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Abstract 23 

Cardiovascular diseases (CVD) are the leading cause of global mortality, but current 24 

treatments are only effective in a subset of individuals. To identify new potential 25 

treatment targets, we present here the first PWAS for 26 CVDs using plasma 26 

proteomics data of the largest cohort to date (53,022 individuals from the UK Biobank 27 

Pharma Proteomics Project (UKB-PPP) project). 28 

 29 

The GWAS summary data for 26 CVDs spanning 3 categories (16 cardiac diseases, 5 30 

venous diseases, 5 cerebrovascular diseases, up to 1,308,460 individuals). We also 31 

conducted replication analyses leveraging two other independent human plasma 32 

proteomics datasets, encompassing 7,213 participants from the Atherosclerosis Risk 33 

in Communities (ARIC) study and 3,301 individuals from the INTERVAL study.  34 

 35 

We identified 94 genes that are consistent with being causal in CVD, acting via their 36 

cis-regulated plasma protein abundance. 34 of 45 genes were replicated in at least one 37 

of the replication datasets. 41 of the 94 genes are novel genes not implicated in 38 

original GWAS. 91.48% (86/94) proteins are category-specific, only two proteins 39 

(ABO, PROCR) were associated with diseases in all three CVD categories.  40 

Longitudinal analysis revealed that 37 proteins exhibit stable expression in plasma. In 41 

addition, PBMC scRNA-seq data analysis showed that 23 of the 94 genes were stably 42 

expressed in CD14+ monocytes, implicating their potential utility as biomarkers for 43 

CVD disease status. Drug repurposing analyses showed that 39 drugs targeting 23 44 
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genes for treating diseases from other systems might be considered in further research. 45 

 46 

In conclusion, our findings provide new insights into the pathogenic mechanisms of 47 

CVD and offering promising targets for further mechanistic and therapeutic studies.  48 

 49 

Keywords: CVD; Human blood plasma proteomes; Causal proteins; PWAS 50 

 51 
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Introduction  53 

Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels. 54 

As the leading global cause of mortality 1, 2, CVD took an estimated 17.9 million lives 55 

in 2019, accounting for 32% of all deaths worldwide3. In clinical practice, there are 56 

some commonly used treatments for CVD, such as the use of statins to reduce 57 

cardiovascular morbidity and mortality. However, current treatments are not suitable 58 

for all patients and have certain risks of side effects4. Therefore, there is an urgent and 59 

critical need for new therapeutic targets for CVD5.  60 

 61 

Proteins, as the final products of gene expression, are the main functional components 62 

of biological processes6. In addition, most therapeutic agents target proteins7. 63 

Therefore, understanding their relationship with diseases is crucial for effective 64 

treatments8-11. However, direct observational studies linking protein abundance to 65 

phenotypes can be confounded or represent reverse causation12. Proteome-wide 66 

association study (PWAS) is a powerful strategy to solve this problem. It uses single-67 

nucleotide polymorphisms (SNPs) to genetically impute proteins and relate them to 68 

genome wide association study (GWAS) summary statistics of a trait to provide 69 

evidence of causality13, 14. The genetic models are restricted to the cis-region of the 70 

protein, reducing the risk of confounding by horizontal pleiotropy (independent of the 71 

protein). Further summary data-based Mendelian randomization (SMR)15 or 72 

colocalization analyses16 can be used to identify genes contribute to disease 73 

pathogenesis through modulating protein abundance. This integrative analytical 74 
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approach has been employed to identify novel potential therapeutic targets for 75 

neurological disorders13, 14, 17-19 using brain proteomics data. However, PWAS for 76 

CVD is still limited. 77 

 78 

Using plasma proteomics data of the largest cohort to date (53,022 individuals from 79 

the UK Biobank Pharma Proteomics Project (UKB-PPP) project20), we present here 80 

the first PWAS for multiple CVDs. The study design is shown in Figure 1. We applied 81 

the above analytic approaches to the discovery dataset consisting of human plasma 82 

proteomic and genetic data from UKB-PPP20 and the GWAS of 26 CVDs spanning 3 83 

categories (16 cardiac diseases, N = 234,829~1,030,836; 5 venous diseases, N = 84 

388,830~484,598; 5 cerebrovascular diseases, N = 484,598~1,308,460)21-26.  85 

Additionally, we conducted replication analyses leveraging two independent human 86 

plasma proteomics datasets27, 28, encompassing 7,213 participants from the 87 

Atherosclerosis Risk in Communities (ARIC) study and 3,301 individuals from the 88 

INTERVAL study, to ensure robustness and reproducibility. For functional 89 

interpretation of the identified proteins, enrichment analyses were performed to detect 90 

the pathways associated with CVD. Longitudinal stability analysis at plasma and cell-91 

type level was used to assess the expression stability of the proteins. We also 92 

pharmacologically annotate the proteins of interest with approved drugs to assess their 93 

feasibility as treatment targets.  94 

 95 

Results 96 
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Discovery PWAS of multiple CVDs  97 

We generated the human blood plasma proteome model based on 53,022 UKB-PPP20 98 

participants. The initial proteomes data include total 2,923 proteins. After quality 99 

control, 1,715 proteins with significant SNP-based heritability (P < 0.05, h2 > 0), were 100 

used for PWAS. The correlation R2 between the model’s predictive power and 101 

heritability for each gene was 0.88 (Supplementary Figure S1), supporting the 102 

accuracy of our protein estimation model.  103 

 104 

The plasma proteome model results were integrated with the 26 CVD GWAS data 105 

using the FUSION pipeline29. Detail information of the 26 GWAS datasets is shown 106 

in Supplementary Table S1. We performed genetic correlation analysis and the results 107 

showed that diseases belong to the same category are usually with higher correlation 108 

(Supplementary Figure S2).  109 

 110 

As shown in Supplementary Table S2, we identified 341 significant protein-CVD 111 

pairs of associations after multiple testing corrections (P < 2.92×10-5, 0.05/1,715 112 

proteins) (Fig 2A). Among these associations, 87 genes are located within 1 Mb of 113 

each other. With the goal of identifying multiple independent associations, we 114 

performed conditional analyses using a regression with summary statistics approach 27. 115 

27 pairs of associations no longer significant associations were removed 116 

(Supplementary Table S3). Finally, we obtained 314 independent and significant 117 

PWAS association signals, including 155 unique proteins associated with CVD. The 118 
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number of associated genes for each phenotype is shown in Figure 2B. Taking heart 119 

failure as an example, PWAS identified 48 proteins associated with it (Fig 2B). 18 120 

genes from 7 loci were subjected to conditional analysis. Six genes (SORT1, SHISA5, 121 

PDE5A, PGF, FURIN, DDT) were no longer significant after conditional analysis and 122 

were removed from subsequent analyses (Fig 2C). Finally, we obtained 42 genes 123 

associated with heart failure. 124 

 125 

Replication PWAS using the proteomics data from ARIC and INTERVAL 126 

For the 155 proteins identified from the discovery dataset, 75 were detected in the at 127 

least one of the replication proteomic datasets. The number of detected proteins in the 128 

ARIC and INTERVAL project was 64 and 50, respectively. For these proteins, we 129 

incorporated their previously built human plasma protein models from the FUSION 130 

website29 and the CVD GWAS datasets to perform replication PWAS.  131 

 132 

In the ARIC dataset, the results showed that 46 proteins were associated with CVD (P 133 

< 7.81 × 10-4, 0.05/64). As for the INTERVAL dataset, the number of successfully 134 

replicated proteins was 37 (P < 1.00 × 10-3, 0.05/50). As shown in supplementary 135 

Table S4, the significant association of 55 proteins (73.33%, 55/75) were replicated in 136 

at least one dataset with the same effect direction as the discovery PWAS, and 23 137 

proteins were replicated in both datasets. 138 

 139 

Causal-analysis of the proteins identified by PWAS 140 
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We employed two independent but supplementary approaches (SMR and 141 

colocalization) to further evaluate the causality of the 155 proteins15, 16 from the UKB-142 

PPP dataset. The SMR and its accompanying heterogeneity in dependent instruments 143 

(HEIDI) test was used to test whether PWAS-significant genes were associated with 144 

CVD via their cis-regulated protein abundance. The SMR results showed that the cis-145 

regulated protein abundance mediates the association between genetic variants and 146 

CVD for 125 unique proteins. However, HEIDI results argued against a causal role 147 

for 55 genes due to linkage disequilibrium (Supplementary Table S5). Therefore, 70 148 

unique proteins have evidence consistent with a causal role in CVD by SMR/HEIDI.  149 

 150 

The colocalization test was used to examine the posterior probability for a shared 151 

causal variant between a pQTL and CVD GWAS for the PWAS-significant genes. The 152 

colocalization analysis identified 74 proteins with shared causal variant between 153 

pQTL and CVD GWAS (posterior probability PPH4 ≥ 0.7). We kept proteins with 154 

evidence from either SMR or colocalization analysis, and finally a total of 94 proteins 155 

were remained for subsequent analysis (Fig 3A, Supplementary Table S5).  156 

 157 

Combining evidence for replication and results of causality tests, 45 of 94 causal 158 

proteins were detected in the at least one of replication proteomic datasets. 75.56% 159 

(34/45) proteins were found to be with evidence of both replication and causality 160 

(Table 1). There were 28 proteins replicated in the ARIC dataset and 21 proteins 161 

replicated in the INTERVAL dataset. In particular, 15 proteins were replicated in both 162 
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datasets. For example, ABO, F10, IL6R and PROC. 163 

 164 

Common proteins associated with diseases in three CVD categories  165 

91.49% (86/94) proteins were identified in only one disease category (Fig 3B). Only 2 166 

proteins (ABO, PROCR) were associated with diseases in all three CVD categories. 167 

As shown in Figure 3A, ABO showed significant positive associations with multiple 168 

diseases from the three categories. PROCR was negatively associated with 2 cardiac 169 

diseases and 1 cerebrovascular disease, and positively associated with 2 venous 170 

diseases. The inconsistency in association direction might because PROCR is linked 171 

to anti-inflammatory and anticoagulant functions30. 172 

 173 

Novelty of the CVD causal genes 174 

To assess the novelty of the 94 potentially causal genes, we checked the lowest p-175 

values for the SNPs within 2 Mb window of these genes using the summary statistics 176 

from the CVD GWAS. We found that 41 genes were not located within 2 Mb of a 177 

significant GWAS signal (P < 5 × 10-8), suggesting that these 41 genes are novel 178 

genes not implicated in the original GWAS (Fig 3C). 25 of the novel genes were have 179 

not been detected in other CVD GWAS either. For example, PROC was found to be 180 

associated with venous thromboembolism (Fig 3D top) and COMT was found to be 181 

associated with three cardiac diseases (hypertension, statin medication and angina 182 

pectoris; Supplementary Figure S3). All 26 CVD GWAS data didn’t detect their 183 

association with CVD diseases. The rest 16 novel genes were not implicated in the 184 
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original GWAS but have been detected in the GWAS of other CVD. For example, our 185 

PWAS results showed that FN1 was associated with coronary heart disease and 186 

coronary atherosclerosis (Fig3D bottom). The GWAS of these two diseases didn’t 187 

detect the association signal of this gene, but it was found to be associated with heart 188 

failure, myocardial infarction, coronary revascularization, and coronary artery bypass 189 

grafting in their GWAS data. Our results further expand the important role of FN1 in 190 

multiple cardiac diseases.  191 

 192 

Gene ontology enrichment analysis 193 

To further elucidate the molecular mechanisms underlying the 94 identified proteins, 194 

we carried out a non-redundant gene ontology (GO) biological processes enrichment 195 

analysis using WebGestalt 202431, 32. The results (Fig 4A) showed that genes 196 

associated with cardiac disease enriched in 12 pathways. 58.33% (7/12) of these 197 

pathways belong to three categories (immunity/inflammation, lipid-related process, 198 

and vessel/blood-related process). Genes associated with venous diseases were found 199 

to be significantly enriched in 5 biological pathways, and three of them belong to the 200 

vessel/blood-related process, particularly the coagulation process. No significant 201 

pathway was detected for the genes associated with cerebrovascular disease due to the 202 

limited number of genes. 203 

 204 

Protein-protein interactions (PPI) network analysis 205 

To investigate the connectivity for the 94 proteins, we performed network-based 206 
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analysis using STRING33. The minimum required interaction score was 0.4. We 207 

constructed a PPI network with 30 nodes and 37 edges, primarily comprising 3 208 

protein communities. (Fig 4B). The proteins associated with cardiac disease are 209 

mainly within the network with FN1and APOE as the core proteins. Consistent with 210 

pathway enrichment analysis results, these proteins are mostly in the community of 211 

immunity/inflammation and lipid-related process. The network of proteins associated 212 

with venous disease is mainly driven by 6 proteins (F2, F10, F11, PROC, PROCR and 213 

PROS1) involved in blood/vessel-related process, especially in the coagulation 214 

processes. The network for venous disease proteins is distinct from that of cardiac 215 

disease proteins, and the two networks are connected by F2 and PROS1. Interactions 216 

among the proteins associated with cerebrovascular diseases are relatively sparse. 217 

Complete information about communities is presented in Supplementary Table S7.  218 

 219 

Mouse phenotypic annotation of potential causal genes. 220 

We further evaluated whether 94 proteins were associated with CVD-related 221 

phenotype in mouse using the Mouse Genome Informatics (MGI) database34. We 222 

performed phenotype enrichment analysis using the Fisher's exact test. Consistent 223 

with the pathway enrichment and network analysis results, mutations in genes 224 

associated with cardiac diseases are enriched in phenotypes related to 225 

immunity/inflammation, lipid-related process, and vessel/blood-related process (Fig 226 

4C). Mutations in genes associated with venous disease are enriched in phenotypes 227 

related to vessel/blood-related process (Fig 4C).  These results further support the 228 
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involvement of the identified proteins in CVD pathogenesis. 229 

 230 

Evaluate longitudinal stability at protein and single-cell level 231 

To evaluate the expression stability of the 94 proteins, we performed longitudinal 232 

analysis using data using plasma proteomics data and peripheral blood mononuclear 233 

cells (PBMC) single cell RNA-seq (scRNA-seq) data from GEO dataset GSE190992.  234 

 235 

The plasma proteomics data were collected from 6 healthy, non-smoking Caucasian 236 

donors over a 10-week period. 44 of the 94 proteins were detected in this dataset. 237 

Among them, 84.09% (37/44) proteins exhibit stable expression in plasma (median 238 

coefficient of variation < 10%, Fig4 D left). Fluctuations in the plasma levels of these 239 

proteins might serve as potential markers of disease status.  240 

 241 

The PBMC scRNA-seq data were collected weekly from four donors over the course 242 

of six weeks. We found 24 genes exhibited stable expression in at least one cell type 243 

(median coefficient of variation < 10% in at least one cell type across all donors. Fig4 244 

D right). Notably, 23 of the 24 genes stably expressed in CD14+ monocytes. As per 245 

previous studies, monocytes play a crucial role in both local ischemia and 246 

inflammatory responses, which are closely linked to the development of 247 

cardiovascular diseases35-37.  248 

 249 

Cell-type specific expression of the CVD causal genes 250 
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To investigate whether these genes show distinct enrich across different cell types, we 251 

utilized PBMC RNA-seq data obtained from the plasma of another 11 healthy donors 252 

to examine the specific expression patterns of these genes. Among 94 CVD causal 253 

genes, 39 were enriched in one or more cell types (FDR adjust P < 0.05 and logFC > 254 

1.5, Supplementary Table 9), include CD4 T cells, CD14+ monocytes, Platelet, 255 

Natural killer cell and other monocyte. A total of 21 genes were highly expressed in 256 

CD14+ monocytes, and half of these genes (11 out of 21) were also found to be stably 257 

expressed in CD14+ monocytes through stability analysis.  258 

 259 

Drug repurposing analyses identified potential therapeutic targets for CVD 260 

To investigate the potential drug target genes, we construct a gene-drug-disease 261 

network (Fig4 D). The results showed that 25 of the 94 proteins are the targets of 53 262 

drugs with completed or currently undergoing clinical trials (Supplementary Table 10). 263 

14 drugs have already been used for treating circulatory system disorders. For 264 

example, Drotrecogin alfa targeting F2, PROCR and PROS1 are currently one of the 265 

efficacious treatments for managing cerebrovascular ischemic events38. The rest 39 266 

drugs for treating diseases from other systems might be considered in further drug 267 

repurposing research. For example, Menadione targeting PROC are currently used for 268 

treating vitamin K deficiency and prostate cancer.  269 

 270 

Discussion 271 
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In this study, we integrated data from 26 CVD GWAS along with three large-scale 272 

human plasma protein datasets to conduct a comprehensive PWAS analysis. 273 

Collectively, we identified 186 significant independent protein-disease association 274 

pairs, involving 94 unique proteins associated with CVD. Among these proteins, 41 275 

proteins are novel proteins not implicated in original GWAS. We also elucidated 276 

potential biological mechanisms underlying CVD and provided potential new targets 277 

for CVD drug development. 278 

 279 

The PWAS analysis identified 96 genes that are consistent with being causal in CVD, 280 

including 41 novel genes not implicated in original GWAS. For example, PROC was 281 

newly found to be associated with venous thromboembolism. PROC is a vitamin K-282 

dependent enzyme that plays a crucial role in regulating human thrombosis and 283 

hemostasis39. Consist with our results, previous studies have demonstrated that 284 

reduced PROC levels in plasma can be used as a marker of increased risk of venous 285 

thrombosis40, 41. In the PPI network, we also demonstrated that PROC, together with 286 

coagulation factors such as F2 and F10, forms a venous-related network. Longitudinal 287 

stability analysis showed that this protein is stably expressed in blood plasma. 288 

Currently, two drugs (Menadione and Cupric Chloride) targeting PROC have passed 289 

clinical trials for the treatment of conditions such as fungal infections, prostate cancer, 290 

and vitamin K deficiency42. Further studies are needed to explore the potential of 291 

these drugs for treating venous thromboembolism.  292 

 293 
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91.49% (86/94) of the identified proteins are category-specific, suggesting that the 294 

underlying pathogenesis mechanisms of the three disease categories are different. 295 

Only two proteins (ABO and PROCR) were associated with diseases in all three CVD 296 

categories. ABO was found to be positively associated with multiple cardiovascular 297 

diseases. Consistently, epidemiological studies have reported that ABO is associated 298 

with a wide range of diseases, including cardiovascular ailments, malignancies, and 299 

infectious conditions43,44. PROCR is positively associated with venous disorders but 300 

negatively associated with stroke and coronary artery disease. PROCR is a receptor 301 

for activated protein C, which is a serine protease activated by and involved in the 302 

blood coagulation pathway. Consistent with our results, GWAS studies have shown 303 

that the minor G allele of rs867186 at this gene is correlated with a higher risk of 304 

venous thromboembolism45, 46 but a lower risk of CAD47, 48. A previous study30 has 305 

shown that PROCR linked to CAD through anti-inflammatory mechanisms and to 306 

VTE through pro-thrombotic mechanisms.  307 

 308 

The longitudinal stability analysis showed that 37 of the 44 detected proteins (84.09%) 309 

exhibit stable expression in plasma, suggesting that they might serve as potential 310 

markers of disease status. In addition, PBMC scRNA data analysis identified 24 genes 311 

exhibited stable expression in at least one cell type and 23 of the 24 genes stably 312 

expressed in CD14+ monocytes, highlighting the important role of CD14+ monocytes 313 

in CVD development. Consistently, previous studies have associated increased 314 

frequency of the CD14+ monocytes clinical CVD events and plaque vulnerability49, 50. 315 
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Monocyte density of CD14 was found to be higher in patients with moderate�severe 316 

heart failure in comparison with normal or mild LV impairment 51, 52. These results 317 

suggested that CD14+ monocytes might be used as markers for CVD. 318 

 319 

Our study has several limitations. First, since the current available proteomics and 320 

GWAS are mainly derived from European populations, our results are mainly 321 

applicable to the European population. Second, we focused on cis-regulatory elements 322 

when constructing models to assess protein influences. This is a common choice for 323 

current researchers, because the current sample size of proteomics may not be 324 

sufficient to detect the trans effect. With larger scale data available in future, models 325 

considering both cis and trans effects can be constructed.  326 

 327 

In summary, using the largest available proteomics data from UKB-PPP projects (a 328 

total of 1,715 inheritable proteins from 53,202 individuals), we performed a PWAS 329 

study for 26 CVDs. We identified 94 genes that contribute to CVD pathogenesis 330 

through modulating their plasma protein abundance. These genes may serve as 331 

potential targets for future mechanistic and therapeutic studies aimed at finding 332 

effective treatments for CVD. 333 

 334 

Methods 335 

Human plasma proteomic and genetic data in UKB.  336 

We generated the human blood plasma proteome models from 53,022 participants of 337 
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European ancestry of the UKB-PPP. The sample was selected in two batches from 338 

Consortium members and UK Biobank cohort and the proteomic profiling was 339 

performed using standard Olink proteomics pipeline using Proximity Extension Assay 340 

20. antibodies matched to unique complementary oligonucleotides, which were bound 341 

to their respective target proteins, underwent quantification through next-generation 342 

sequencing. Following rigorous quality control measures, the normalized protein 343 

expression (NPX) values were computed using the Inter-Plate Control method. This 344 

NPX score effectively served as a quantitative measure of protein abundance in our 345 

samples.  346 

Genotype data matching the protein dataset underwent genotyping, imputation, and 347 

quality control steps as detailed in previous work 53. This included sex discrepancy, 348 

sex chromosome aneuploidy, and heterozygosity checks, with imputed variants 349 

filtered for INFO scores >0.7. All chromosomal positions were updated to the hg38 350 

assembly using LiftOver 54. Genotyping quality control was executed using PLINK2.0 351 

software55. Participants exhibiting over 5% missing genotypic data were removed 352 

from consideration. Moreover, variants displaying deviations from the Hardy-353 

Weinberg equilibrium (with p-values less than 1x10-8), a genotype missing rate 354 

exceeding 5%, a minor allele frequency below 1%, or those not classified as SNPs, 355 

were also excluded from the analysis. 356 

Following the preprocessing of both genotype and protein datasets, we adopted the 357 

FUSION software to train the proteome model and we only consider the subset 358 

comprising 1,190,321 SNPs from the HapMap3 project 56. SNPs situated up to 500 kb 359 
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away from either end of genes were defined as cis-SNPs. The model further 360 

incorporated adjustments for protein expression based on gender and age as covariates 361 

to refine the association analysis and account for potential confounding variables. 362 

 363 

CVD GWAS summary association statistics 364 

Our GWAS data mainly comes from the GWAS catalog 22 25 21, 23, 24, 26 and FinnGen 57 365 

database. In accordance with the ICD-10 standard of circulatory disorders, we 366 

selected GWAS studies involving a minimum of 5,000 cases. When multiple studies 367 

of the same condition were identified, we opted for those with the largest sample sizes. 368 

This stringent selection procedure resulted in a final cohort of 26 unique GWAS for 369 

our investigation. Based on the distinct pathophysiological mechanisms, we 370 

categorized the diseases into cardiac diseases, venous disease, and cerebrovascular 371 

disease. 372 

 373 

Statistical approach 374 

Proteome-wide association studies (PWAS). We used the standard processes in the 375 

FUSION software29 to construct protein models and incorporate GWAS data for our 376 

PWAS analysis. After applying the previously outlined quality control measures to 377 

screen the sample and genotype data, we utilized GCTA software58 to estimate the 378 

SNP-based heritability for individual proteins. To expedite calculations, a random 379 

subset of approximately 10,000 individuals was selected from the full cohort for each 380 

protein's heritability estimation. From the analysis of 2,923 proteins, 1,715 displayed 381 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.12.24317148doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.12.24317148


statistically significant heritability (h² > 0, p < 0.05). We then employed the FUSION 382 

software to estimate the impact of SNPs on protein abundance using multiple 383 

predictive models (top1, lasso, enet) 29 and select the most predictive model as the 384 

final predictor. Finally, we obtained a total of 1,715 distinct protein models encoded 385 

by different genes and we applied the Bonferroni correction for multiple testing. 386 

Consequently, proteins with a P-value threshold of 2.92×10-5 (0.05/1,715) were 387 

deemed statistically significant in our discovery PWAS analysis. 388 

 389 

We then performed the replication PWAS analysis in two other publicly available data 390 

sets. The modeling methodologies for these datasets have been documented in prior 391 

research, the Atherosclerosis Risk in Communities (ARIC) study dataset included 392 

4,483 protein measurements from 7,213 European participants 27, while the 393 

INTERVAL study retained information on 3,170 proteins for 3,301 individuals 28. 394 

Subsequent to the heritability filtering phase, an ensemble of 2,379 proteins (1,348 in 395 

ARIC and 1,031 in INTERVAL) was selected for incorporation into our replication 396 

verification. 397 

 398 

Causal analysis. We adopted two independent frameworks to rigorously ascertain the 399 

causal inference of the proteins implicated in our PWAS findings. For the Bayesian 400 

colocalization analysis 16, we employed the COLOC module embedded within the 401 

FUSION software suite. The COLOC tool operates by estimating the posterior 402 

probability indicating that the same causal variant underlies both GWAS and pQTL. 403 
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Within the colocalization analysis framework, a comprehensive set of five hypotheses 404 

(H0 through H4) are scrutinized. Notably, hypothesis H4 posits the existence of a SNP 405 

that acts as a shared causal driver for both pQTL and GWAS. In our study, we defined 406 

causality for proteins identified through the COLOC analysis as those exhibiting a 407 

posterior probability for Hypothesis H4 exceeding 0.7. We subsequently employed the 408 

SMR 15 approach to further validate the causal relationships inferred from the PWAS 409 

and GWAS. For this SMR analysis, we leveraged recently published pQTL data 20, 410 

which were derived from UKB-PPP study, complemented by independently obtained 411 

GWAS data 21-24, 26, 57 on cardiovascular disease, which were also considered in our 412 

PWAS. Our determination of significant causal relationships relied on an adjusted P 413 

<0.05 for the SMR analysis and the unadjusted P>0.05 from the HEIDI test. 414 

 415 

PPI and GO enrichment 416 

For the investigation of causal genes implicated in three diseases, we employed the 417 

STRING 33 database to perform an extensive network analysis. The Markov cluster 418 

(MCL) algorithm was used with the following parameters: inflation parameter—1.5. 419 

Subsequently, the derived network was refined and visually optimized utilizing 420 

Cytoscape 59 software. In this visualization, node size corresponds to the degree of 421 

connectivity for each gene, indicative of its interaction frequency within the network, 422 

while distinct colors denote different gene categories, facilitating categorical 423 

distinction and interpretation. Additionally, we conducted functional enrichment 424 

analysis for causal genes pertinent in three categories diseases using the WebGestalt 32 425 
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online platform, focusing on the GO BP pathways. We select the pathways with P < 426 

0.05 (with FDR adjusted) and number of overlap genes > 3 as the significant result.  427 

 428 

Longitudinal Data Stability Analysis 429 

We conducted a longitudinal analysis utilizing the data set GSE190992 from the Gene 430 

Expression Omnibus (GEO) database 
60. Specific details regarding the data collection 431 

methodology and information have been reported in detail in a previous publication. 432 

The data encompass proteomics measurements over a 10-week period for 6 healthy 433 

donors, as well as single-cell data collected over a six-week period for 4 of these 434 

donors. For each donor, we calculated the coefficient of variation (CV) for each gene 435 

at both the proteome and single-cell levels as a measure of stability (CV = standard 436 

deviation / mean × 100%). We selected thresholds of 10% as criteria for stable gene 437 

expression in proteome data and single-cell data, respectively. These genes that 438 

exhibit stable expression in plasma, along with the associated cell types, can be 439 

considered as more reliable biomarkers for early screening and prediction of CVD.  440 

 441 

Cell-type specific expression of the CVD causal genes 442 

We utilized scRNA-seq data from 11 healthy donors sourced from the GEO database 443 

(GSE244515). During the preprocessing phase, we filtered out cells that expressed 444 

less than 200 genes or had a mitochondrial gene content exceeding 15%. For cell type 445 

annotation, we normalized the count matrices using the LogNormalize method with a 446 

scaling factor of 10,000, which also helped in identifying variable features. To align 447 
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datasets from different samples and mitigate batch effects, we applied the Harmony 448 

integration method. These procedures were carried out using Seurat package version 449 

4.4.0 within the R environment. After quality control and normalization, the data 450 

comprised a total of 27,484 genes across 371,086 cells. For the 94 CVD causal genes, 451 

we used the Wilcoxon rank sum test to compare the expression levels between the 452 

cells of interest and other cells. We applied FDR correction to the P values derived 453 

from the multiple tests, with the total number of tests set to 27,484 genes. Finally, we 454 

retained the significant results of FDR P value < 0.05 and logFC > 1.5, and thought 455 

that the expression was specific expression in cells. 456 

 457 

Mouse genome informatics and Drug analysis  458 

MGI database 34 serves as a global repository for murine research, offering a 459 

comprehensive integration of genetic, genomic, and biological information. This 460 

platform fosters investigations into human health and disease by facilitating insights 461 

garnered from mouse models and we demonstrated many of the gene deletion mouse 462 

models exhibit phenotypes associated with circulatory system disease. We enriched 463 

the mouse phenotype using the Fisher's exact test method, and retained phenotypes 464 

with more than three overlap genes, P < 0.05 (with FDR adjusted) and OR > 1. 465 

Furthermore, we constructed a gene-drug-disease interaction network by integrating 466 

gene-drug associations from the DrugBank 61 database and drug-disease relationships 467 

from the Therapeutic Target Database (TTD) 62. Our network focused exclusively on 468 

drugs with approved clinical efficacy and excluding those with discontinued 469 
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development at any stage.  470 

 471 

Code availability 472 

All software and datasets in our study are publicly available online.  473 
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Figure Legends 691 

Figure 1. Workflow of the current study. We collected proteomics data from three 692 

different sources: UKB, ARIC and INTERVAL. GWAS summary data for 26 CVDs 693 

spanning 3 categories (16 cardiac diseases, 5 venous diseases, 5 cerebrovascular 694 

diseases, up to 1,308,460 individuals) were included. We performed PWAS with 695 

proteomics data from the three projects followed by Mendelian randomization and 696 

colocalization analysis. Functional annotation of the genes identified by PWAS was 697 

finally performed. 698 

 699 

Figure 2. Result of the PWAS 700 

A. Manhattan plot for the PWAS of CVD. Each dot represents the correlation between 701 

a disease and a gene, with the x-axis indicating genomic location and the y-axis 702 

showing -log10(P). The gray horizontal line represents the Bonferroni-corrected 703 

significant threshold, P < 2.92×10-5. The significant results of the three categories 704 

diseases are shown in red, green, blue, respectively. The labeled genes are the most 705 

significant results on each chromosome 706 

B. The number of significant genes in PWAS for 26 CVD diseases. Different colors 707 

represent different disease categories. 27 jointly significant genes dropped by 708 

conditional analysis (gray).  709 

C. Regional association of PWAS hits in conditional analysis for heart failure. 710 

Conditionally significant proteins are CELSR2, GSTM1, SPINK8, DAG1, HYAL1, 711 

FABP2, ACYP1, FES, GSTT2B and SUSD2. Top panel in each plot highlights the 712 
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marginally associated PWAS genes (blue) and the jointly significant genes (green). 713 

Bottom panel shows a regional Manhattan plot of the data before (grey) and after 714 

(blue) conditioning on the predicted expression of the green genes. Chr: chromosome. 715 

 716 

Figure 3. Results for the causal genes. 717 

A. The heatmap presents whole PWAS results for 94 genes passing causality tests and 718 

color depth reflects the association direction and magnitude. Genes identified in 719 

replication PWAS are represented by circles in the heatmap. Causal genes are labeled 720 

“*” and the novel gene with no significant variant (P < 5 × 10-8) within ±2M window 721 

of the gene range in GWAS results are labeled in red.  722 

B. The Venn diagram illustrates the overlap of causal genes across three disease 723 

categories.  724 

C. The number of novel genes in different diseases. 725 

D. The top Manhattan plot represents the pQTL and the GWAS results within the 726 

PROC genomic region for venous thromboembolism. The bottom Manhattan plot 727 

represents the pQTL and the GWAS results within the FN1 genomic region for 728 

coronary heart disease and coronary atherosclerosis. 729 

 730 

Figure 4. Function annotation of the identified genes 731 

A. The significant enriched Gene Ontology (GO) biological process (BP) terms of the 732 

causal genes in different categories. The color of the bar represents the biological 733 

function category to which the pathway belongs. Immunity/inflammation (light coral), 734 
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lipid-related process (faint yellow), vessel/blood-related process (purple) and other 735 

(gray). 736 

B. The network constructed with identified causal genes. Lines represent a physical 737 

interaction, and line thickness is proportional to the interaction score. Genes 738 

associated with cardiac disease, venous disease and cerebrovascular disease are 739 

shown in red, green, and blue, respectively. Genes with more connections are shown 740 

with larger size. Community 1 include 16 proteins associated with 741 

immunity/inflammation. Community 2 include 6 proteins associated with lipid-related 742 

process. Community 3 include 6 proteins associated with vessel/blood-related process, 743 

especially the formation of fibrin clot. 744 

C. The significant enrichment results of mouse phenotypes of the causal genes in 745 

different categories. The color of the bar represents the biological function category to 746 

which the pathway belongs. Immunity/inflammation (light coral), lipid-related 747 

process (faint yellow), vessel/blood-related process, (purple) and other (gray). 748 

D. Results of the longitudinal stability analysis at the protein level (left) and single-749 

cell level (right). At the protein level, genes are classified as stable (blue) or variable 750 

(red) based on a coefficient of variation (CV) threshold of 10%. Among the 94 causal 751 

genes, 37 genes were identified as stable. The color blocks on the left indicate the 752 

relevant grouping of the genes in the PWAS results. At the single-cell level, the 753 

threshold is set at 10%, with gray representing samples with low average expression 754 

(average expression < 0.01 after normalization). 24 genes exhibit stable expression 755 

across 19 cell types. Different donors are indicated by different colors. 756 
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E. The constructed gene-drug-disease network of causal genes. The colors of the lines 757 

in the network signify the category of genes. ICD: International Classification of 758 

Diseases. 759 
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Table1. Summary of the 34 replicable CVD causal genes. 762 

Gene replicated causal PHE 

ABO 

Both Both Pulmonary embolism 
Both COLOC Deep Venous Thrombosis, Venous Thromboembolism 
INTERVAL Both Large artery stroke 
INTERVAL COLOC Myocardial infarction, Any stroke, Cardioembolic stroke 

ANGPTL3 ARIC COLOC Statin medication 
ASPN Both Both Venous Thromboembolism 
CCDC134 Both Both Atrial fibrillation 
CD4 INTERVAL SMR Coronary atherosclerosis 
COL15A1 Both SMR Atrial fibrillation 
COL6A3 Both Both Heart failure 
CTSB INTERVAL COLOC Calcific aortic valvular stenosis 
DLK1 INTERVAL COLOC Diseases of veins 
DUSP13 INTERVAL Both Atrial fibrillation 
ECM1 ARIC COLOC Hypertension 
EPHA2 Both Both Statin medication 

F10 
Both Both Pulmonary embolism 
Both COLOC Venous Thromboembolism 

F11 
ARIC Both Deep Venous Thrombosis, Diseases of veins, Any stroke, Cardioembolic stroke 
ARIC COLOC Venous Thromboembolism, Pulmonary embolism 

F2 
Both Both Venous Thromboembolism, Pulmonary embolism 
Both SMR Deep Venous Thrombosis, Diseases of veins 

FABP2 ARIC SMR Hypertension, Heart failure, Coronary revascularization 

FN1 
ARIC Both Heart failure, Coronary Heart Disease, Angina pectoris 

ARIC COLOC 
Myocardial infarction, Coronary atherosclerosis, Coronary revascularization, 
Coronary artery bypass grafting 

GAS6 ARIC COLOC Statin medication 
GSTT2B INTERVAL SMR Heart failure 
IL1RN Both SMR Myocardial infarction 

IL6R 
Both Both 

Aortic aneurysm, Coronary Heart Disease, Coronary atherosclerosis, Angina 
pectoris, Coronary angioplasty 

Both COLOC Coronary revascularization, Coronary artery bypass grafting 
Both SMR Atrial fibrillation, Heart failure 

INHBB 
ARIC Both Coronary artery bypass grafting 
Both COLOC Statin medication 

INHBC ARIC Both Heart failure 
ITIH3 ARIC SMR Heart failure 
KLB ARIC SMR Statin medication 
LRIG1 ARIC Both Atrial fibrillation 

MMP12 
Both Both Any stroke 
Both COLOC Large artery stroke 

NRP1 Both SMR Coronary Heart Disease 
NUDT5 ARIC SMR Statin medication, Heart failure 

PCSK9 

ARIC Both Heart failure 

ARIC COLOC 
Statin medication, Myocardial infarction, Coronary Heart Disease, Coronary 
atherosclerosis, Angina pectoris, Coronary revascularization, Coronary angioplasty, 
Coronary artery bypass grafting, Valvular heart disease, Diseases of arteries and 
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capillaries 

ARIC SMR Calcific aortic valvular stenosis 
PROC Both Both Venous Thromboembolism 

THBS2 
Both COLOC Diseases of veins, Varicose veins 
Both SMR Aortic aneurysm 

TNFSF12 INTERVAL Both Atrial fibrillation 
UROD ARIC Both Diseases of veins 
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3. Function verification of candidate causal genes

SMR/COLOC

2. Replication PWAS of CVD

26 CVD GWAS
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e
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(N=3,301)
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N

5 Cerebrovascular diseases 
(N=484,598~1,308,460)

16 Cardiac diseases 
(N=234,829~1,030,836)

5 Venous diseases 
(N=388,830~484,598)

26 CVD GWAS in 3 categories
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Protein Prediction Model
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Genotyping dataProtein abundance
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1,715 unique heritable protein models

R2=0.88

Select heritable model

1. Discovery plasma proteome-wide association study (PWAS) analysis

Functional Summary-based Imputation（FUSION）
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ANGPTL3
ASGR1
CA14
CD4
CNTN2
DAG1
EPHA2
FABP2
FGF5
GALNT2
GAS6
IFNGR2
IL1RN
IL6R
INHBC
ITGAV
KLB
LPL
LRIG1
NOS3
NRP1
PCSK9
SCARF2
TNFSF12
UMOD
THBS2
TIMD4
VAT1
FURIN
ADAM15
ADM
CDH5
DLK1
PROC
F11
MMP12
TMPRSS5
Donor
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Cardiac disease Venous disease Cerebrovascular disease

Cardiac diseases and Venous disease Venous disease and Cerebrovascular disease

Cardiac disease, Venous disease and Cerebrovascular disease 

Cardiac disease and Cerebrovascular disease

A B

D E

Cerebrovascular disease
Venous disease
Cardiac disease

Category

immunity/inflammation
lipid-related process
vessel/blood

Communities

C

abnormal heart morphology
abnormal blood homeostasis

abnormal hematopoietic cell morphology
abnormal blood vessel morphology

abnormal vitelline vasculature morphology
intracranial hemorrhage

abnormal pulmonary circulation
abnormal blood circulation

premature death
abnormal liver physiology

abnormal visceral yolk sac cavity morphology
abnormal protein level

abnormal response to CNS ischemic injury
abnormal wound healing

abnormal blood vessel morphology
abnormal lipoprotein level

abnormal lipid homeostasis
abnormal immune tolerance

abnormal immune system organ morphology
abnormal response to antigen

0 1 2 3 4
10(FDR)

group
immunity/lnflammation

vessel/b
other

negative regulation of response to
external stimulus

regulation of body fluid levels

regulation of response to wounding

wound healing

coagulation

membrane protein proteolysis

cellular response to external stimulus

biological process involved in symbiotic
interaction

wound healing

lipid homeostasis

regulation of plasma lipoprotein
particle levels

lipid localization

ERK1 and ERK2 cascade

way

viral process

0 2 4 6
10(FDR)

group
immunity/inflammation

vessel/b other

PROCR

MMP12

F11

PROS1

PROC

F2

F10

CDH5

PCSK9

NOS3

ITGAV

IL6R

IL1RN

IFNGR2

FN1

FES

FABP2

EPHA2

COMT

CD4

CA14

APOE

APOBR

ANGPTL3

ACP1

Marimastat
Human thrombin
Cupric Chloride
Gabexate
Argatroban
Dabigatran etexilate
Bivalirudin
Lepirudin
Menadione
Proflavine
Drotrecogin alfa
Suramin

L
Apixaban
Turoctocog alfa
Moroctocog alfa
Emicizumab
Otamixaban
Rivaroxaban
Heparin
Nafamostat
Lenalidomide
Evolocumab
Inclisiran
Levamlodipine
Arginine
Miconazole
Levothyroxine
Satralizumab
Sarilumab
Tocilizumab
Rilonacept
Interf
Ocriplasmin
Ibuprofen
Dexibuprofen
Fostamatinib
Regorafenib
Dasatinib
Ademetionine

oxyestradiol
Opicapone
Entacapone
Tolcapone
Ibalizumab
Cyclothiazide
Benzthiazide
Acetazolamide
Zonisamide
Copper
Evinacumab
Adenine

Immune system diseases

Musculoskeletal system 
diseases 

Blood related diseases

Neoplasms

Digestive system diseases

Infectious or parasitic 
diseases

Circulatory system diseases

Visual system diseases

Nervous system diseases

Health status factors

Chronic pain

Metabolic disease

ICD11Target Gene Drug Name

LAMP1

KLB

FGF5

FES

F11

F2

PROC

PROCR

F10

ITGAV

ECM1

DAG1

NRP1

CNTN2

CD4

ITIH3

LPA

APOE

APOBR

LPL

ANGPTL3

FN1

ADAMTS4

EPHA2

ACP1

INHBC

INHBB

PROS1

GAS6

LCN2

ACOX1

ACP1

ACYP1

ARHGAP45

ASGR1

ASRGL1

BIN2

C7orf50

CD4

CES2

COMT

CTSB

FES

GALNT2

IFNGR2

IL1RN

IL6R

LAMP1

NUDT5

SH2B3

TIMP2

TNFSF12

ADAM15
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