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Abstract 
Digital mental health tools have the prospect to enhance and expand access to care for those in need. Some tools 
provide interventional recommendations to individuals, typically using simple static rule-based systems (e.g., if-
else statements) or by incorporating predictive artificial intelligence. However, interventional recommendations 
require a decision based on the comparison of future outcomes under different interventions, which requires causal 
considerations. Here we develop CAIRS, a causal artificial intelligence recommendation system that provides 
personalised interventional recommendations using an individual’s current presentation and the learned dynamics 
between domains to identify and rank intervention targets that have the greatest impact on future outcomes. Our 
approach was applied to longitudinal data of multiple mental health and related domains at two timepoints (1 
week - 6 months from baseline) collected from a digital mental health tool. In our example, psychological distress 
was found to be the key influential domain that affected multiple domains (e.g., personal functioning, social 
connection), and thus was typically the preferred target in complex cases where multiple domains were unhealthy. 
Our approach is broadly applicable to recommendation contexts where causal considerations are important, and 
the framework could be incorporated within a live app to enhance digital mental health tools. 
 
Keywords: causality; artificial intelligence; decision theory; wellbeing; psychological distress; functioning; 
sleep; social support 
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Introduction 
Theory suggests that mental ill-health and poor wellbeing are emergent phenomena from the interactions between 
symptoms within and across domains over time1–4. This view recognises that domains—mental health, physical 
health and activity, social support, personal functioning (hereafter ‘functioning’), sleep, nutrition, alcohol or other 
substance use—influence each other in complex ways. Furthermore, mental ill-health and wellbeing are 
influenced by cultural, socioeconomic, or population-level factors5–7. This provides a landscape of potential 
interventional targets that could alleviate mental ill-health and improve wellbeing. However, this landscape raises 
the problem of deciding between interventions, which is made difficult by; 1) the heterogeneous presentation of 
mental ill-health and poor wellbeing, 2) uncertainty about outcomes under different interventions, 4) timeliness, 
duration, and sequence of interventions, 5) comparison of multidimensional outcomes given individual-level 
differences in the prioritisation of different symptoms or domains, and 6) costs (monetary or otherwise) associated 
with interventions. 
 
This interventional decision-making problem can be considered within a Bayesian decision-theoretic (BDT) 
framework8. In BDT the optimal interventional decision is that which maximises the expected utility of outcomes. 
BDT allows for the incorporation of uncertainties in components of the decision-making process (e.g., uncertainty 
of future outcomes under interventions). Subjective utilities can be used to account for varying individual-level 
multidimensional outcome preferences and perceived costs. Timing and sequencing can be addressed by 
conditioning current decisions on prior decisions and observations, while possible future decisions can be 
marginalised out. 
 
Recommendation systems (RSs) are algorithms that filter content or actions for end-users. RSs are often built to 
filter content to align with an individual’s prior choices or elicited information, and have been successful for this 
purpose (e.g., Netflix9), including applications to digital mental health tools10,11. However, we will consider the 
more ambitious task of building an RS that makes interventional recommendations, by aligning recommendations 
with interventional decision-making considerations using a BDT framework. 
 
This approach requires methods to predict outcomes under interventions. RSs typically use predictive artificial 
intelligence (AI) algorithms that estimate relationships between inputs and outcomes using conditional 
probabilities inferred from observational data. However, this is problematic as these relationships can be 
confounded in observational data, such that conditional probabilities cannot be used to predict outcomes under 
interventions12. As an alternative we will explore causal AI13, which includes mechanisms to estimate causal 
effects from observational data. 
 
Many digital technologies aimed at improving mental health and wellbeing exist today14–16, but their reliance on 
rule-based or predictive algorithms limits their ability to provide interventional recommendations. While there 
has been interest in building causal AI applications for decision-support systems within healthcare generally17,18, 
there has been very little work on causal AI applications to digital mental healthcare. Furthermore, few 
applications of causal AI have been deployed as it is a relatively new field that requires further understanding and 
tools to find real-world applicability. We will show the applicability of ‘Causal AI for a RS’ (CAIRS) to rank 
domains as intervention targets in the mental health and wellbeing context. A schematic of CAIRS is shown in 
Fig. 1. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.11.11.24317126doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.11.24317126
http://creativecommons.org/licenses/by/4.0/


 3 

Fig. 1| Causal artificial intelligence recommendation system (CAIRS). CAIRS uses expert knowledge and 
observational data to learn a causal model, which is then used to simulate outcomes under idealised interventions 
and displays intervention targets based on their expected utility. 
 
Results 
Sample characteristics 
The sample comprised of 619 individuals that used the Innowell Fitness app from the original 5933 cohort. 
Individuals in our sample tended to have slightly higher propensity of being in the healthy category across 
functioning (sample, 209 [34%]; cohort, 1663 [28%]), psychological distress (sample, 326 [53%]; cohort, 2818 
[48%]), nutrition (sample, 268 [43%]; cohort, 2388 [40%]), physical activity (sample, 466 [75%], cohort, 4284 
[72%]), sleep (sample, 173 [28%]; cohort, 1611 [27%]), social support (sample, 180 [29%]; cohort, 1714 [29%]), 
and substance use (sample, 383 [62%]; cohort, 3471 [59%]). The median follow-up time was 55 days (Q1, 35 
days, Q3, 96 days) with further breakdown in the appendix (Supplementary Note 1). The sample improved across 
a range of outcomes from baseline to follow-up where the number of individuals moving from ‘fair’ or ‘poor’ to 
healthy was; +45 (7.3%) for sleep, +17 (2.7%) for physical activity, +28 (4.5%) for social support, -1 (0.2%) for 
functioning, +50 (8.1%) for psychological distress, 0 (0.0%) for substance use, and +24 (3.9%) for nutrition. 
Further details in table 1. 
 

INSERT TABLE 1 ABOUT HERE 
 
Structure learning 
Fig. 2 is a summarisation of the posterior distribution of directed acyclic graphs (DAGs). The contemporaneous 
network within baseline (i.e., 𝐴!"#$%&'$ → 𝐵!"#$%&'$) shows a dense network consistent with analysis in a partly 
overlapping sample19. There is significant uncertainty about directionality, although psychological distress was 
more likely to be the parent of another domain than in the opposite direction. Specifically, psychological distress 
being the parent of; 1) functioning was 64% compared to 36% in the opposite direction, 2) physical activity was 
78% compared to 20%, 3) sleep was 80% compared to 20%, and 4) 65% to social support compared to 27%. Also, 
functioning was more likely to affect nutrition (79% compared to 21%). 
 
Adding the time component helps the algorithm differentiate directionality. We found the autoregressive edges 
(i.e., 𝐴!"#$%&'$ → 𝐴()%%)*+,) had p>99%	for all domains. The lagged cross-domain edges (i.e., 𝐴!"#$%&'$ →
𝐵()%%)*+,) are sleep to nutrition (pparent=68%) and potentially psychological distress to sleep (pparent=48%). Within 
the follow-up timepoint we found psychological distress to functioning (pparent=86%), social support (pparent=92%), 
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and sleep (pparent=88%), along with sleep to physical activity (pparent=95%). Including indirect paths, there were 
paths from psychological distress to functioning (ppath=86%), social support (ppath=92%), sleep (ppath=88%), and 
physical activity (ppath=86%). Further details are in Supplementary Note 2. 
 

 
Fig. 2| Consensus graph summarising the posterior distribution of DAGs. Edges between nodes with 
pparent>10%, with darker colours corresponding to higher probability. Yellow arrows show lagged edges whereas 
grey arrows show within timepoint edges. 
 
Treatment effects 
Average treatment effects (ATEs) are shown in Fig. 3A. Intervening on psychological distress is capable of the 
greatest ATE, with ATE>1 (equivalent to transitioning from ‘poor’ to ‘healthy’ for one domain), when 
psychological distress itself was adjusted from ‘poor’ to ‘healthy’ while also affecting other domains. 
Interventions on other domains resulted in ATE less than one due to affects being primarily isolated to that domain. 
 
Decision analysis 
We estimated a preference ranking for each domain shown in Fig. 3B. The proportion that a domain is the optimal 
intervention weighted in accordance with the probability of the baseline states is functioning (popt=30%), 
psychological distress (popt=29%), social support (popt=18%), nutrition (popt=9.6%), substance use (popt=6.7%), 
sleep (popt=4.5%), and physical activity (popt=2.2%). 
 
Typical rankings of interventional targets would affect the presentation in a system that presented the top N 
interventional targets. For example, the proportion that each domain would be recommended in a system that 
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showed the top three intervention targets, would be social support (prec=77%), functioning (prec=73%), 
psychological distress (prec=49%), sleep (prec=42%), nutrition (prec=29%), substance use (prec=17%), and physical 
activity (prec=13%). 
 
 

 
Fig. 3| Treatment effects and recommendation targets. Panel A shows treatment effects with point size 
increasing with empirical probability of the baseline state. These are converted to recommendations represented 
in panel B, where the probability for the rank of each intervention target is marginalised over the baseline states. 
 
Optimal interventional targets can be further illuminated using examples. The most common baseline presentation 
is everything is ‘healthy’, where the optimal interventional target was social support (EU [expected utility], 6.345, 
SE [standard error], 0.034) followed by functioning (EU, 6.310, SE, 0.035) which were greater than doing nothing 
(EU, 6.087, SE, 0.033). This is due to a regression to the mean effect, where social support (Eu [expected sub-
utility], 0.764, SE, 0.010) and functioning (Eu, 0.784, SE, 0.010) tend to revert to unhealthy states with greater 
probability than other domains which all had Eu>0.9. 
 
Domains that are less healthy than all other domains are typically the optimal interventional target. However, 
when multiple domains including psychological distress are ‘fair’ with either nutrition or physical activity as 
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‘poor’, psychological distress was the optimal target. For example, psychological distress is the optimal 
intervention target for the state (functioning=‘fair’, psychological distress=‘fair’, nutrition=‘fair’, physical 
activity=‘poor’, sleep=‘fair’, social=‘fair’, substance=‘healthy’), as it affects multiple domains. 
 
 

 
Fig. 4| Comparison of predicted outcomes and utilities under interventions for different baseline 
presentations. We show edges in the maximum a posteriori completed partially directed acyclic graph, where 
undirected edges correspond to cases where DAGs with edges in either direction have the same posterior 
probability. 
 
Psychological distress was the optimal intervention if it was equally unhealthy to any other domain. For example, 
assuming the baseline state (functioning=‘poor’, psychological distress=‘poor’, nutrition=‘fair’, physical 
activity=‘healthy’, sleep=‘fair’, social=‘poor’, substance=‘healthy’) shown in Fig. 4A, the optimal intervention 
target is psychological distress (EU, 5.156, SE, 0.115), rather than functioning (EU, 4.734, SE, 0.087), or social 
support (EU, 4.638, SE, 0.122) despite those domains also being poor. 
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When psychological distress was ‘healthy’ and multiple domains were unhealthy, the interventional target was 
less certain. For example, for the state (functioning=‘poor’, psychological distress=‘healthy’, nutrition=‘healthy’, 
physical activity=‘healthy’, sleep=‘fair’, social=‘poor’, substance=‘healthy’) shown in Fig. 4B, the optimal 
interventional target was functioning (EU, 5.872, SE, 0.059) instead of social support (EU, 5.728, SE, 0.067), for 
similar reasons that the unhealthy functioning state persists with greater probability than social support. 
 
We tested the sensitivity of preference rankings to utility function assumptions. Assuming a risk-neutral sub-
utility function with u=(‘poor’=0, ‘fair’=0.5, ‘healthy’=1), the optimal intervention targets were psychological 
distress (popt=28%), functioning (popt=27%), social support (popt=18%), sleep (popt=11%), nutrition (popt=7.4%), 
substance use (popt=7.1%), and physical activity (popt=1.4%). We then tested for a highly risk-averse sub-utility 
function u=(‘poor’=0, ‘fair’=1, ‘healthy’=1), where we found psychological distress (p=28%), functioning 
(popt=28%), social support (popt=24%), nutrition (popt=8.2%), substance use (popt=6.7%), physical activity 
(popt=4.3), and sleep (popt=0.9%). We also increased the weighting of psychological distress and functioning using 
weakly ordered domain-ranking preferences20, where we found distress (popt=39%), functioning (popt=37%), social 
support (popt=11%), nutrition (popt=5.7%), substance use (popt=4.3%), sleep (popt=1.9%), and physical activity 
(popt=1.2%). Further details are in Supplementary Note 3. 
 
Discussion 
We developed a causal artificial intelligence interventional recommendation system (CAIRS) that can be 
digitalised for mental healthcare technologies. Our primary contribution is to show how causal effects under 
interventions and expert or individual-level outcome preferences can be incorporated into an RS using BDT. 
Components of our approach have been explored for before.  Causal AI with structure learning has been used for 
epidemiological purposes in mental health21–23. BDT has also been used for healthcare decision problems24–26. 
However, the combination of these methods with the aim of applying it to digital mental healthcare is novel. 
 
Using our sample, we found the optimal interventional target is a function of a person’s presentation (which in 
this study is their state at baseline), the non-interventional transition from baseline to follow-up, the causal effects 
of the intervention on itself and other domains, and the utility function. To summarise our results, the optimal 
interventional target was; 1) the unhealthiest baseline domain with some exceptions where psychological distress 
is more effective than intervening on ‘poor’ nutrition or physical activity, 2) psychological distress when it is 
equally or more unhealthy than other domains, or 3) the domain that is more likely to transition to or persist in an 
unhealthy state. 
 
These results are consistent with our prior expectations for an IRS. Intervening on the unhealthiest domain would 
be the conclusion of most systems. Similarly, domains that are more likely to persist in or transition to unhealthy 
states, suggests that intervention is required. While many IRSs may implement this latter step if known, we note 
that this finding was not something we considered prior to performing the analysis and is not incorporated into 
the current Innowell Fitness rule-based recommendations, suggesting added value from our analysis. 
 
Our results suggest that targeting psychological distress should be preferred over other equally unhealthy domains 
in this population. This result is due to the causal effects that psychological distress has on functioning, social 
support, sleep, and physical activity mediated by sleep. This is consistent with current understanding that mental 
ill-health affects multiple domains, including work with respect to absenteeism and productivity27,28, sleeping 
patterns for example due to rumination29,30, and social connection due to social anxiety31. Thus, direct 
interventions on psychological distress are expected to have wide-ranging effects. 
 
Comparing multidimensional outcomes in accordance with expert or individual preferences is a challenging task 
that BDT provides a framework to computationally encode within an IRS. Some possibilities of varying outcome 
preferences were explored by adjusting the sub-utility function to account for different risk-aversity and changing 
the domain weightings, which corresponded to slight recommendation changes. Further adjustments in the utility 
function are possible and this utility framework will become increasingly important as we increase the number of 
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domains or investigate symptoms, as it’s unlikely that all relevant domains or symptoms would be considered 
equally important by all individuals or experts. 
 
Incorporating varying personalised outcome preferences in a deployed app would require a utility elicitation 
mechanism. There are many utility elicitation methods available20, some of which are not overly burdensome, 
such as eliciting weakly ordered preference for domains, while BDT provides mechanisms to stop utility 
elicitation when there is enough information to make a recommendation32. With that said, our analysis doesn’t 
address the feasibility of eliciting individualised utilities in real-world applications, which should be considered 
for further research. 
 
BDT could find more applicability elsewhere within digital health applications. For example, we may want to 
balance mental health and wellbeing outcomes with other considerations, such as user engagement which is often 
poor in mental health apps33–35. It could also be applied to other causal inference or predictive frameworks, such 
as undirected networks where intervention targets have been explored36–39, but often assume that all domains or 
symptoms are equally important. 
 
Our approach is in its early stages. The current system only generates a recommendation based on an individual’s 
baseline presentation. Future work will account for ongoing observations by incorporating feedback mechanisms 
to adapt the structural causal model (SCM) to individuals over time. Furthermore, moving from interventional 
targets to interventions is vital, and raises new complications as interventions often act on multiple variables 
simultaneously40, may act on mediating variables that control the relationship between variables41, and have 
associated costs (monetary or otherwise). Plus, maintaining a healthy state is different to improving the state, and 
thus different interventions will be required. 
 
Our results rely on causal interpretations of the inferred DAGs. Assumptions must hold for this to be true, 
including that we have all relevant confounders and colliders42. For the causal effect estimations to be valid, this 
surmounts to the assumption that other factors such as sociodemographics, historical values prior to baseline, or 
other domains have a negligible causal effect on follow-up variables beyond the effect that they have on the 
observed variables. These assumptions may not hold, and should be tested more thoroughly, including improving 
the recording of potential confounders within the Innowell Fitness app. 
 
The true causal paths are probably more complex than suggested in this work as more causal effects have been 
found in other contexts between the domains that we have studied. The data is likely underpowered to determine 
all causal paths. Also, within timepoint cyclic causal paths will be missing, which will require the incorporation 
of recent methodological developments43. 
 
In summary, interventional recommendation algorithms require careful incorporation of causal consideration and 
decision-making principles. Important aspects are the estimation of outcomes under interventions requiring causal 
modelling, assignment of appropriate utilities to align recommendations with outcome preferences, and 
consideration of uncertainty. These considerations can be incorporated into computational models using causal 
AI and Bayesian decision theory. 
 
Methods 
Ethics 
This research activity has been deemed exempt from ethics review under Section 5.1.17(a) of the Australian 
National Health and Medical Research Council National Statement on Ethical Conduct in Human Research (2023) 
by The University of Sydney Human Research Ethics Committee.  
 
Study design 
This retrospective study was conducted using data collected from the Innowell Fitness app (N=5933). Individuals 
who reported negative minutes spent doing any physical activity were excluded (n=55). Otherwise, we included 
all individuals that had at least one follow-up from 1 week to 6 months after baseline (n=619). 
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Procedures 
The Innowell Fitness app is a digital technology used by adults for the assessment, management, and monitoring 
of their mental health and wellbeing19. It is available on mobile and computer devices, and includes; (1) self-report 
assessments about each domain of a person’s mental fitness; (2) actionable insights about each domain of mental 
fitness; (3) personalised (rule-based) recommendations with evidence-based strategies and resources to 
understand and manage mental fitness; and (4) a goal setting and tracking tool which provides people with habit-
forming activities designed to improve their mental fitness. The development of this tool involved a team of 
psychologists, psychiatrists, mental health research experts, and those with lived experience, who selected items 
that measure various components of mental fitness and collated relevant evidence-based strategies and resources. 
 
The measures and domains assessed include; (1) social support, using three items from the Schuster’s Social 
Support Scale44; (2) personal functioning (referred throughout as ‘functioning’), using three items about 
educational and employment engagement and achievement45; (3) psychological distress, using the Kessler-646 
scale for psychological distress; (4) sleep, using four sleep items47–49, including feeling refreshed after sleep, 
trouble falling asleep and subjective energy; (5) physical activity, four items from the International Physical 
Activity Questionnaire50 measuring time spent walking, doing moderate exercise, doing vigorous exercise, and 
being sedentary; (6) alcohol and other substance use, using three items about tobacco, alcohol, and other substance 
use51; and (7) nutrition, using two items about typical composition and portion size of their diet52. These individual 
items detailed in Supplementary Note 4, are combined to construct domains of interest that are categorised as 
either ‘poor’, ‘fair’, or ‘healthy’. 
 
Statistical analysis 
Statistical modelling and analyses were performed in R version 4.3.3. Causal inference was performed in the 
structural causal modelling (SCM) framework12. An SCM is described by a set of variables, a set of functions 
relating the variables, and a causal structure represented by a DAG that indicates the directionality of causal 
influence using arrows between random variables. We performed Bayesian inference to infer the posterior 
distribution of DAGs, where we aimed to sample from the posterior distribution assuming a uniform prior over 
DAGs, only excluding DAGs with arrows that go backwards in time. Posterior sampling was achieved using an 
implementation of the Partition Markov chain Monte Carlo (PMCMC) scheme53,54. PMCMC samples from the 
space of partitions, where a partition is a set of weakly ordered nodes that represents multiple DAGs (e.g., DAG 
𝐴 ← 𝐵 → 𝐶 → 𝐷 is represented by the partition {{𝐵}, {𝐴, 𝐶}, {𝐷}}). To return to the partition space, a DAG is 
sampled given a partition in accordance with its posterior probability. The sampling procedure was run across 
eight chains and checked for convergence and resolution (Supplementary Note 5). We used the Bayesian Gaussian 
equivalent score function to retain the ordinal information of the random variables. 
 
Simulating outcomes given a DAG is performed by constructing a Bayesian network (BN)12,55. A BN assumes 
nodes take categorical values and relates a variable to its parent variables using conditional probability tables. A 
BN was constructed per posterior sample by passing the DAG and observed data to the gRain library56, which 
estimates the conditional probability tables using a maximum a posteriori estimate. Simulating an outcome given 
an observed baseline state is performed by setting each baseline node with the values of the observed baseline 
state and then simulating the follow-up state. This corresponds to doing ‘nothing’ below, which is shorthand for 
simulating a follow-up state given no intervention. The interventional do-operation is used to simulate outcomes 
given idealised interventions12,55. This is performed by ‘mutilating’ the BN by removing all edges into an 
interventional node, setting the interventional node state to ‘healthy’, and then setting the states of the baseline 
nodes equal to the given baseline state. Note that this intervention acts on a domain at follow-up. 
 
We assign numerical values to outcomes, which are referred to as utilities in decision theory, to make comparisons 
between idealised interventions. For our primary assumption, we assign the sub-utility value for outcomes as 
u=(‘poor’=0, ‘fair’=0.75, healthy=1), which corresponds to a moderately risk-averse sub-utility function. The 
utility function is then an equal-weighted sum of the sub-utility values across domains, thus assuming no 
preference between domains, and ensuring that our focus is on overall wellbeing. The utility ranges from zero 
when all domains are ‘poor’ to seven when all domains are ‘healthy’. We use the expected utility principle to 
order intervention targets8, where we assume that an intervention target 𝐴 is preferred to 𝐵 when the expected 
utility (EU) for performing an idealised intervention on 𝐴 is greater than on 𝐵. In our sensitivity analysis, we 
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investigated a risk-neutral sub-utility function with u=(‘poor’=0, ‘fair’=0.5, healthy=1), a risk-averse sub-utility 
function u=(‘poor’=0, ‘fair’=1, healthy=1), and up-weighting psychological distress and functioning compared to 
all other domains. Further detail about the BDT framework is provided in Supplementary Note 6. 
 
We report the average treatment effect (ATE) conditional on the baseline state. This is calculated as the difference 
in the expected utility between doing an idealised intervention compared to doing nothing. 
 
Data availability 
Data used for this study is available from the corresponding author on reasonable request. 
 
Code availability 
All relevant code this paper can be found at https://github.com/VictorytA/causalintervention. 
 
References 
1. Scheffer, M. et al. A Dynamical Systems View of Psychiatric Disorders— Practical Implications: A 

Review. JAMA Psychiatry 81, 624–630 (2024). 
2. Bringmann, L., Helmich, M., Eronen, M. & Voelkle, M. Complex Systems Approaches to 

Psychopathology. Oxford Textbook of Psychopathology (2023). doi:10.1093/med-
psych/9780197542521.003.0005. 

3. Borsboom, D. A network theory of mental disorders. World Psychiatry 16, 5–13 (2017). 
4. Hickie, I. B. et al. Right care, first time: a highly personalised and measurement-based care model to 

manage youth mental health. Med. J. Aust. 211, S3–S46 (2019). 
5. Mcgorry, P. D. et al. The Lancet Psychiatry Commission on youth mental health. Lancet 11, 731–744 

(2024). 
6. Macintyre, A., Ferris, D., Gonçalves, B. & Quinn, N. What has economics got to do with it? The impact 

of socioeconomic factors on mental health and the case for collective action. Palgrave Commun. 4, 
(2018). 

7. Skinner, A., Osgood, N. D., Occhipinti, J. A., Song, Y. J. C. & Hickie, I. B. Unemployment and 
underemployment are causes of suicide. Sci. Adv. 9, eadg3758 (2023). 

8. Parmigiani, G. & Inoue, L. Decision Theory: Principles and Approaches. Decision Theory: Principles 
and Approaches (John Wiley & Sons, Ltd, West Sussex, United Kingdom, 2009). 
doi:10.5860/choice.47-4475. 

9. Gomez-Uribe, C. A. & Hunt, N. The netflix recommender system: Algorithms, business value, and 
innovation. ACM Trans. Manag. Inf. Syst. 6, (2015). 

10. Chaturvedi, A. et al. Content Recommendation Systems in Web-Based Mental Health Care: Real-world 
Application and Formative Evaluation. JMIR Form. Res. 7, 1–12 (2023). 

11. Valentine, L., D’Alfonso, S. & Lederman, R. Recommender systems for mental health apps: advantages 
and ethical challenges. AI Soc. 38, 1627–1638 (2023). 

12. Pearl, J. Causality: Models, Reasoning, and Inference. (Cambridge University Press, Cambridge, United 
Kingdom, 2000). doi:10.1093/bjps/52.3.613. 

13. Cripps, S. Artificial and human intelligence. J. Proc. R. Soc. New South Wales 157, 109–118 (2024). 
14. Aboujaoude, E., Gega, L., Parish, M. B. & Hilty, D. M. Editorial: Digital Interventions in Mental 

Health: Current Status and Future Directions. Front. Psychiatry 11, 10–12 (2020). 
15. Eisenstadt, M., Liverpool, S., Infanti, E., Ciuvat, R. M. & Carlsson, C. Mobile apps that promote 

emotion regulation, positive mental health, and well-being in the general population: Systematic review 
and meta-analysis. JMIR Ment. Heal. 8, (2021). 

16. Woodward, K. et al. Beyond Mobile Apps: A Survey of Technologies for Mental Well-Being. IEEE 
Trans. Affect. Comput. 13, 1216–1235 (2022). 

17. Prosperi, M. et al. Causal inference and counterfactual prediction in machine learning for actionable 
healthcare. Nat. Mach. Intell. 2, 369–375 (2020). 

18. Sanchez, P. et al. Causal machine learning for healthcare and precision medicine. R. Soc. Open Sci. 9, 
(2022). 

19. Iorfino, F. et al. Quantifying the Interrelationships between Physical, Social, and Cognitive-Emotional 
Components of Mental Fitness Using Digital Technology. npj Mental Health Research vol. 3 (2024). 

20. Alinezhad, A. & Khalili, J. New Methods and Applications in Multiple Attribute Decision Making 
(MADM). International Series in Operations Research and Management Science vol. 277 (Springer 
Cham, Cham, Switzerland, 2019). 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.11.11.24317126doi: medRxiv preprint 

https://github.com/VictorytA/causalintervention
https://doi.org/10.1101/2024.11.11.24317126
http://creativecommons.org/licenses/by/4.0/


 11 

21. Moffa, G. et al. Using Directed Acyclic Graphs in Epidemiological Research in Psychosis: An Analysis 
of the Role of Bullying in Psychosis. Schizophr. Bull. 43, 1273–1279 (2017). 

22. Iorfino, F. et al. The temporal dependencies between social, emotional and physical health factors in 
young people receiving mental healthcare: a dynamic Bayesian network analysis. Epidemiol. Psychiatr. 
Sci. 32, e56 (2023). 

23. McNally, R. J., Heeren, A. & Robinaugh, D. J. A Bayesian network analysis of posttraumatic stress 
disorder symptoms in adults reporting childhood sexual abuse. Eur. J. Psychotraumatol. 8, (2017). 

24. Norman, J., Shahar, Y., Miriam, K. & Gold, B. Decision-Theoretic Analysis of Prenatal Testing 
Strategies. (1998). 

25. Kornak, J. & Lu, Y. Bayesian decision analysis for choosing between diagnostic/prognostic prediction 
procedures. Stat. Interface 4, 27–36 (2011). 

26. Parmigiani, G. Uncertainty and the value of diagnostic information, with application to axillary lymph 
node dissection in breast cancer. Stat. Med. 23, 843–855 (2004). 

27. Kelloway, E. K., Dimoff, J. K. & Gilbert, S. Mental Health in the Workplace. Annu. Rev. Organ. 
Psychol. Organ. Behav. 10, 363–387 (2023). 

28. Ferreira, A. I., Ferreira, P. da C., Cooper, C. L. & Oliveira, D. How daily negative affect and emotional 
exhaustion correlates with work engagement and presenteeism-constrained productivity. Int. J. Stress 
Manag. 26, 261–271 (2019). 

29. Guastella, A. J. & Moulds, M. L. The impact of rumination on sleep quality following a stressful life 
event. Pers. Individ. Dif. 42, 1151–1162 (2007). 

30. Clancy, F., Prestwich, A., Caperon, L., Tsipa, A. & O’Connor, D. B. The association between worry and 
rumination with sleep in non-clinical populations: a systematic review and meta-analysis. Health 
Psychol. Rev. 14, 427–448 (2020). 

31. Teo, A. R., Lerrigo, R. & Rogers, M. A. M. The role of social isolation in social anxiety disorder: A 
systematic review and meta-analysis. J. Anxiety Disord. 27, 353–364 (2013). 

32. Chajewska, U., Koller, D. & Parr, R. Making Rational Decisions using Adaptive Utility Elicitation. 
Proc. 17th Natl. Conf. Artif. Intell. 12th Conf. Innov. Appl. Artif. Intell. AAAI 2000 363–369 (2000). 

33. Torous, J., Nicholas, J., Larsen, M. E., Firth, J. & Christensen, H. Clinical review of user engagement 
with mental health smartphone apps: Evidence, theory and improvements. Evid. Based. Ment. Health 
21, 116–119 (2018). 

34. Baumel, A., Muench, F., Edan, S. & Kane, J. M. Objective user engagement with mental health apps: 
Systematic search and panel-based usage analysis. J. Med. Internet Res. 21, 1–15 (2019). 

35. Lipschitz, J. M., Pike, C. K., Hogan, T. P., Murphy, S. A. & Burdick, K. E. The Engagement Problem: a 
Review of Engagement with Digital Mental Health Interventions and Recommendations for a Path 
Forward. Curr. Treat. Options Psychiatry 10, 119–135 (2023). 

36. Isvoranu, A. M. et al. Extended network analysis: from psychopathology to chronic illness. BMC 
Psychiatry 21, 1–9 (2021). 

37. Lunansky, G. et al. Intervening on psychopathology networks: Evaluating intervention targets through 
simulations. Methods 204, 29–37 (2022). 

38. Roefs, A. et al. A new science of mental disorders: Using personalised, transdiagnostic, dynamical 
systems to understand, model, diagnose and treat psychopathology. Behav. Res. Ther. 153, 104096 
(2022). 

39. Mcnally, R. J. Network Analysis of Psychopathology: Controversies and Challenges. Annu. Rev. Clin. 
Psychol. 17, 31–53 (2021). 

40. Eronen, M. I. Causal discovery and the problem of psychological interventions. New Ideas Psychol. 59, 
100785 (2020). 

41. Borsboom, D. et al. Network analysis of multivariate data in psychological science. Nat. Rev. Methods 
Prim. 1, (2021). 

42. Spirtes, P., Scheines, R. & Glymour, C. Causation, Prediction, and Search. (Springer New York, New 
York City, New York, 1993). 

43. Bongers, S., Forré, P., Peters, J. & Mooij, J. M. Foundations of structural causal models with cycles and 
latent variables. Ann. Stat. 49, 2885–2915 (2021). 

44. Schuster, T. L., Kessler, R. C. & Aseltine, R. H. Supportive interactions, negative interactions, and 
depressed mood. Am. J. Community Psychol. 18, 423–438 (1990). 

45. Ustun, T. B., Kostanjsek, N., Chatterji, S. & Rehm, J. WHO Short Disability Assessment Schedule 
(WHODAS 2.0). World Health Organisation (2010) doi:10.1017/cbo9780511759055.008. 

46. Kessler et al. Short screening scales to monitor population prevalences and trends in non-specific 
psychological distress. Psychol. Med. 32, 959–976 (2002). 

47. Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh Sleep 
Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.11.11.24317126doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.11.24317126
http://creativecommons.org/licenses/by/4.0/


 12 

213. Psychiatry Res. 28, 193–213 (1989). 
48. Vernon, M. K., Dugar, A., Revicki, D., Treglia, M. & Buysse, D. Measurement of non-restorative sleep 

in insomnia: A review of the literature. Sleep Med. Rev. 14, 205–212 (2010). 
49. Zhang, J. et al. Differentiating nonrestorative sleep from nocturnal insomnia symptoms: Demographic, 

clinical, inflammatory, and functional correlates. Sleep 36, 671–679 (2013). 
50. Craig, C. L. et al. International physical activity questionnaire: 12-country reliability and validity. Med. 

Sci. Sports Exerc. 35, 1381–1395 (2003). 
51. Humeniuk, R. et al. Validation of the alcohol, smoking and substance involvement screening test 

(ASSIST). Addiction 103, 1039–1047 (2008). 
52. National Health and Medical Research Council. Eat for Health: Australian Dietary Guidelines. 

https://www.nhmrc.gov.au/adg (2013). 
53. Kuipers, J. & Moffa, G. Partition MCMC for Inference on Acyclic Digraphs. J. Am. Stat. Assoc. 112, 

282–299 (2017). 
54. Varidel, M. CIA: Learn and Apply Directed Acyclic Graphs for Causal Inference. at 

https://doi.org/10.5281/zenodo.14176795 (2024). 
55. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques. (MIT press, 

Cambridge,Massachusetts, 2009). 
56. Hojsgaard, S. Graphical Independence Networks with the gRain Package for R. J. Stat. Softw. 46, 1–26 

(2012). 
 
Acknowledgements 
This work was supported by the Medical Research Future Fund National Critical Research Infrastructure Grant 
(MRFCRI000279), and NHMRC Australia Fellowship (No. 511921 awarded to I.B.H.). M.V. was supported by 
philanthropic funding from The Johnston Fellowship and from other donor(s) who are families affected by mental 
illness who wish to remain anonymous. I.B.H. is supported by an NHMRC L3 Investigator Grant (GNT2016346). 
J.J.C. was supported by a NHMRC Emerging Leadership Fellowship (GNT2008196). F.I. was supported by an 
NHMRC EL1 Investigator Grant (GNT2018157). 
 
Author contributions 
M.V. and F.I. conceptualised the study. M.V., V.A., S.C., and R.M. developed the software and methodologies. 
M.V., V.A., and F.I. wrote the first draft. Draft reviewing and editing were performed by I.B.H., S.C., R.M., J.S., 
J.J.C., B.O., and A.P.. All authors had full access to the data in the study and had final responsibility for the 
decision to submit for publication. M.V. and V.A. have directly accessed and verified the data. 
 
Competing interests 
I.B.H. is the Co-Director, Health and Policy at the Brain and Mind Centre (BMC) University of Sydney, Australia. 
The BMC operates an early-intervention youth service at Camperdown under contract to headspace. I.B.H. has 
previously led community-based and pharmaceutical industry-supported (Wyeth, Eli Lily, Servier, Pfizer, 
AstraZeneca, Janssen Cilag) projects focused on the identification and better management of anxiety and 
depression. I.B.H. is the Chief Scientific Adviser to, and a 3.2% equity shareholder in, InnoWell Pty Ltd which 
aims to transform mental health services through the use of innovative technologies. All other authors declare no 
conflict of interest. All other authors declare no financial or non-financial competing interests. 
  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.11.11.24317126doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.11.24317126
http://creativecommons.org/licenses/by/4.0/


 13 

TABLES 
 
Table 1| Sample characteristics. Comparison of the analysed sample (N=619; 10%) to the cohort of working 
individuals that have used the Innowell Fitness app (N=5933). 

 
 

 Healthy Fair Poor 
Sleep       
Baseline (cohort), N (%) 1611 (27%) 3282 (55%) 1040 (18%) 
Baseline 173 (28%) 343 (55%) 103 (17%) 
Follow-up 218 (35%) 307 (50%) 94 (15%) 
Difference between Timepoints 45 (7.3%) -36 (5.8%) -9 (1.5%) 
Physical activity       
Baseline (cohort) 4284 (72%) 294 (5.0%) 1355 (23%) 
Baseline 466 (75%) 22 (3.5%) 131 (21%) 
Follow-up 483 (78%) 24 (3.9%) 112 (18%) 
Difference between Timepoints 17 (2.7%) 2 (0.3%) -19 (3.1%) 
Social support       
Baseline (cohort) 1714 (29%) 1675 (28%) 2544 (43%) 
Baseline 180 (29%) 169 (27%) 267 (43%) 
Follow-up 208 (34%) 205 (33%) 203 (32%) 
Difference between Timepoints 28 (4.5%) 36 (5.8%) -64 (10%) 
Functioning       
Baseline (cohort) 1663 (28%) 1907 (32%) 2363 (40%) 
Baseline 209 (34%) 186 (30%) 224 (36%) 
Follow-up 208 (34%) 181 (29%) 230 (37%) 
Difference between Timepoints -1 (0.2%) -5 (0.8%) 6 (1.0%) 
Psychological distress       
Baseline (cohort) 2818 (48%) 1784 (30%) 1331 (22%) 
Baseline 326 (53%) 171 (28%) 122 (20%) 
Follow-up 376 (61%) 119 (19%) 124 (20%) 
Difference between Timepoints 50 (8.1%) -52 (8.2%) 2 (0.3%) 
Substance use       
Baseline (cohort) 3471 (59%) 1629 (28%) 833 (14%) 
Baseline 383 (62%) 158 (26%) 78 (13%) 
Follow-up 383 (62%) 158 (26%) 78 (13%) 
Difference between Timepoints 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Nutrition       
Baseline (cohort) 2388 (40%) 2106 (36%) 1439 (24%) 
Baseline 268 (43%) 213 (34%) 138 (22%) 
Follow-up 292 (47%) 206 (33%) 121(20%) 
Difference between Timepoints 24 (3.9%) -7 (1.1%) -17 (2.7%) 
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