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Abstract 

Major depressive disorder (MDD) and other psychiatric diseases can greatly benefit from objective 

decision support in diagnosis and therapy. Machine learning approaches based on 

electroencephalography (EEG) have the potential to serve as low-cost decision support systems. 

Despite the successful demonstration of this approach, contradictory findings regarding the diagnostic 

value of those biomarkers hamper their deployment in a clinical setting. Therefore, the reproducibility 

and robustness of these biomarkers needs to be established first. We employ a multiverse analysis to 

systematically investigate variations in five data processing steps, which may be one source of 

contradictory findings. These steps are normalization, time-series segment length, biomarker from the 

alpha band, aggregation, and classification algorithm. For replicability of our results, we utilize two 

publicly available EEG data sets with eyes-closed resting-state data containing 16/19 MDD patients and 

14/14 healthy control subjects. The diagnostic classifiers range from chance level up to 85%, dependent 

on dataset and combination of processing steps. We find a large influence of choice of processing steps 

and their combinations. However, only the biomarker has an overall significant effect on both datasets. 

We find one biomarker candidate that has shown a robust and reproducible high performance for MDD 

diagnostic support, the relative centroid frequency. Overall, the replicability of our findings with the 

two datasets is rather inconsistent. This study is a showcase for the advantages of employing a 

multiverse approach in EEG data analysis and advocates for larger, well-curated data sets to further 

neuroscience research that can be translated to clinical practice. 
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Introduction 

Major depressive disorder (MDD) is the most common mental disorder with a worldwide lifetime 

prevalence of 10.6%1. However, healthcare research assumes that a substantial number of cases is 

unreported, which might be due to current diagnostic practices, stigma, or public health policies2. 

Current diagnostic procedures are based on semi-structured interviews and self-assessed 

questionnaires, making the diagnosis rather subjective and dependent on the clinician’s experience, 

the current condition of the patient, and their ability for self-assessment3. Objective and reliable 

physiological biomarkers have the potential to support and accelerate diagnostic and therapeutic 

decisions4. A non-invasive and cost-efficient method to provide such biomarkers by recording brain 

function is electroencephalography (EEG). Studies have shown that biomarkers extracted from EEG 

signals can distinguish between MDD patients and healthy controls (HC)5–7. However, results contradict 

each other regarding discriminatory features extracted from these signals, possibly due to the variety 

in EEG data acquisition and processing7,8. Therefore, it is necessary to establish the reproducibility and 

robustness of these biomarkers before they can be utilized in a clinical setting9.   

One source of inter-study variability, which may confound reproducibility, is the selection of 

participants. In addition to general factors such as age, gender, and ethnicity, a multifaceted disorder 

such as MDD is heterogeneous in terms of severity and symptoms, progression, (drug) treatment 

(success), and the presence of comorbidities10. Furthermore, researchers assign the label MDD on 

different foundations, e.g. by clinical diagnosis based on the DSM-IV manual, or by questionnaires and 

scores such as the Patient Health Questionnaire-9 (PHQ-9)11. Sample sizes of 50 participants (MDD and 

HC) that are commonly used in classical hypothesis-driven studies using statistical analysis8 are very 

likely too small to capture the variability observed in MDD. As a consequence, the effect sizes of studies 

in neuroscience are often inflated9,12,13, leading to overestimation of the selectivity of the biomarkers 

studied. Comparability of studies may further be hampered by the lack of standardization in the 

recording of EEG data. Not just different registration settings like the time of the day, temperature of 

the room or resting-state conditions can introduce variability. Technical differences like the electrode 

placements, e.g. the quasi-standard of the EEG-10-20/10/5 system14 or the Geodesic Sensor Net 

configuration15 might be other sources of variability. Furthermore, even landmark-standardized 

placements might record different physiological sources between participants16. More variability in 

technical recording properties comes from the choice of the electrode type, recording reference, 

sampling frequency, and acquisition hardware. Finding reliable biomarkers across these variations 

requires data sharing, and collaborative efforts are sorely needed9. Replication of results with publicly 

available datasets or newly recorded data and the original processing pipeline is necessary to 

strengthen the findings9. 
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Once the data is recorded, preprocessing steps such as filtering, artifact removal, normalization, 

segmenting, subsampling or augmentation, and data aggregation are usually applied to the EEG data. 

Different choices in these steps between studies introduce further variability6. When biomarkers 

specific to the “classical” EEG bands are calculated, the bands are not always defined in the same 

frequency ranges. E.g. the alpha band, while still one of the most consistently defined frequency bands, 

is typically defined from 8 to 13 Hz, but can range within the borders of 6 to 14 Hz8. Biomarkers sharing 

the same name may be calculated in different ways such as the frequently reported alpha asymmetry17, 

hampering analytical reproducibility and replicability9. The next substantial difference across studies is 

the actual analytical method for differentiation between patients and HCs. These differences can be 

analyzed with statistical comparisons, regression models11, or multivariate methods such as machine 

learning algorithms. For the latter methods, the decision-making is most frequently modeled as a 

classification problem with the classes MDD and HC. The approaches range from classical supervised 

algorithms that usually operate on hand-crafted biomarkers18 to more complex deep learning models 

that often but not exclusively operate on the raw time-series data or their frequency domain 

representation, and inherently derive biomarkers in the training process6. While for the former 

methods, the most common way to derive biomarkers is the application of feature importance 

algorithms, the latter are often analyzed with methods of Explainable Artificial Intelligence (XAI)19, 

another step to introduce variability in data analysis. In most studies, the data recording and processing 

pipeline consists of one specific choice out of several possible alternatives. Yet, different methodical 

decisions during this process can have an impact on the findings, rendering comparison between 

studies hard18. One approach to reconcile the different findings and demonstrate robustness of the 

analysis of EEG data to the analytical variability is the multiverse analysis20. Neuroscience researchers 

have just started to use this approach to investigate the reproducibility and robustness of specific 

biomarkers11, or to recommend an optimized processing pipeline21. This analysis strategy demonstrates 

that high number of degrees of freedom in conducting EEG studies is one likely cause for the lack of 

reproducibility, replicability, and robustness in findings7,8. 

One controversial group of biomarkers for MDD are measures derived from the alpha band. Alpha 

waves are connected to relaxation and dominantly present when eyes are closed, and their 

characteristics are frequently used in studies aimed at diagnosing MDD5. While some studies suggest 

that biomarkers from the alpha band perform better than markers from other frequency bands22,23, 

other studies found that they perform worse24–26. Furthermore, it is disputed whether alpha activity is 

higher or lower in MDD subjects compared to HCs22,23. Noteworthy, all these studies used different 

processing methods, therefore their results are not comparable27,28. Yet, to translate results from 

research to diagnosis support in a clinical setting, objective physiological biomarkers with high 
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discriminatory power, replicability across datasets, and to some degree robustness to analytical 

variability are required.  

The goal of this study is to assess two of the main types of reproducibility on EEG alpha band biomarkers 

for the support of MDD diagnosis. We focus our analysis on classical machine learning algorithms with 

hand-crafted biomarkers to mimic a diagnostic scenario while retaining the explainability of the 

models, and the close connection to studies using statistical analysis on those biomarkers. We also limit 

our investigation to alpha markers, the most prominently discussed EEG biomarkers for MDD5. For the 

purpose of replication, we use two publicly available datasets with eyes-closed resting-state EEG and 

harmonize them29 to limit preprocessing variability at this point. To demonstrate robustness of the 

biomarkers against the processing pipeline, we systematically investigate the influence of a selection 

of preprocessing steps, different features, and classification algorithms with a multiverse analysis. The 

main analytic goals are to find biomarkers that have high diagnostic value and are replicable across 

datasets, as well as shedding light on the influence of processing steps and finding markers that are 

robust against those different processing choices. This approach can readily be transferred to optimize 

the processing pipeline of biomarkers with high diagnostic value. This study allows us to reconcile 

conflicting results in literature that putatively arise from processing differences across studies and 

provide an approach for finding reproducible EEG biomarkers for the diagnosis of MDD, or any other 

neuroimaging biomarker for psychiatric diseases.  
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Methods 

Data 

Two publicly available datasets (D130; D231) with MDD patients (D1: n=33 (presumably age: 40.3±12.9 ; 

female: n=1732), D2: n=24 (age: 30.9±10.4; female: n=11)) and HCs (D1: n=30 (presumably age: 

38.3±15.6; female: n=9), D2: n=29 (age: 31.5±9.2; female: n=9)) were downloaded in August and 

October 2021, respectively. The study designs were approved by the respective ethics committees (D1: 

Human ethics committee of the Hospital Universiti Sains Malaysia (HUSM); D2: Ethics Committee for 

Biomedical Research at the Lanzhou University Second Hospital) and participants provided written 

informed consent. All patients were diagnosed based on DSM-IV criteria. Patients from both datasets 

did not take any anti-depression medication during the two weeks before recordings were taken. Both 

datasets contain 5-minute resting-state EEG time series data with eyes closed. D1 was recorded with 

19 electrodes placed according to the 10-20 system14 with linked-ear-reference and 256 Hz sample 

frequency. D2 was recorded with 128 electrodes in the Geodesic Sensor Net15 with Cz as reference 

electrode and 250 Hz sample frequency. Lastly, MDD patients from D1 underwent two questionnaires, 

i.e. the Beck Depression Inventory-II (BDI-II)33 and the Hospital Anxiety and Depression Scale (HADS)34 

with scores of 20.6±8.6 and 10.7±2.4, respectively. Patients from D2, in contrast, were assessed with 

the Patient Health Questionnaire-9item (PHQ-9). 

Cleaning and Dataset Harmonization 

To establish a common ground for the analyses, we harmonized the datasets as far as possible using 

the Python Package MNE35 (Version: 1.2.3). We matched the 128 electrodes from D2 to correspond to 

the 10-20 system according to the supplementary material provided by the dataset. Electrodes not 

contained in both datasets were omitted, leaving 13 common channels: seven (pre)frontal (Fp1/2, F3/4, 

F7/8, Fz), two central (C3/4), two parietal (P3/4), and two occipital (O1/2). Afterward, both datasets 

were re-referenced to average for the later independent component analysis (ICA) and D1 was 

resampled to 250 Hz to match the sampling rate of D2. To harmonize the spectral bandwidth, both 

datasets were bandpass filtered from 1 to 40 Hz as common denominator of the different filters applied 

to the datasets before upload. Artifact components, i.e. eye blinks, muscle artifacts, heartbeat, line 

noise, and channel noise, were extracted by ICA36, automatically labeled with ICLabel37 (Version: 0.4), 

and EEG signals were reconstructed without the artifact components. Note that artifacts can be 

removed using various techniques6,38. However, this is a very extensive methodological topic in itself 

and their variations were therefore not included in our multiverse analysis. 
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Multiverse Analysis 

To investigate the impact of processing choice on the classification results, we adapted a multiverse 

analysis20. For each step (also referred to as factor) of the processing pipeline, we implemented 

different variations (also referred to as factor levels) and combined them fully combinatorically. This 

procedure led us to a multiverse with 864 parallel processing paths (Table 1). 

Table 1: Processing steps / factors and their variations / factor levels included in the multiverse analysis 

Processing Stage 
Processing Step / 

Factor 
Variations / Factor Levels 

Multiverse 

Analysis 

Conditions  

(# paths total) 

Preprocessing 

Normalization subject-wise; channel-wise; none 3 (3) 

Segment Length 5s; 10s; 15s; 20s 4 (12) 

Outlier segment removal (for all conditions) 

Feature Extraction 

Biomarker 

11 alpha band (8-13 Hz) 

biomarker (cf. Table 2) and one 

composite biomarker 

12 (144) 

Subsampling to fixed number of 10 segments (for all conditions) 

Aggregation None; median over 10 segments 2 (288) 

Classification Algorithm 

Support Vector Machine (SVM); 

Logistic Regression (LR); Random 

Forest (RF) 

3 (864) 

   864 paths 

 

Preprocessing 

Normalization is a common method to preprocess EEG signals before classification6. To compare the 

impact of normalization methods, we applied three variations of z-normalization: 1) No normalization. 

2) Subject-wise normalization is applied to level putative differences across subjects. For this, all 

channels of each subject are z-normalized jointly to align only the subjects of the datasets while 

retaining the between-channel differences for each subject. 3) Channel-wise normalization is 

frequently used when the raw time-series data is used in order to level putative differences across EEG 

traces. Here, each channel of each subject is z-normalized separately. Note that channel-wise 

normalization destroys spatial information based on absolute values of the power of the signal 

(absolute bandpower, envelope median, envelope interquartile range, envelope variance, envelope 
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range). Biomarkers based on distribution (envelope skewness, envelope kurtosis), or biomarkers 

normalized with respect to the full band (relative centroid frequency, relative bandpower) or a certain 

frequency (absolute centroid frequency, peak frequency) are not affected (cf. Table 2).  

After normalizing, we split the data into non-overlapping segments of 20s. To identify outlier segments 

and exclude them from further analyses, we identified the maximum and minimum values of each 

segment for each subject. An outlier is defined as having values exceeding or falling below, respectively, 

the mean of the maximum/minimum values plus/minus two times the standard deviation of the 

maximum/minimum values. Subjects with less than 10 remaining segments were excluded from 

further analyses, while subjects with more than 10 segments were subsampled to 10 to prevent over- 

or underrepresentation of single subjects. This left 30 (MDD: 53%) / 33 (MDD: 58%) subjects for D1/D2. 

Splitting recordings into segments of the same duration is a common method to augment data, yet 

there is no best practice on how long these segments should be and reported time spans vary widely. 

Shen et al.26 have demonstrated that segment length has a significant impact on classification results. 

Therefore, we also considered the first 5, 10, and 15 seconds of each segment for our analysis. Note 

that segments can also be cut in an overlapping fashion, but this additional variation would have blown 

our analysis out of proportion.  

Feature Extraction 

We extracted eleven biomarkers (Table 2) from the included segments. To compile a comprehensive 

set of alpha band biomarkers, we calculated spectral biomarkers common for diagnosis of psychiatric 

diseases5. We only chose biomarkers that can be calculated for each electrode (i.e. EEG channel) 

individually to keep a clear structure in the analysis. To obtain the spectral power characteristics of the 

signal, we used Welch’s method with Hanning window, 50% overlap, and a window length of 512 data 

points. This results in 2.05s window duration and a spectral resolution of 0.5 Hz. We set the typical 

frequency range of the alpha band from 8 to 13 Hz8. To calculate the envelope of the signal, we first 

extracted the alpha band with a Butterworth bandpass filter of either 4th or 8th order since pretests 

showed deviating results. This step is not included in the statistical analyses of the multiverse, since it 

is not used for every biomarker. The envelope biomarkers were calculated based on the envelope of 

the time-domain signal39, which was calculated with the Hilbert transformation using the absolute 

values. Since the upper and lower envelope of the alpha band had nearly identical absolute values, we 

only used the upper envelope for further analyses. The actual biomarkers were calculated on the 

distributions of the data points from the envelope. Because the calculation of some of the biomarkers 

is inconsistently or not at all described in the literature, we compiled a detailed overview over their 

construction to enable analytical reproducibility (Table 2). Biomarkers were calculated using the Python 

toolboxes scipy40 (Version: 1.9.3), numpy41 (Version: 1.23.5), and the function bandpower adopted from 
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Vallat and Walker42. To enable the analytical reproducibility of this study, source code for biomarker 

calculation is provided (see supplementary files “calculate_biomarkers.ipynb” and 

“alpha_markers.py”).  

Table 2: Biomarkers used in this study, their description, calculation, and sources/studies where those biomarkers were used 
for MDD diagnosis or characterization. * indicates the biomarker that are invariant to normalization. 

Biomarker Description Used In 

absolute 

bandpower 

Total power of the alpha band.  

Welch periodogram, and integration using Simpson’s rule 

(adopted from 42) 

22–26 

relative 

bandpower* 

The absolute power of the alpha band divided by the absolute 

power of the EEG signal (i.e. from 1 to 40 Hz) (adopted from 42) 

24 

absolute centroid 

frequency* 

Center of mass of the alpha bandpower spectrum. 

Welch periodogram normalized to unity total power, and 

calculating the power-weighted sum of the frequencies of the 

alpha band 

24,26 

relative centroid 

frequency* 

Absolute centroid frequency of the alpha band divided by the 

absolute centroid frequency of the total EEG band (here: from 1 

to 40 Hz) 

24 

peak frequency* The frequency of the alpha band spectral component with the 

highest power. 

Welch periodogram, select frequency with maximum power43 

24,26,39 

envelope kurtosis* Butterworth bandpass filter, Hilbert transform, and calculating 

the kurtosis of the absolute values of the transformed signal 

39;  

on raw 

signal: 24 

envelope 

skewness* 

Butterworth bandpass filter, Hilbert transform, and calculating 

the skewness of the absolute values of the transformed signal 

39;  

on raw 

signal: 24 

envelope median Butterworth bandpass filter, Hilbert transform, and calculating 

the median of the absolute values of the transformed signal 

39 

envelope 

interquartile range 

Butterworth bandpass filter, Hilbert transform, and calculating 

the interquartile range between the 25th and the 75th quartile of 

the absolute values of the transformed signal 

39 
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envelope variance Butterworth bandpass filter, Hilbert transform, and calculating 

the variance of the absolute values of the transformed signal 

39;  

on raw 

signal: 24 

envelope range Butterworth bandpass filter, Hilbert transform, and calculating 

the range of the absolute values of the transformed signal 

39 

 

 

We processed both the eleven biomarkers separately, and their vectorial combination into one 

composite biomarker, resulting in twelve biomarkers total.  

Biomarker values were calculated individually for each single time segment (and EEG channel). Since 

there are 10 segments per subject, this means that one subject is represented with 10 different values, 

which effectively corresponds to a data augmentation process commonly encountered in the field of 

machine learning. Alternatively, we pursued an aggregation strategy by taking the median over each 

subject’s 10 segments, resulting in one single and putatively more robust biomarker value per subject 

(and EEG channel). This is a typical approach for analyses with statistical inference tests. 

Classification 

The two datasets were used to train individual classification models with three commonly used and 

simple classification algorithms: Logistic Regression (LR), Support Vector Machine (SVM) with a linear 

kernel, and Random Forest (RF). When a model was trained with one biomarker, its input was a 13-

dimensional feature vector containing the biomarker values for each EEG channel. The composite 

biomarker resulted in a 156-dimensional feature vector (12 biomarkers x 13 channels), which was 

normalized before classification. The classification models were trained with six-fold cross-validation 

on a per-subject split basis29, resulting in five to six subjects per test dataset. To counteract imbalance 

of the class distribution, the balanced mode was used, and data was classified as MDD or HC. Note that 

the partitioning in training and test dataset was kept identical for all paths of the multiverse analysis to 

ascertain comparability. Accuracy was calculated for each model; the raw values can be found in the 

supplementary material (“metrics.csv”) for analytical reproducibility. We used sklearn44 (Version: 1.1.3) 

for all classification-related implementations.  

Statistics 

For a quantitative analysis of the replication across datasets, we calculated analyses of variance 

(ANOVA) with dataset as between-subject factor, and all other factors as within-subject factors. To 

investigate the effect of the processing steps on biomarker performance we used ANOVAs with the 
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factors of the multiverse analysis as within-subjects factors for each dataset separately and subsequent 

ANOVAs or t-tests for post hoc analyses whenever appropriate. Furthermore, we used one-tailed t-

tests against chance level, i.e. an accuracy of 50%, to assess the stability of each biomarker across the 

paths of the multiverse analysis. We refer to this analysis later as stable paths analysis, which combines 

internal reproducibility across folds and high performance of these models. All statistical tests were 

conducted with statsmodel45 (Version: 0.14.0). Reported values are mean ± standard deviation unless 

stated otherwise. We do not correct the statistical results but report different thresholds of alpha levels 

to facilitate comparison to other studies. 
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Results 

Replication of the classification results with two datasets 

The overall classification performance differs significantly between datasets (cf. Figure 1; F1,10=8.626; 

p<.05). Classifiers operating on D1 achieve a mean accuracy of 57.3±14.2% across all paths with a rather 

wide performance range from 15.0% to 85.6% mean accuracy for the individual paths. The overall 

performance of classifiers operating on D2 is at chance level with 51.0±8.5% with mean accuracies for 

the individual paths ranging from 26.7% to 73.3%. We find a significant interaction on the performance 

between the datasets and segment length (Figure 1B; F3,12=4.551, p<.05) and biomarker (Figure 1E; 

F11,44=3.496, p<.01). However, it should be considered that even the three top performing biomarkers 

(relative centroid frequency, composite biomarker, and envelope skewness) only show a meaningful 

above-average separation between HCs and MDDs for D1, i.e. random effects in classifiers for 

biomarkers performing around chance level might bias overall statistical effects. 

Impact of processing steps on classification performance 

The choice of biomarker significantly affects the classification performance for both datasets (Figure 

1E; D1: F11,55=21.583, p<.001, D2: F11,55=4.031, p<.001). Therefore, we present detailed analyses for the 

individual biomarker in subsequent paragraphs. The classification performance of D1 significantly 

depends on the classification algorithm (Figure 1F; F2,8=31.298, p<.001), with RF significantly 

outperforming the other two algorithms on the grand mean level (all t5>5.796, p<.01). The classification 

performance of D2 significantly depends on segment length (Figure 1B; F3,12=6.489, p<.01), which is 

driven by the significantly better performance of the 15s segments on the grand mean level (vs. 5s and 

20s: t5>4.712, p<.01). The processing steps normalization and aggregation do not affect classification 

accuracy for neither dataset (Figure 1A, C).  

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.11.24317109doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.11.24317109


13 
 

 

Figure 1 Effects of processing steps, biomarkers and classification algorithms for D1 and D2. Values are averaged across 
factors for each fold. Error bars depict standard deviations across folds. Horizontal bars and stars depict post hoc tests with 
*<.05, **<.01, ***<.001, all uncorrected. Biomarkers are sorted according to their mean performance across datasets. This 
order is retained for all subsequent figures. Color coding applies to all elements in the figure. Abbreviations: main = main effect, 
D1/2 = dataset 1/2, SVM = Support Vector Machine. 

 

The differential performance of the biomarkers is modulated by segment length (Figure 2 top row; D1: 

F33,165=2.011, p<.01, D2: F33,165=2.644, p<.001) and algorithm (Figure 2 bottom row; D1: F22,110=8.134, 

p<.001, D2: F22,110=3.188, p<.001) in both datasets. However, post-hoc tests demonstrate that the three 

top biomarkers in D1 (relative centroid frequency, composite biomarker, and envelope skewness) are 

largely robust against those preprocessing steps (Figure 2A, C; all p>.05). Some of the worse performing 

biomarkers are significantly influenced by the choice of segment length: the peak frequency in both 

datasets (all F3,15>5.171, p<.05), and the composite biomarker and absolute centroid frequency in D2 

only (all F3,15>4.149, p<.05). The algorithm has a significant effect on the classifiers using absolute 

centroid frequency and relative bandpower in both datasets (all F2,10>4.608, p<.05), on the classifiers 

from envelope kurtosis, envelope range, envelope interquartile range, envelope median, and 

envelope variance in D1 only (all F2,10>6.186, p<.05), and on the classifiers from relative centroid 

frequency and the composite biomarker in D2 only (all F2,10>5.967, p<.05).  
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Figure 2 Interaction effects of segment length x biomarker (top row) and algorithm x biomarker (bottom row) for D1 (left) 
and D2 (right). Values are averaged across factors for each fold. Error bars depict standard deviations. Stars depict an effect 
of the post-hoc ANOVA for the corresponding biomarker with *<.05, **<.01, ***<.001, all uncorrected. Abbreviations: D1/2 = 
dataset 1/2, LR = Logistic Regression, SVM = Support Vector Machine, RF = Random Forest. 

 

In addition to the two interactions common to both datasets, we find some differential effects for the 

other processing steps. Since those are dataset-specific and thus not generalizable, we only report 

them without further details. The raw accuracy data is provided in the supplementary material 

(“metrics.csv”), allowing further detailed analysis. Biomarkers are differentially affected by 

normalization in D1 only (F22,110=3.744, p<.001). The interaction effects between aggregation x segment 

length and aggregation x algorithm are unique for D2 (both p<.05).  

A detailed analysis of the influence of the processing steps on the top three biomarkers reveals that 

the classifiers operating on the relative centroid frequency are not affected by any of the processing 

steps in D1 (all main effects p>.073) and solely by algorithm in D2 (F2,10=7.541, p<.05). The composite 

biomarker is also not affected by any of the preprocessing steps in D1 (all main effects p>.082), but by 

segment length, and algorithm in D2 (both p<.01). Lastly, we find a significant effect of the choice of 

normalization and aggregation on envelope skewness in D1 (both p<.05). 

Robustness of biomarkers across paths and folds 

The less impact the processing steps have on the diagnostic accuracy of a biomarker, the more robust 

to analytical variability is this biomarker (smaller range in Figure 3A). Even the most robust biomarker 

of this study, the relative centroid frequency has a performance range of nearly 9.3% for D1 and 20.0% 
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for D2. The least robust biomarkers are envelope variance (D1: range=61.0%) and envelope skewness 

(D2: range=46.7%). 

 

 

Figure 3 A) Robustness to analytical variability assessed with the spread of classification accuracies across paths. Mean 
accuracies for each path are averaged across folds. Dotted line depicts chance level.  B) Replicability within datasets assessed 
with the variability of classification accuracies across folds within each path. Standard deviations across the six folds are shown 
for each path. Data points are depicted as outliers when their values extend beyond 1.5 times the interquartile range from the 
first and third quartile, respectively.  

 

In order to demonstrate the replicability of the performance results within the datasets, we calculated 

the standard deviations of classification accuracies across folds obtained by the six-fold cross-validation 

for each path (Figure 3B). The lowest mean standard deviation across folds within paths is 12.1% for 

envelope variance in D1 and 12.0% for absolute bandpower in D2. The highest variability we find for 

the relative centroid frequency (D1: std=15.3%, D2: std=19.9%). However, these variations need to be 

considered with caution in this study since each test set for cross-validation only contained five to six 

subjects.   

Examining the robustness of biomarkers within paths from the perspective of a quasi-meta-analysis, 

we find that only 11.8% of all diagnostic classifiers, i.e. 11.8% of all paths across biomarkers and 

datasets, perform significantly better than chance level on our most lenient alpha level of 0.01 (Figure 

4A lowest dotted line). Along this line, there is no biomarker that surpasses this threshold on all paths. 

Furthermore, only one biomarker, the peak frequency in D2, contains paths that perform better than 

our most conservative alpha level (Figure 4A highest dotted line, p<.0001).  

The t-statistic combines the performance of a classifier with its internal replicability, acknowledging 

the stochastic nature in the data sampling process. While inference testing is standard in medicine and 

neuroscience, biomarker studies from the machine-learning field sometimes neglect replicability in 

favor of performance. We find a strong positive correlation between performance (i.e. mean accuracy) 

and robustness (i.e. t-value) for the relative centroid frequency in D1 (r=.745; Figure 4B), the biomarker 
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with the highest performing classifiers and therefore chosen as an example. This demonstrates that 

even though there is a strong relationship between the two metrics, the latter should not be neglected. 

 

Figure 4 Stable path analysis. A) Robustness across folds assessed with t-statistics for each path of each biomarker. B) 
Exemplary correlation between classification accuracy and the robustness exemplary for the relative centroid frequency 
(r=.745). Abbreviations: D1/2 = dataset 1/2. Data points are depicted as outliers when their values extend beyond 1.5 times 
the interquartile range from the first and third quartile, respectively. The dashed horizontal lines depict the varying degrees of 
the alpha level.  

 

Stable paths analysis 

We define a stable path as a combination of processing steps that yields a diagnostic classifier 

performing significantly above chance level on an alpha level below 0.0001 (Figure 4A). This 

significance threshold was chosen to account for multiple testing in a multiverse analysis without over-

emphasizing our specific design choices. Since no paths in D1 surpass this threshold, we relaxed the 

threshold to 0.001 for this dataset and focused on the relative centroid frequency for two reasons: 

First, there are 30 paths and not just outliers above the threshold (Figure 5) and second, it is more 

parsimonious than the composite biomarker with 156 input features. In those paths, every variation 

of the processing steps is represented, except for RF as classification algorithm. Median aggregation 

was only included in two paths as well. The four paths with the highest classification performance 

(accuracy = 85%) have one processing step in common: classification with the SVM algorithm. The four 

paths with the highest robustness (t >= 7.51) share only the processing of the ten segments individually. 

The highest classification accuracy combined with robustness was achieved with 10 individual 15s 

segments and SVM as classification algorithm. For this dataset and biomarker, this combination might 

constitute the ideal processing pipeline for a good performing and robust biomarker.  

seg len [s] 5 5 5 10 10 10 15 15 20 20 

aggr indiv indiv median indiv indiv median indiv indiv indiv indiv 

algo LR SVM SVM LR SVM SVM LR SVM LR SVM 

acc [%] 82 82 79 83 85 85 84 85 84 85 
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t 6.45 7.26 5.92 6.97 8.97 6.66 7.74 9.02 6.92 7.51 

Figure 5 Stable paths for the relative centroid frequency in D1. Abbreviations: seg len [s] = segment length in seconds, aggr 
= aggregation, algo = algorithm, acc [%] = accuracy in percent, t = t-value of tests against chance level, indiv = 10 individual 
segments, median = median of 10 segments, LR = Logistic Regression, SVM = Support Vector Machine. Note that normalization 
is omitted here because the biomarker is invariant to normalization. 

 

For D2, the two stable paths for alpha peak frequency both result in a performance of only 62% 

classification accuracy. Note that the calculation of this biomarker is also independent of normalization. 

The preprocessing pipelines with the stable paths both utilize segment lengths of 15s and median 

aggregation. The choice of classification algorithm yields slight differences in replicability (Logistic 

Regression: t=12.9; SVM: t=12.2). 

Breakdown of relative centroid frequency 

Since the relative centroid frequency stands out with its high and robust performance for both 

datasets, we subjected this biomarker to further investigations. The best performing path across both 

datasets for the relative centroid frequency is achieved with 10 individual 20s segments, therefore we 

chose this preprocessing pipeline for the analysis. In D1, the relative centroid frequency ranges below 

one consistently across electrodes for MDD patients, while it ranges consistently above one for HCs 

(Figure 6A). This means that the centroid of the alpha band is smaller than the centroid of the whole 

frequency spectrum in MDD patients and vice versa for HCs. Relative centroid frequency is composed 

of the absolute centroid frequency of the alpha band as well as the (absolute) centroid frequency of 

the broadband signal (here: 1 to 40Hz). Interestingly, the former does not perform well as a biomarker. 

Therefore, we investigated the latter (Figure 6B), which was not included in our original biomarker set 

because it is not a marker of the alpha band. This data suggests that the centroid frequency of the 

broadband signal might separate well between MDD and HC and that the discriminatory information 

is in the full signal rather than in the alpha band. However, these findings do not seem replicable with 

D2 (Figure 6C) due to a rather high spread of the MDD patients across the full band in D2 (Figure 6D).  
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Figure 6 Relative centroid frequencies of all electrodes for D1 (A) and D2 (C), respectively. The dotted line represents a relative 
centroid frequency of one, meaning that the centroid frequency of the alpha band corresponds to the centroid frequency of 
the full band. Relationship between the centroid frequency of the full signal (1 to 40Hz) and the centroid frequency of the alpha 
band (8 to 13Hz) for D1 (B) and D2 (D) for each subject and each channel separately. Data points are depicted as outliers when 
their values extend beyond 1.5 times the interquartile range from the first and third quartile, respectively. Error bars depict 
interquartile ranges in the x- and y-direction. 
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Discussion 

This study assesses several types of reproducibility9 of alpha band EEG biomarkers for MDD diagnosis. 

It mainly demonstrates the robustness of several biomarkers by assessing their diagnostic performance 

across a multiverse of possible processing options as well as their replicability with two separate 

publicly available datasets. Using only biomarkers from the EEG alpha band, we achieve diagnostic 

accuracies that range from chance level up to 85% depending on the dataset, preprocessing variations, 

biomarker, and classification algorithm applied.  

Replicability of biomarker research is important for generalizability and application in a clinical setting. 

The performances of both datasets were significantly impacted by the biomarker choice with the 

relative centroid frequency being the best performing and rather robust biomarker across datasets. 

Further replication was severely hampered by the classifiers on D2 performing on average only on 

chance level; a similar effect was observed on this dataset by other studies as well11,29. To assess the 

replicability within datasets, we used six-fold cross validation to receive a range of classification results 

instead of randomly drawing one single training- and test-set. These results were further used to 

substantiate our findings. Limited replicability across datasets despite the same analysis pipeline as we 

find in this study might have sources related or unrelated to the disease. The patients of both datasets 

have been diagnosed with a similar procedure, and both patient groups did not take anti-depressant 

medications two weeks prior to the study. However, the studies were conducted in different countries, 

the patients from D1 were on average about ten years older, and detailed symptoms cannot be 

compared due to the lack of detailed neuropsychological tests common to both datasets. Given the 

heterogeneity of MDD10 and the small sample sizes, the variability of patients within and across 

datasets cannot be assessed properly and might have contributed to the limited reproducibility. 

Furthermore, there are differences in the recording setup, electrode placement, and electrode 

referencing. It has been shown that even electrodes from the same placement record different 

underlying brain regions between subjects16, questioning the comparability of different electrode 

placements. Further studies are needed to systematically assess all these impact factors.  

In order to understand the physiological underpinnings of a heterogeneous disease like MDD and find 

reproducible biomarkers, we need to know much better: Who are our subjects? The variability in 

symptoms and their expression needs to be assessed thoroughly and represented in the data. This 

holds for both patients and healthy controls, labels that are in fact too simple for capturing the complex 

physiology and phenology of a disorder such as MDD46. This endeavor necessitates much larger 

datasets to achieve some convergence of the findings. The better characterized the datasets are, the 

higher the chances that data can also be pooled across studies. This was unfortunately not possible in 
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this work despite harmonization of the datasets, a problem faced by other studies using these two 

datasets as well29.  

The vast variability in processing and analysis pipelines for neuroimaging data is another potential 

source for lack of reproducibility, which is addressed with meta- and multiverse-analyses, or multi-

analyst studies47. With our multiverse analysis, we find an influence of some of the investigated 

processing steps, and observe that some of the biomarkers that perform on chance level on average 

have an acceptable performance and robustness in individual pipelines, e.g. the alpha peak 

frequency48,49. If such a pipeline was accidentally chosen in a traditional study only implementing one 

pipeline, this biomarker could be reported as a good EEG biomarker for MDD. Conversely, a biomarker 

with a bad performance in one pipeline might be disregarded for further analyses despite its potential, 

even though a specific processing choice might explain the bad performance. One example here is the 

impact of classification algorithms. Random forest performs better overall in D1 and is especially 

advantageous for some processing paths and biomarkers in both datasets. This indicates that the data 

space in these cases is not as well linearly separable since the other two algorithms are linear classifiers. 

Nonetheless, the most stable paths investigated here include the two linear classifiers. The impact of 

segment length has been shown to influence classification performance26, a finding we partially 

replicate but not consistently. The tendency for better performance with longer segments suggests that 

the discriminatory features of MDD may be embedded in the course of time. Nonetheless, dividing 

recordings into sections of such length reduces the amount of data available for training; therefore, 

this is always a trade-off. Performing a multiverse analysis is advantageous for processing options where 

the best variation is not known and can strengthen the credibility of a finding if it is rather robust across 

the multiverse space. Conversely, the multiverse analysis can also be used to optimize the path for a 

given dataset and application. While this study provides the multiverse analysis across five processing 

steps, further steps such as artifact removal, feature extraction and selection as well as evaluation of 

the models offer room for further variations and need to be considered in future research.  

The multiverse analysis of this study was restricted to alpha band biomarkers because of contradictions 

in literature regarding their performance5. The best performing while still robust biomarker in this study 

is the relative centroid frequency. Surprisingly, this biomarker is only represented very sparsely in the 

depression literature so far. In two studies it was included as putative biomarker and was either 

selected by one of four feature selection algorithms for the beta band and Fp2 electrode24, or not 

reported whether it was included in the final feature set50. The relative centroid frequency is composed 

of the absolute centroid frequency and the centroid frequency of the broadband signal restricted from 

1 to 40 Hz. Interestingly, the absolute centroid frequency performs substantially worse than the 

relative centroid frequency in our study, suggesting that the selectivity for MDD patients might be 
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driven by the total centroid frequency of the broadband. Our additional analyses demonstrate that this 

marker seems to separate the two clinical groups well in D1. Since we focused our analyses on the 

alpha band biomarkers, we did not pursue this further. However, though it is also the best performing 

biomarker for D2, we cannot replicate the good separation of clinical groups by the broadband centroid 

frequency in this dataset. A comparison of subfigures 6B and 6D may provide a potential explanation 

for this discrepancy: For full-band centroid frequencies higher than 6Hz, both datasets share the 

tendency of higher values in the MDD group compared to HCs. In contrast, we do not observe any 

subjects with a full-band centroid frequency below 6Hz in D1, whereas D2 features a distinct cluster of 

mainly MDD patients in this region. Considering that the recordings were taken in closed-eye resting-

state, such remarkably low full-band centroid frequency values could plausibly be an indicator of 

drowsiness, or even sleep5, impeding consistency between study conditions. Since there is no chance 

of confirming this hypothesis post-hoc, it remains purely speculative. But this ambiguity underlines 

again the vital importance of controlling and reporting study and recording conditions in a rigorous way 

as a fundamental prerequisite to ensure comparability of data across studies. To conclude, the relative 

centroid frequency of the alpha band as well as the centroid frequency of the broadband signal 

constitute interesting depression biomarkers that warrant further investigation.  

A further biomarker that stands out is the peak frequency with outstanding stable paths in D2. 

However, we find its performance and robustness in D1 subpar. Alpha peak frequency is repeatedly 

discussed as a diagnostic biomarker for mental diseases8,51,52, although there is evidence that there are 

substantial differences across individuals. Even though this biomarker is investigated intensively, 

findings are still conflicting49. We can replicate this conflict with our analyses but cannot resolve it since 

the differences arise mainly between datasets. All other individual biomarkers perform overall not 

sufficiently for consideration in a diagnostic scenario. Combining the individual markers into a 

composite biomarker constitutes a common method to construct a high-performance biomarker24–

26,39. In this study, however, we do not find a distinctive advantage of the composite biomarker. It is 

noteworthy that this biomarker had 156 dimensions, which is out of proportion given the small sample 

size and a plausible explanation for the inferior performance53. Extensive feature selection, however, 

was out of the scope of this study given the complexity of the multiverse analysis. 

The characteristics of the alpha band exhibit substantial inter-personal variations and are associated 

with age, neurological diseases, and memory performance51. A possible mitigation of these inter-

individual differences might be to define alpha not by fixed frequency boundaries but rather by taking 

the individual alpha peak(s) into account54. Additionally, further biomarkers need to be included in 

future studies, searching for reproducibly high performing biomarkers for the support of depression 

diagnosis. Those biomarkers might be derived from other frequency bands, or come from completely 
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different categories such as biomarkers from nonlinear dynamics, connectivity features, or entropy 

characteristics to provide additional characterization of abnormal brain activity in MDD5.  

To conclude, this study demonstrates the large influence of choice of processing steps and their 

combinations. A multiverse approach in analyses of EEG resting-state data is therefore recommended, 

at least for the processing steps where an informed decision about a specific option cannot be made. 

Furthermore, we find one biomarker candidate that has shown a robust and reproducible high 

performance for MDD diagnostic support. This candidate, the relative centroid frequency, has 

previously not gained much attention in EEG research, yet is a marker that warrants further 

investigation. The restricted replicability of our findings with two datasets mirrors the inconsistencies 

in the field very well and highlights the necessity for large and well-curated EEG datasets for MDD 

research. Along this line, this study is based on rather small datasets, which renders our findings 

primarily a methodological showcase restricted in generalizability.  
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Supplementary Material 

Code for biomarker calculation: “calculate_biomarkers.ipynb” and “alpha_markers.py” 

Raw accuracies of diagnostic classification models: “metrics.csv” 
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