC) is crucial for timely and suitable therapeutic measures. The current gold standard for 75 

differentiating between CD and UC involves endoscopy and histology, which are invasive and 76 

costly. We aimed to identify blood plasma proteomic signatures using a Protein-Wide 77 

Association Study (PWAS) approach to differentiate CD from UC and evaluate the efficacy of 78 

these signatures as features in machine learning (ML) classifiers. 79 

Methods: Among participants (n=1,106; nCD=636; nUC=470) of the Study of a Prospective Adult 80 

Research Cohort with IBD (SPARC), plasma protein (n=2,920) levels were estimated using 81 

Olink proteomics. A PWAS with Bonferroni correction for multiple testing was used to identify 82 

proteins associated with disease states after controlling for age, sex, and disease severity. ML 83 

classifiers examined the diagnostic utility of these models. Feature importance was determined 84 

via SHapley Additive exPlanations (SHAP) analysis.  85 

Results: Thirteen proteins which were significantly differentially abundant in CD vs UC (all |β|s 86 

> 0.22, all adjusted p values < 8.42E-06). Random forest models of proteins differentiated 87 

between CD and UC with models trained only on PWAS identified proteins (Average ROC-AUC 88 

0.73) outperforming models trained of the full proteome (Average ROC-AUC 0.62). SHAP 89 

analysis revealed that Granzyme B, insulin-like peptide 5 (INSL5), and interleukin-12 subunit 90 

beta (IL-12B) were the most important features. 91 

Conclusions: Our findings demonstrate that PWAS-based feature selection approaches are a 92 

powerful method to identify features in complex, noisy datasets. Importantly, we have identified 93 

novel peptide based biomarkers such as INSL5, that can be potentially used to complement 94 

existing strategies to differentiate between CD and UC.  95 

 96 
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INTRODUCTION 100 

Inflammatory bowel diseases (IBD) are chronic relapsing and remitting inflammatory 101 

disorders of the gastrointestinal tract. They affect more than 6 million people worldwide, and in 102 

the United States alone more than 70,000 cases of IBD are diagnosed each year2,3. Patients 103 

with IBD experience markedly decreased quality of life, high disease- and treatment-related 104 

morbidity, and often endure complications requiring hospitalizations and surgeries4–8. IBD is 105 

generally subtyped as either Crohn’s disease (CD) or ulcerative colitis (UC), with each differing 106 

in the areas of manifestation and the resulting sequela9–11. Specifically, CD can affect any region 107 

of the gastrointestinal (GI) tract and generally presents with transmural inflammation, while UC 108 

is restricted to the colon and is characterized by mucosal ulceration9–11. While CD and UC 109 

present distinct clinical complications, CD’s ability to affect any region of the GI tract, including 110 

regions affected by UC, makes discriminating between them challenging12–14.  111 

As each disease requires distinct therapeutic strategies, being able to accurately and 112 

efficiently differentiate CD from UC has significant consequences for clinical care. For example, 113 

surgery is not a definitive cure for CD and can result in further complications15–19. Current 114 

practices rely on endoscopy to discriminate CD from UC; however, endoscopy is invasive, 115 

expensive, and carries significant risk to the patient20. To complement endoscopic procedures, 116 

blood and fecal markers are often used; however, none of these tests have proven sufficient to 117 

enable the differentiation of CD and UC21–27.  For instance, serum antibodies against 118 

Saccharomyces cerevisiae (ASCA) and bacterial antigens have limited accuracy and suffer from 119 

low sensitivity, rendering these tests relatively nonspecific to subtype IBD21–24. Other markers 120 

such as fecal calprotectin and Lipocalin-2 can identify inflammatory status but do not enable 121 

differentiation between CD and UC25–27.  Given the rising prevalence of IBD worldwide, its high 122 

morbidity, and its substantial negative impact on quality of life, there is an urgent need for 123 
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diagnostic tools that enable early differentiation of CD from UC, and are easier to use, non-124 

invasive, and less costly than those currently available28. 125 

Advanced proteomics technologies offer novel avenues for comprehending 126 

pathophysiological mechanisms and pinpointing potential clinical biomarkers in complex 127 

diseases. Recent breakthroughs, exemplified by the Olink platform, have revealed novel protein 128 

biomarkers for multiple diseases in blood and plasma 29,30,31, ensuring heightened sensitivity, 129 

precision, and specificity, while also requiring minimal sample volumes. The output data of the 130 

Olink platform can be then applied as features for machine learning (ML)-based classification 131 

analysis32. Unfortunately, even with these technological advancements, omics data is still often 132 

affected by the “curse of dimensionality”33, where the number of features captured far exceeds 133 

the number of samples which can result in models fitting to spurious patterns33. ML models 134 

trained on high dimensionality data may fail to generalize to real world data unless the sample 135 

size is sufficiently large enough (normally at least 5 samples per feature34) to separate signal 136 

versus noise33. However, generating such large omics datasets can be both costly and time 137 

consuming. To mitigate the “curse of dimensionality” without the costly and time-consuming 138 

process of generating large omics datasets, feature selection methods are often used to identify 139 

informative features in high dimensionality datasets before model training33,35. In particular, 140 

GWAS (Genome-Wide Association Study) and PheWAS (Phenome-Wide Association Study) 141 

approaches have proven to be extremely effective for feature selection35.  Here we leverage a 142 

PWAS (Protein-Wide Association Study)-based approach to identify informative features in a 143 

high dimensionality Olink proteomics dataset from IBD patients. This approach identified 13 144 

proteins which distinguish CD from UC using plasma samples.  145 

 146 

 147 

  148 
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MATERIALS & METHODS 149 

Participants and Sample Collection 150 

The Study of Prospective Adult Research Cohort of IBD (SPARC IBD) is an ongoing 151 

longitudinal cohort study of patients with IBD  recruited from 17 academic medical centers 152 

across the United States1. Plasma samples used in this study were obtained from N = 1106 153 

individuals (nCD = 636; nUC =470). 154 

Demographic, disease-related, and patient-reported data were collected during the 155 

following visits: 1) during routine GI office visits (2016-2021), 2) quarterly by sending surveys to 156 

patients, and 3) before a scheduled colonoscopy. All collections generated highly structured 157 

electronic case report forms (eCRF). Bio-samples of each respective patient’s blood and stool 158 

were collected at enrolment and at the time of each patient’s colonoscopy. Further, blood 159 

samples were collected if a patient or provider reported key medication changes. Initially 160 

collected samples were used in this study. Clinical data is transferred from sites on a periodic 161 

basis and stored in IBD Plexus, Crohn’s & Colitis Foundation’s exchange platform (see1 for 162 

details).  163 

Olink Proteomics, normalization, and filtering  164 

Plasma was purified from blood and stored in EDTA. Proteins within plasma were 165 

estimated using Olink Explore 384 panels (i.e., Cardiometabolic, Cardiometabolic II, 166 

Inflammation, Inflammation II, Neurology, Neurology II, Oncology, Oncology II panels; Olink 167 

Proteomics) Protein levels were estimated as Olink’s arbitrary units, Normalized Protein 168 

eXpression (NPX) values on a log2 scale. NPX values which did not pass the following quality 169 

control metrics were filtered out: 1) at least 500 counts per specific combination of sample and 170 

assay, 2) the deviation from the median value of the incubation- and amplification controls for 171 

each individual sample did not exceed +/-0.3 NPX for either of the internal controls, and 3) the 172 

deviation of the median of the negative controls must be ≤5 standard deviations from the set 173 

predefined manufacturer value. Samples across plates were normalized via the intensity 174 
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normalization method. The following Explore 384 assays did not meet Olink’s batch release 175 

quality control criteria and are therefore not included in this study: KNG1 (Inflammation II), 176 

TNFSF9 (Inflammation II), TOM1L2 (Neurology II), SMAD1 (Oncology), and ARHGAP25 177 

(Oncology). 178 

Statistical Analyses 179 

Protein Wide Association Study (PWAS) 180 

A Protein Wide Association Study (PWAS) was performed on all proteins passing quality control 181 

described above (n=2,920) using the glmer function in the lme4 package36 as previously 182 

described in phenome-wide association studies37,38. . CD/UC disease status was regressed on 183 

each individual protein in a mixed effects logistic regression with age and sex as fixed effects 184 

covariates and disease activity (Simple Crohn’s Disease Activity Index for CD and 6-point Mayo 185 

Score for UC1) was treated as a random effect. To adjust for multiple testing, a Bonferroni-186 

corrected proteome wide significance threshold was used (0.05/2, 920 = 0.0000171 alpha 187 

level).  188 

Principle Component Analysis (PCA) 189 

Principal component analysis (PCA) was initially performed incorporating the measured 190 

values of all proteins and just proteins identified via the PWAS analysis. Analysis of Similarities 191 

(ANOSIM) was performed using the ANOSIM function in the vegan package39.  192 

Machine Learning Methods 193 

 Using Scikit learn based implementations of random forests we tested the following 194 

feature sets: All proteomics features and patient features (Age, Sex, Disease Severity), 195 

proteomics features which passed the Bonferroni cutoff and patient features, and just 196 

proteomics features. Of the samples, 20% were reserved for a holdout validation dataset which 197 

was also used for SHAP value analysis40. The remaining 80% of the data was split into a 198 

train/test split (70/30) and cross validated 30 times. 199 
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The following packages and versions were used for analysis in R v4.3.2: ibdplexus (0.1.0), 200 

tidyverse (1.3.1), stringr (1.5.1), readxl (1.4.3), OlinkAnalyze (3.7.0), data.table (1.15.0), 201 

lmerTest (3.1), lme4 (1.1)36, readxl (1.4.3), dplyr (1.1.4), ggplot2 (3.4.3), reshape2 (1.4.4), 202 

ggrepel (0.9.5), forcats (1.0.0), ggsci (3.0.0), RColorBrewer (1.1.3), optimx (2023-10.21), minqa 203 

(1.2.6), dfoptim (2023.1.0), survey (4.2.1), scales (1.3.0), ggnewscale (0.4.10), ggpubr (0.6.0), 204 

gplots (3.1.31), psych (2.4.1), MuMIn (1.47.5), vegan (2-6-6.1), NatParksPalettes (0.2.0), and 205 

ggfortify (0.4.16).  206 

The following packages and versions were used for analysis in Python v3.10.9: pandas41(1.5.3), 207 

sklearn42,43 (1.3.2), numpy44 (1.23.5), and shap40(0.43.0).  208 

  209 

Formulas 210 

TP: True Positive 211 

TN: False Negative 212 

FP: False Positive 213 

FN: False Negative 214 

Accuracy = (TP+FN)/(TP+FP+TN+FN) 215 

Sensitivity=TP/(TP+FN) 216 

Specificity=TN/(TN+FP) 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 
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RESULTS 226 

Subject Characteristics 227 

Details of the subjects’ characteristics are shown in Table 1. A total of 1,106 individuals (CD n = 228 

636; UC n=470) from 17 medical centers were included. CD patients were on average, 42.26 229 

years old and 62% of the CD patients were female. UC patients were on average 43.98 years 230 

old and 50.95% of the total UC patients were female. 231 

Specific proteins differentiate the proteomic profiles of Crohn’s disease and Ulcerative 232 

colitis  233 

The studied plasma proteome dataset includes measures of 2,920 protein levels across 234 

1,106 patients from the Crohn’s and Colitis Foundation dataset1 (Table 1, Fig 1). We initially ran 235 

a principal component analysis (PCA) (Fig 2A) and an analysis of similarities (ANOSIM) which 236 

revealed that the global proteomes of CD and UC do not differ (p=0.21, R=0.004). We then 237 

conducted a Protein Wide Association Study (PWAS) analysis adapted from previous study  38,45 238 

to filter for proteins measured at significantly different levels between CD and UC. Age and sex 239 

were included as fixed effects with disease severity as random effect. The PWAS-based 240 

approach identified thirteen proteins that were significant after Bonferroni correction (Table 2, 241 

Fig 2B, Table S1). Five of these proteins, INSL5, IL12B, IL12AB, HRG, and LY96 were more 242 

abundant in CD relative to UC; in contrast, eight proteins, FGF19, EPCAM, NOS2, GPA33, 243 

GUC2A, GRAB, FGFR4, MMP10 were more abundant in UC relative to CD (Fig S1). 244 

Performing an ANOSIM test and PCA analysis (Fig 2C) on the proteins identified via PWAS 245 

after multiple test correction revealed that there was significant a difference between the CD 246 

and UC cohorts (p=0.001, R=0.1247).  247 

Grouping Specific proteins improve prediction of Crohn’s disease and Ulcerative Colitis 248 

 We aimed to determine whether the PWAS identified proteomic features could lead to 249 

improved differentiation of CD and UC via ML classification. To do this we trained random forest 250 

models on feature sets composed of different combinations of proteomic features and patient 251 
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features (age, sex, disease severity). We generated three features sets which contained the 252 

following: 1) the entire proteome and patient features (“Full Feature Set”), 2) subset of 253 

proteomic features which only included the thirteen significant proteins (e.g., INSL5) identified 254 

by the PWAS and patient features (referred to as “PWAS and Patient Features”), and 3) just the 255 

thirteen significant proteins identified by the PWAS without patient features (“PWAS Features”). 256 

Models trained on the “Full Feature Set” had significantly higher specificity, but significantly 257 

lower accuracy, sensitivity, and ROC-AUC scores compared to the other two feature sets (Fig 258 

3A-D, Table 3). Models trained on “PWAS and Patient Features” and just “PWAS Features” 259 

were significantly more accurate and sensitive than models trained on the “Full Feature Set,” 260 

they did not differ significantly in performance from each other (Fig 3A-D). Next, we interrogated 261 

the ML models using SHapley Additive exPlanations (SHAP) analysis, which can infer feature 262 

importance, to determine if patient features were important for model performance. Interestingly, 263 

SHAP feature importance analysis suggested patient features were not informative, where Age, 264 

Disease Severity, and Sex were the ranked as the three least important features in the “PWAS 265 

and Patient Features” model suggesting that the patient features contributed the least to model 266 

performance (Fig 2B, 4AB, S1). Notably, interrogating the ML models revealed that the three 267 

most important features including granzyme B, Insulin-like peptide 5 (INSL5), and Interleukin 268 

12B (IL12B) were conserved between models.  (Fig 4AB). This demonstrates that PWAS-based 269 

approaches act as a filter for identifying more informative features which in turn improve 270 

prediction performance. 271 

 272 

 273 

 274 

 275 

 276 

 277 
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DISCUSSION 278 

Accurately classifying subtypes of IBD poses a significant clinical challenge. 279 

Identification of noninvasive biomarkers that can increase the accuracy of diagnosing and 280 

subtyping IBD is a major unmet need. There has been a growing interest in using proteomics to 281 

identify new biomarkers for the differentiation of IBD; however, these studies have been limited 282 

by the number of proteins measured46,47. Here, we used a highly sensitive proximity extension 283 

assay and measured 2920 proteins in the plasma of IBD patients. Protein wide association 284 

analysis with age and sex as fixed effects identified 13 proteins that are significantly different 285 

between CD and UC. Further, using used multiple feature sets in random forest models, we 286 

discovered that PWAS identified proteins could distinguish between CD and UC with high 287 

accuracy and sensitivity.  Taken together, we have identified a novel set of proteins in blood that 288 

can potentially complement other existing biomarkers to accurately subtype IBD.  289 

Machine learning algorithms are increasingly being utilized to analyze medical data to 290 

diagnose diseases, predict their severity, and monitor their progression.  Recent work on 291 

diagnosing IBD using ML approaches has also been successful, achieving high levels of 292 

performance12,48–50. For instance, supervised learning models on RNA sequencing data enabled 293 

CD and UC differentiation12. Similarly, deep learning networks have been used on endoscopic 294 

images to accurately predict the severity of the disease in IBD48,49. Although proteomic datasets 295 

have been generated in IBD, the application of ML techniques to analyze such datasets has 296 

been limited47. Furthermore, previous IBD-focused proteomics datasets have measured smaller 297 

panels of proteins47,51–53. We used a combined PWAS-based feature selection and ML models 298 

on a large dataset of proteins to identify novel signatures that could accurately subtype IBD. 299 

Importantly, in contrast to previous studies that have primarily focused on inflammatory markers, 300 

we analyzed proteins that are involved in a diverse array of processes including, hormonal 301 
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regulation, inflammation, cancer, and brain gut axis. Our findings suggest that PWAS based ML 302 

approaches could improve subtyping of IBD patients. 303 

Several proteins in our cohort have been validated by other IBD studies focused on 304 

differentiating CD from UC. A study by Bourgonje et al. also employed a proximity extension 305 

assay (Olink) and measured 92 proteins identifying FGF19, IL12B, and MMP10 to be 306 

differentially abundant between CD and UC53. In another study by Di Narzo et al., the authors 307 

used a SOMAmer-based capture array to measure protein levels in plasma (n=244) and 308 

discovered that Granzyme B, FGF19, and MMP10 were downregulated in CD relative to UC, 309 

mirroring our results52. Importantly, our findings combined with others have identified FGF19 and 310 

MMP10 as consistent plasma-based biomarkers which can be used differentiate CD from 311 

UC52,53.  312 

Among the 13 differentially abundant proteins significant in the PWAS after multiple 313 

correction, Granzyme B, IL12B, and INSL5 were the most informative for model prediction (Fig 314 

4A-B). INSL5, to date, has not been measured in similar proteomics studies focused on IBD52,53. 315 

Notably, depletion of INSL5 transcripts in mucosal tissue has been associated with IBD54, and 316 

our study further implicates the INSL5 peptide as differentially abundant between CD and UC. 317 

INSL5 is a peptide hormone that is expressed in the colonic epithelium 54–56. Because INSL5 is 318 

a microbially regulated molecule, it is possible that UC, but not CD, specific microbes alter its 319 

production57. Indeed, both bacterial and fungal microbiota are known to be different between UC 320 

and CD58–60. Another possible reason for the decreased abundance of INSL5 in UC relative to 321 

CD is the loss of colonic epithelial cells due to ulceration, a prominent feature of UC61. Future 322 

studies are needed to elucidate how INSL5 is regulated and the mechanisms by which INSL5 323 

modulates the severity of the disease54,62. In addition to INSL5, Granzyme B was also a 324 

powerful predictive feature and was elevated in UC. Granzyme B is a serine protease released 325 

by lymphocytes which can trigger apoptosis63,64. Similar to our findings, Di Narzo et al. identified 326 
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elevated Granzyme B protein levels in CD compared to UC52. Further, levels of Granzyme B 327 

have been reported to predict treatment responses in IBD as its levels are significantly lower in 328 

responders compared to non-responder populations65. While these initial findings are promising, 329 

it is unclear how the levels of these targets fluctuate throughout disease specific treatments and 330 

subtype. Future studies utilizing longitudinal samples are needed to ascertain its association 331 

with IBD subtypes.  332 

 Our study has several strengths: (1) We utilized a relatively large sample size with 333 

patients from 17 different medical centers; (2) Because the SPARC cohort follows standard 334 

guidelines, it allows investigators to maintain consistency in both data and bio-sample collection; 335 

(3) Our data analysis controlled for multiple parameters including age and sex; (4) We assessed 336 

over 2,900 proteins using the Olink platform, enabling us to capture differences across a wide 337 

range. Limitations include: (1) absence of a healthy cohort, (2) a single time point of blood 338 

collection, (3) and need for validation in non-North American cohorts.  Future studies including a 339 

healthy control group and longitudinal data would enable exploration of the complex nature of 340 

IBD, focusing on the complex spatial-temporal dynamics of IBD location and flare up. This 341 

would add important context for leveraging proteins such as INSL5 whether alone or in 342 

combination with other markers to differentiate between CD and UC.  343 

Overall, the results of this study provide evidence that applying a PWAS-based approach 344 

to filter for potentially relevant proteins improves ML model predication for differentiation 345 

between CD and UC. Importantly, the informative biomarkers identified in our study have not 346 

been previously examined in the context of differentiating CD from UC. We speculate that this 347 

approach may identify new targets for biomarker research and improve mechanistic 348 

understanding of disease states.  349 

 350 

 351 
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Figures559 

560 
Figure 1. Sample processing and analysis pipeline. Blood plasma samples were collected 561 

and processed as described in the methods and materials. Differentially abundant proteins were 562 

identified in the PWAS analysis. Protein abundance was used as features for the machine 563 

learning models to classify CD from UC.  564 
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Figure 2. PWAS analysis enables separation of the proteomic profiles of Ulcerative colitis 568 

and Crohn’s disease. A) Principal Component Analysis (PCA) of the global proteomics profiles 569 

of Crohn’s disease and Ulcerative colitis.  B) Volcano plot where the x axis is the calculated beta 570 

and the y axis is the negative log10 of the unadjusted p-value; green and labeled points had a 571 

Bonferroni adjusted p-value of less than 0.0000171 (used in Fig 1B), orange points had an FDR 572 

adjusted p value of less than .05, and purple points represent proteins with a p-value > .05. 573 

Negative beta values are associated with Crohn’s disease and positive beta values are 574 

associated with Ulcerative colitis. C) PCA of the proteomics profile identified by the PWAS 575 

analysis. Ellipses represent 95% confidence bounds around group centroids.  576 
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Figure 3. Specific proteins improve machine learning based differentiation of CD and UC. 582 

A) Effect of feature set on model accuracy. B) Effect of feature set on model sensitivity. C) Effect 583 

of feature set on model specificity. D) Effect of feature set on model ROC-AUC. ***P<.001, 584 

ANOVA with Tukey’s post hoc test. 585 
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597 

 598 

 599 

Figure 4. Clinical Features do not improve model performance. A) SHAP beeswarm plot of 600 

the validation dataset indicating feature importance in random forest models trained on patient 601 

associated features (Age, Sex, Disease Severity) and the thirteen proteins which are 602 

significantly associated with Crohn’s disease and Ulcerative colitis. B) SHAP beeswarm plot of 603 

the validation dataset indicating feature importance in random forest models trained on just the 604 

thirteen proteins which are significantly associated with Crohn’s disease and ulcerative colitis. 605 

Features are sorted in order of predicted importance in a descending manner. 606 
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609 

 610 

Supplemental figure 1. The average NPX values for proteins which were significant after 611 

Bonferroni correction (Fig 1B).  612 
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Table 1. Cohort Breakdown 616 

  Crohn’s 

Disease 

Ulcerative colitis p value  

Number  636 470  

Age in years, 

mean (SD) 

 42.26 (14.25) 43.979 (14.6) .414 

Sex (%) Female 397 (62) 240 (50.95) .0002 

Disease 

Severity (%) 

Remission 228 (35.8) 205 (43.5) <.0001 

Mild 156 (24.5) 154 (32.7) 

Moderate 237 (37.2) 88 (18.6) 

Severe 15 (2.35) 23 (4.88) 
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Table 2. PWAS Results 632 

Protein Name Average 

Level in 

Crohn’s 

Disease 

Average 

Level in 

Ulcerative 

Colitis  

PWAS 

Standardized 

Beta 

PWAS  

p-value 

PWAS 

FDR 

Adjusted 

p-value 

PWAS 

Bonferroni 

Adjusted p-

value 

INSL5 

0.143 -0.93 -0.453 1.73E-

21 

5.05E-18 5.05E-18 

IL12B 

1.772 0.683 -0.455 7.15E-

21 

1.04E-17 2.09E-17 

FGF19 

-1.398 -0.648 0.564 9.66E-

20 

9.40E-17 2.82E-16 

IL12A-IL12B 

1.982 0.839 -0.387 6.39E-

19 

4.66E-16 1.87E-15 

EPCAM -0.735 -0.087 

0.494 7.49E-

17 

4.37E-14 2.19E-13 

NOS2 

0.550 1.131 0.390 1.76E-

12 

8.59E-10 5.15E-09 

GPA33 

-1.307 -0.515 0.286 4.72E-

12 

1.97E-09 1.38E-08 

HRG 0.492 0.322 -1.040 4.58E-11 1.67E-08 1.34E-07 

GUC2A 0.099 0.349 0.847 5.94E-11 1.93E-08 1.73E-07 

GRAB 

1.016 1.838 0.225 1.81E-

10 

5.30E-08 5.30E-07 

FGFR4 

-0.333 -0.054 0.578 2.50E-

10 

6.65E-08 7.31E-07 
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MMP10 

0.612 0.991 0.429 2.03E-

09 

4.94E-07 5.93E-06 

LY96 

0.383 0.242 -0.863 2.89E-

09 

6.48E-07 8.42E-06 
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Table 3. Average Machine Learning Model Results 653 
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Metric Full Feature 

Set 

PWAS and Patient 

Features 

Patient Features  

Accuracy  66.29% 73.48% 72.6% 

Sensitivity 0.36 0.64 0.63 

Specificity 0.88 0.80 0.79 

ROC-AUC 0.62 0.73 0.73 
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