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Summary

Background: Heart failure (HF) is a highly heterogeneous and complex condition. Although
patient care generates vast amounts of clinical data, robust methods to synthesize available data for
individualized management are lacking.
Methods: A mechanistic computational model of cardiac and cardiovascular system mechanics was
identified for each individual in a cohort of 343 patients with HF. The identified digital twins—
comprising optimized sets of parameters and corresponding simulations of cardiovascular system
function—for patients with HF in the cohort is used to inform both supervised and unsupervised
approaches in identifying phenogroups and novel mechanistic drivers of cardiovascular death risk.
Findings: The integration of digital twins into AI-based analyses of patient data enhances the perfor-
mance and interpretability of prognostics AI models. Prognostics AI models trained with digital twin
features are more generalizable than models trained with only clinical variables, as evaluated using
an independent prospective cohort. In addition, the digital twin-based approach to phenomapping
and predictive AI helps address inconsistencies and inaccuracies in clinical measurements, enables
imputation of missing data, and estimates functional parameters that are otherwise unmeasurable
directly. This approach provides a more comprehensive and accurate representation of the patient’s
disease state than raw clinical data alone.
Interpretation: The developed and validated digital twin-based AI framework has the potential
to simulate patient-specific pathophysiologic parameters, thereby informing prognosis and guiding
therapeutic options.Ultimately, this approach has the potential to enhance the ability to focus on the
most critical aspects of a patient’s condition, leading to individualized care and management.
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Introduction
Heart failure (HF), both with preserved and with re-

duced ejection fraction (EF), is a heterogeneous syndrome
characterized by abnormal cardiac structure and function,
leading to reduced cardiac output and/or elevated filling
pressures at rest or with exertion [1, 2]. This highly prevalent
multifactorial condition remains associated with significant
morbidity and mortality [3]. A major challenge in HF
management is individualization of risk and treatment, with
relatively fewer adequate treatment options for those with
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Interpretable AI in Heart Failure

heart failure with preserved ejection fraction (HFpEF) than
for those with heart failure with reduced ejection fraction
(HFrEF) [4–6]. Due to the wide range of clinical presenta-
tions and diverse underlying mechanisms, it is often difficult
to tailor treatments to individual needs [7].

To better understand and assess heterogeneity in HF,
unsupervised machine learning (ML) has been applied
to patient record data to identify patient subgroups with
similar characteristics that have distinct prognoses [8–12].
Recent applications integrate molecular biomarkers with
clinical variables to enhance mechanistic insights into
phenogroups identified through ML [13–15]. Nonetheless,
although unsupervised ML-driven analyses of large HF
patient datasets have successfully identified phenogroups
with different prognoses, interpreting the mechanisms be-
hind these differences remains limited and relies on prior
knowledge. Similarly, supervised learning approaches, ei-
ther using traditional ML or deep learning, can be trained to
robustly predict mortality in HF patients [16–18]. However,
supervised ML models used to improve performance do not
easily yield mechanistic interpretation.

We have developed a model-based, physiology-informed
ML classification approach to categorize HF patients into
distinct phenotypic groups, revealing that when explicit
physiological prior knowledge embedded in a computa-
tional model is integrated with data-driven inference, the
phenotyping process is enriched compared to a purely data-
driven approach [19]. Here we build on that framework uti-
lizing digital twins—comprising optimized sets of parame-
ters and corresponding simulations of cardiovascular system
function—for HF patients in a retrospective cohort to inform
both supervised and unsupervised approaches in identifying
phenogroups and novel mechanistic drivers of cardiovascu-
lar death risk. We demonstrate how the integration of digital
twins into AI-based analyses of patient data enhances the
performance and interpretability of prognostics AI models.
Finally, we show that prognostics AI models trained with
digital twin features are more generalizable than models
trained with only clinical variables, as evaluated using an
independent prospective cohort.

Methods
Study design and patient data extraction

A retrospective cohort of 343 patients, selected from
all patients with HF who visited the University of Michi-
gan Health System (UMHS) between June 1, 2009, and
November 30, 2023, was identified using Electronic Health
Records (EHR) data. Cohort discovery is briefly summa-
rized in Figure 1. Another independent prospective cohort of
86 patients with dyspnea from the University of Wisconsin
(UW)-Madison was also included for validation of the prog-
nostic model. This cohort includes 9, 49, 6, and 5 patients
in pulmonary hypertension (PH) groups 1, 2, 3, and 4,
respectively, and 17 patients that presented with idiopathic
dyspnea. Of those in group 2 PH, 32 were diagnosed with

Figure 1: UMHS cohort discovery.
The flowchart represents the University of Michigan Healthcare
System cohort discovery process. The extracted data are
used for digital twin identification, precision phenotyping, and
building prognostic AI models.
RHC = Right Heart Catheterization, TTE = Transthoracic
Echocardiography, CMR = Cardiac Magnetic Resonance Imag-
ing, CO = Cardiac Output, HR = Heart Rate, PADP =
Pulmonary Artery Diastolic Pressure, PASP = Pulmonary
Artery Systolic Pressure, PCWP = Pulmonary Capillary Wedge
Pressure, IVSd = Interventricular Septum Thickness, LVPWd
= Left Ventricular Posterior Wall Thickness, LVEF = Left
Ventricular Ejection Fraction, LVIDd = Left Ventricular Inter-
nal Diameter end-Diastole, LVIDs = Left Ventricular Internal
Diameter end-Systole, LAd = Left Atrial Diameter, LVEDV =
Left Ventricular End-Diastolic Volume, LVESV = Left Ventric-
ular End-Systolic Volume, RVEDV = Right Ventricular End-
Diastolic Volume, RVESV = Right Ventricular End-Systolic
Volume, Qp/Qs ratio = the ratio of pulmonary blood flow
(Qp) to systemic blood flow (Qs), LVAD = Left Ventricular
Assist Device.
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HFpEF. Further details are provided in the supplementary
material (Method S1).

Identification of digital twins
We created parameterized representations of each pa-

tient using a computational model of the cardiovascular
system by matching simulation outputs to corresponding
EHR data. The individualized model for a given patient—
comprising an optimized set of model parameters and cor-
responding cardiovascular simulations—constitutes the pa-
tient’s digital twin. The computational model used for sim-
ulating digital twins includes a central and peripheral parts
(Figure 2A). The central part, representing the heart, is
based on the three-wall segment (TriSeg) heart model of
Lumens et al. [20](Figure 2B). The TriSeg model is coupled
to lumped elements representing the peripheral circulation,
atria, and pericardium. This model represents an optimal
balance between maintaining relatively low computational
complexity and achieving sufficient detail to reflect key
anatomical features assessed by TTE and CMR. The periph-
eral part of the model is coupled to the TriSeg heart model,
forming a closed-loop model and enabling the simulation
of blood flow and pressure dynamics throughout the car-
diovascular system (Figure 2C). A detailed description of
digital twins identification is provided in the supplementary
material (Method S2). The MATLAB (MathWorks Inc.)
source code for the algorithm is available on GitHub at:
https://github.com/beards-lab/TriSeg-Digital-Twins.git.

Unsupervised clustering
To determine the optimal number of phenogroups in the

cohort, we employed K-means, hierarchical clustering, and
Gaussian mixture model clustering, optimized using both
the Davies-Bouldin index (DBI) and the gap statistic [21,
22]. After identifying the optimal number of clusters, we
applied a hybrid approach combining K-means and hier-
archical clustering to finalize the clustering results. A 3D
volcano plot [23] was adapted to visualize differences across
the three groups. Detailed methodologies are provided in the
supplementary material (Method S3).

Prognostics AI model and validation
Overlapping features from the UMHS and UW cohorts,

derived from clinical characteristics and digital twins, were
used to train random survival forests (RSF), a non-linear
machine learning method. The conventional Cox propor-
tional hazards model was also developed. Both models
were trained on the UMHS cohort data and externally
validated on the UW cohort. The models were developed
in R version 4.4.1., using the randomForestSRC and glmnet
packages [24, 25], respectively. The predictive performance
of the models was evaluated using the C-index, integrated
area under the curve (iAUC), and time-dependent receiver
operating characteristic (ROC) curves. To assess perfor-
mance and quantify uncertainty, the RSF was trained 25
times with the same features and hyperparameters. Detailed
methodologies are provided in the supplementary material
(Method S4).

Statistical analysis
All statistical analyses were performed using GraphPad

Prism 10.2.2. Continuous variables were analyzed via un-
paired t-tests and one-way ANOVA. Categorical variables
were compared using the chi-square test. Bonferroni cor-
rection was applied for multiple comparisons. Correlations
were assessed using Pearson’s correlation coefficient. Sta-
tistical significance was defined as *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001.

Results
Digital twins yield novel patient-specific insights
into cardiovascular state

We retrospectively reviewed 343 HF patients from the
UMHS cohort, collecting data on 116 clinical characteris-
tics. Among these patients, 215 were diagnosed with HFrEF,
while 128 had a baseline left-ventricular ejection fraction
(LVEF) estimated to be ≥ 50%. Although these patients are
labeled as HFpEF for convenience, they represent a hetero-
geneous group, including patients with pulmonary arterial
hypertension (N = 6) or hypertrophic cardiomyopathy (N
= 32), contributing to a greater degree of heterogeneity
compared to the general HFpEF population. The extracted
baseline characteristics are summarized in Supplementary
Table 1. Measured characteristics and paitent-specfic pa-
rameters from digital twins are provided in Supplementary
Tables 2 & 3.

The identified digital twins represent a synthesis of
anatomical measurements and volumetric flow data derived
from TTE and CMR, along with pressure data from RHC.
For example, simulations of a patient with HFrEF, a di-
lated left ventricle (LV), mitral insufficiency, and tricuspid
insufficiency (Figure 2B, Supplementary Video 1) show
cardiac anatomic and mechanical features consistent with
the imaging and catheterization data for this individual.
This individual’s simulation outputs, including pulmonary
and systemic pressures, mitral and aortic valve flows, and
ventricular and atrial volumes (Figure 2C) closely match the
corresponding targets from clinical measurements (Figure
2D).

The relationships between simulated and measured vari-
ables for all subjects are illustrated in Supplementary Figure
1 and 2, indicating that digital twins robustly capture the
diverse cardiovascular hemodynamic characteristics present
in HF patients. Key parameter distributions, comparing
HFpEF and HFrEF with normal subjects, are summarized in
Supplementary Figure 3, revealing insights into contractil-
ity, power, stiffness, and vascular compliance across patient
groups, which is consistent with HF pathophysiology.

Digital twins reveal novel phenogroups
representing distinct etiologies

Figure 3A and 3B show the 2D principle component
projection of the space of functional parameters from dig-
ital twins and the corresponding PCA loadings. The PCA
loadings reveal the parameter differences that underlie three
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Figure 2: Digital twins identification.
(A) The modified TriSeg heart model is integrated with a lumped parameter model to simulate closed-loop hemodynamics. (B)
Model-predicted short-axis heart geometry is illustrated for a representative HFrEF patient at three phases during one cardiac
cycle. The color represents myofiber stress in the wall. (C) Key simulation outputs are compared to data for the same patient.
Dashed lines represent measurements from RHC, TTE, and CMR, while solid lines represent the simulation outputs. (D) The table
compares model outputs to clinical measurements for the example patient. Valve regurgitation degree is reported as a categorical
variable in the TTE reports and as regurgitation fraction in the simulations.
TriSeg = three-wall segment, MV = mitral valve, AV = aortic valve. Other abbreviations are as previously defined at Figure 1.

phenogroups: Phenogroup 1 is characterized by patients
with high vessel compliance and/or low vascular conges-
tion; Phenogroup 2 is characterized by patients with high
pulmonary resistance and elevated pericardial constraint;
and Phenogroup 3 is characterized by patients with dilated
and hypertrophic hearts, and elevated myocardial passive
stiffness. Phenogroup 1 includes 61 HFrEF and 22 HFpEF
patients; Phenogroup 2 includes 63 HFrEF and 88 HF-
pEF patients; and Phenogroup 3 includes 91 HFrEF and
18 HFpEF patients (Figure 3C). There are no significant
demographic differences across the phenogroups.

A modified 3D volcano plot is used to visualize fea-
tures that show significant differences between phenogroups
(Figure 3D, Supplementary Video 2). Each dot in the plot
represents a feature, where gray dots indicate insignificant
differences, and colored dots indicate significant differ-
ences. Red indicates that variables progressively increase
from phenogroups 1 to 2 to 3, while blue indicates that
variables progressively decrease from Phenogroup 1 to 2
to 3. Features where Phenogroup 2 exhibits the highest
value are colored orange with color gradient shifted towards
red and green based on proximity to Phenogroups 1 and
3. Features where Phenogroup 2 exhibits the lowest value
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Figure 3: Precision phenotyping of heart failure patients
(A) Clustering results based on digital twins from UMHS cohort. (B) PCA loadings for PC1 and PC2. (C) Bar plot showing
the distribution of diagnoses across phenogroups. (D) 3D volcano plot of clinical characteristics and digital twin features. (E-
G) Heatmaps showing significant differences in clinical characteristics, functional parameters, and simulation outputs across
phenogroups.
PCA = principal component analysis, PC = principal component, PVR = pulmonary vascular resistance, PG = phenogroup, RF
= risk factor, PF = protective factor. D = features from clinical data, S = features from simulation outputs. Other abbreviations
are as defined in Figure 1 and Supplementary Table 3.
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are colored purple, with color shifting towards pink and
navy blue based on proximity to Phenogroups 1 and 3
(Supplementary Figure 4).

All significant features, including clinical characteris-
tics and digital twins, are visualized using heatmaps (Fig-
ures 3E–G). Heatmap variables are listed based on graded
changes across phenogroups, as captured by the 3D volcano
plot. Variables are manually ordered, starting with those
lowest in Phenogroup 1, followed by Phenogroup 2, and
then Phenogroup 3. Consistent with the PCA loadings of
the functional parameters (Figure 3A), Phenogroup 3 has
the most extreme heart geometric parameters, associated
with significant hypertrophy and dilation; Phenogroup 2
shows the highest pericardial constraint and mitral valve
stenosis, and although pulmonary vascular resistance does
not appear directly, it is reflected by the highest burden
of PH. Phenogroup 1 exhibits similar heart geometry to
Phenogroup 2 but has the highest vessel compliance and the
lowest pericardial constraint (Figures 3E, F).

Hemodynamic and heart morphology measurements,
along with corresponding simulation outputs, were assessed
across phenogroups. These variables were categorized into
two groups: functional and morphological abnormalities.
Functional abnormalities were defined by elevated LV fill-
ing pressures (indicated by PCWP, LVEDP, E/A ratio and
E/e’) and increased RV filling pressures (indicated by ele-
vated RAP and RVEDP), as well as PH (evidenced by higher
PASP, PADP, and RVSP). Morphological abnormalities are
characterized by hypertrophy and heart enlargement, indi-
cated by EF, LVEDV, LVESV, RVEDV, RVESV, LVIDd,
LVIDs, IVSd, LVPWd, and LV and RV mass. Phenogroup
3 exhibits both functional and morphological abnormal-
ities, while Phenogroup 2 shows functional abnormali-
ties with generally normal heart morphology. In contrast,
Phenogroup 1 has lower LV and RV filling pressures, lower
pulmonary pressures, and relatively normal heart morphol-
ogy (Figures 3E, G).

Phenogroups identified by digital twins have
distinct prognoses

Among the 343 patients in the UMHS cohort, over a
5-year follow-up period, 107 (31.2%) reached the primary
composite endpoints. These included 94 all-cause deaths
(27.4%), 16 LVAD implantations (4.7%), and 8 heart trans-
plantations (2.3%) The freedom from the primary composite
endpoint shows no significant difference between HFrEF
and HFpEF (Figure 4A). However, there is a distinct pattern
of association between the phenogroups identified by digital
twins and the prognostic outcomes (Figure 4B, Supplemen-
tary Figure 5). Specifically, the survival probability within
5 years for the primary composite endpoint is highest in
Phenogroup 1, followed by Phenogroups 2 and 3 (80.7%,
69.5%, and 58.7%, respectively) (Figure 5B). With regards
to all-cause mortality, Phenogroup 1 also shows the highest
survival probability (81.9%), whereas Phenogroups 2 and
3 have similar survival probabilities (70.9% and 67.9%),
resulting in a non-significant difference across the three

phenogroups (Figure 4C). The MAGGIC score, widely used
for predicting all-cause mortality in HF patients [26], was
also calculated for these three phenogroups. Phenogroup 3
has the highest MAGGIC score, while Phenogroups 1 and
2 have comparable scores, which is partially consistent with
the Kaplan-Meier survival differences (Figure 4D).

The multivariable Cox proportional hazards model was
employed to assess the association between phenogroups
and clinical outcomes using Phenogroup 1 as the reference
group. Well-established HF prognostic factors were selected
as covariates [26], while those involved in the digital twin
identification process were excluded to avoid confounding
effects. Phenogroup 3 is significantly associated with a
higher risk of the primary composite endpoint [hazard
ratio (HR) 2.72, 95% confidence interval (CI) 1.53-5.06]
and all-cause mortality (HR 1.98, 95% CI 1.08-3.80)(Table
1). Phenogroup 2 initially appears to be associated with
higher risk of the primary composite endpoints and all-cause
mortality, as it shows higher rates for both primary com-
posite endpoints (30.5% vs. 19.3%) and all-cause mortality
(29.1% vs. 18.1%) compared to Phenogroup 1. However,
after adjustments for covariates, these associations are not
statistically significant (Table 1).

To interpret the differences phenogroup outcomes (Fig-
ures 4B, C), we identified risk and protective factors among
features, based on whether or not they are increased or
decreased in value or frequency in Phenogroup 1 compared
to 3 (Figures 3E, F, and G). Most of the risk and protective
factors from clinical characteristics are well-established in
relation to HF prognosis. Risk factors include elevated left-
sided filling pressures, right-sided filling pressures, BNP
levels, abnormal heart geometry, as well as PH and atri-
oventricular valve insufficiencies. Protective factors include
higher BMI, better EF, and more frequent use of ACEi and
ARBs (Figure 3E). Beyond these clinical characteristics, the
functional parameters of digital twins identify additional
risk and protective factors, some of which are difficult
or impossible to measure clinically. Risk factors include
increased RV passive stiffness and pericardial constraint,
while protective factors include preserved pulmonary and
systemic vascular compliance and mitral valve resistance
(Figure 3F). Simulations from digital twins show substantial
overlap with clinical risk factors and also identify novel
risk factors like RV power output and RV free wall max-
imum stress, along with protective factors such as the LV
power/mass ratio and maximum strain of the LV, RV, and
septum (Figure 3G).

Digital twins enhancing predictive AI performance
We further extended our analysis by using digital twin

features in a prognostic ML model for predicting primary
composite endpoints. The RSF predictive model, selected
based on its performance [16, 18], is trained using features
present in both the UMHS and UW cohorts, using features
from clinical characteristics only, digital twins only, and
a combination of both from UMHS cohort. The selected
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Figure 4: Differences in prognostic outcomes across phenogroups
(A) Kaplan-Meier plot for the primary composite endpoint in the UMHS cohort, stratified by diagnosis. Kaplan-Meier plot for
the (B) primary composite endpoint and (C) all-cause mortality in the UMHS cohort, stratified by phenogroups. (D) Differences
in MAGGIC scores across phenogroups.
The primary composite endpoint includes all-cause mortality, LVAD implantation, and heart transplantation. Abbreviations are as
defined above.

features for the RSF input are shown in Table 2, ranked by
variable importance.

The out-of-bag (OOB) C-index of the RSF model based
on combined features is the highest (0.724), compared
to models using only clinical characteristics (0.707) or
digital twins (0.678). For reference, the C-index for the
MAGGIC score is 0.684 (Figure 5A). Time-dependent ROC
analysis shows that the RSF model based on combined
features has the highest predictive power over the entire
time range, with an OOB iAUC of 0.744, compared to
0.721 for clinical characteristics and 0.719 for digital twins
(Figure 5B). Interestingly, the RSF based on digital twins
demonstrates the highest predictive power within the first
year, with OOB AUCs for clinical characteristics, digital
twins, and combined features of 0.715, 0.747, and 0.748,
respectively, at six months (Figure 5C), and 0.708, 0.685,

and 0.729, respectively, at one year (Figure 5D), indicating
that the information from digital twins enhances short-term
predictions.

These findings are externally validated using the UW
cohort. Since in the UW cohort of 86 patients only two
experienced death and none underwent LVAD implantation
or heart transplantation, we used the trained RSF models to
predict the composite endpoint of all-cause mortality and
rehospitalization. The external validation confirms that the
RSF model based on combined features has the highest C-
index (0.671), outperforming models using either clinical
characteristics (0.618) or digital twins (0.626). Compared
to the training set, RSF models based on combined fea-
tures or digital twins maintain relatively stable predictive
power, while the model based solely on clinical charac-
teristics shows a bigger decrease in predictive power for
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Figure 5: Digital twins improve prognostic AI performance
The prognostic AI, referred to here as the RSF model, is trained using clinical characteristics, digital twins, and their combination
from the UMHS cohort. It is evaluated using (A) OOB C-index and (B) time-dependent AUC. The time-dependent ROC curves
and corresponding AUCs at (C) 6 months and (D) 1 year are shown. The AI’s performance is also externally validated using
the UW cohort, with evaluations based on (E) the C-index and (F) time-dependent AUC. Time-dependent ROC curves and
corresponding AUCs at (G) 6 months and (H) 1 year are also displayed.
Data are presented as violin plots or mean ± SD. RSF = random survival forests, OOB = out-of-bag, AUC = area under the
curve, ROC = receiver operating characteristic, CC = clinical characteristics, DT = digital twins, C = combination of CC and
DT.

the validation cohort compared to the training data (Figure
5E). The time-dependent ROC results are consistent with
these conclusions, with iAUCs of 0.613,0.623, and 0.690,
respectively (Figure 5E). In terms of 6-month and 1-year
predictions, the RSF models based on combined features
shows the highest performance, with AUCs of 0.735 at six
months and 0.753 at one year. The predictive power for
the digital twins-based model surpasses that of the clinical
features-based model (Figures 5G, H). We also validated
the model using only HFpEF patients. While the combined
model continued to show the highest performance, the over-
all performance decreases for the HFpEF only validation
group (n = 32, Supplementary Figure 6). Additionally, in

the UW cohort, two HFpEF patients who reached the all-
cause mortality endpoint consistently had higher risk scores
than the surviving HFpEF patients, regardless of whether
predictions were based on clinical features, digital twins, or
the combination (Supplementary Figure 7).

We also built RSF models using the MAGGIC score
combined with additional features from digital twins (Ex-
tended MAGGIC score) based on UMHS cohort. By adding
four features from digital twins (Table 2), the OOB C-index
increased from 0.684 to 0.731 (Figure 6A). The model’s
predictive power remained stable throughout the follow-
up period, with the iAUC improving from 0.710 to 0.768
(Figure 6B). At six months, the AUC for the RSF model
incorporating additional features reached 0.788, compared
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Table 1
Association between phenogroup membership and the risk of different adverse clinical outcomes using a multivariable Cox proportional
hazard analysis

Phenogroup 1 (n = 83) Phenogroup 2 (n = 151) Phenogroup 3 (n = 109)
Events Reference Events HR (95% CI) P Events HR (95% CI) P

Primary composite endpointa 16 (19.3%) Ref. 46 (30.5%) 1.11 (0.63–2.06) 0.73 45 (41.3%) 2.72 (1.53–5.06) 0.001
All-cause mortality 15 (18.1%) Ref. 44 (29.1%) 1.14 (0.63–2.16) 0.68 35 (32.1%) 1.98 (1.08–3.8) 0.03

CI, confidence interval; HR, hazard ratio.
Outcomes were adjusted for age, sex, smoking status, race, history of diabetes, hypertension, chronic obstructive pulmonary disease
(COPD), baseline creatinine levels, usage of angiotensin-converting enzyme inhibitors (ACEi), angiotensin II receptor blockers (ARBs), and
beta blockers, as well as for whether the patient had a first diagnosis of heart failure within the past 18 months.
a A composite endpoint includes all-cause mortality, LVAD implantation, or heart transplantation

Table 2
Selected variables for random survival forest

Clinical Characteristics
(n = 15)

Digital Twins
(n = 20)

Combined
(n = 21)

Extended MAGGIC Score
(n = 5)

Age Compliance of Systemic Veins Age MAGGIC score
Hemoglobin Compliance of Pulmonary Veins Hemoglobin E/A Ratio
Creatinine Constant Pericardium Constraint Creatinine LV Inner Diameter (end systole)
BNP RVEDP Cardiac Output Mean Mitral Valve Pressure Gradient
Max RA Pressure Resistance of Veins LV Posterior Wall Thickness Constant Pericardium Constrain
Cardiac Output Tricuspid Valve Regurgitation

Fraction
Interventricular Septum Thickness

LVESV Resistance of Pulmonary Valve E/A ratio
LV Posterior Wall Thickness Resistance of Mitral Valve Compliance of Systemic Veins
E/A Ratio LV Inner Diameter (end diastole) Resistance of Mitral Valve
LVEDV LVEDP Mean Mitral Valve Pressure

Gradient
LV Inner Diameter (end
diastole)

Resistance of Tricuspid Valve
(backwards flow)

Peak Pulmonary Valve Pressure
Gradient

Diabetes Mellitus Mean Mitral Valve Pressure
Gradient

Pulmonary Vascular Resistance

RVSP Peak Pulmonary Valve Pressure
Gradient

End Stage Renal Disease

End Stage Renal Disease E/A ratio Diabetes Mellitus
PASP Pulmonary Vascular Resistance Resistance of Pulmonary Valve

—

PADP Maximum Stress of Septum
DBP NYHA Class
Exponential Pericardium Constrain RVEDV
LVESV Maximum Strain of LV
Transmural Resistance of Systemic
Arteries

LV inner diameter (end diastole)
Minimum RV pressure

Italics represents functional parameters from digital twins, bold represents simulation outputs from digital twins, and underlined represents
comorbidities. Normal text without any formatting represents other clinical characteristics. Abbreviations are as defined above.

to 0.713 for the MAGGIC score alone (Figure 6C), and at
one year, these values were 0.756 and 0.707, respectively
(Figure 6D). Among all tested RSF models, the extended
MAGGIC score achieved the best OOB performance (Fig-
ures 5,6), suggesting a mix of linear and non-linear relation-
ships between the predictors and outcomes.

Discussion
Summary

The present study introduces a novel ML approach to
assess patients with HF, using physiology-informed patient-
specific simulations of cardiovascular function. Digital
twins not only provide individualized mechanistic insights
but also, through unsupervised ML, reveal three distinct
phenogroups linked to differential clinical outcomes. This
approach yields interpretable insights into the underlying
mechanisms of these phenogroups: Phenogroup 3 includes
patients with severe RV and/or LV systolic dysfunction;
Phenogroup 2 consists of patients with high pulmonary
vascular resistance or significant pericardial constraint;

and Phenogroup 1 comprises patients with high vascular
compliance and/or low congestion. Functional differences
across these phenogroups reveal baseline risk and protective
factors. Furthermore, results from supervised ML suggest
that digital twins can complement and improve the perfor-
mance of prognostic AI models.

This simulation-based approach offers several additional
advantages. It can correct inconsistencies and inaccuracies
in clinical measurements, and can be used to impute missing
data (Figures 4E, G). It estimates functional parameters that
are otherwise impossible to measure directly, providing a
more complete and accurate representation of the patient’s
disease state than raw clinical data alone. In addition, the
digital twin framework has the potential to empower simu-
lations of patient-specific prognoses and therapy outcomes.
Ultimately, this approach has the potential to enhance the
ability to focus on the most critical aspects of a patient’s
condition, leading to individualized care and management.
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Figure 6: Extended MAGGIC score
The Extended MAGGIC score combines the traditional MAG-
GIC score with additional features derived from digital twins.
Differences in (A) the OOB C-index and (B) time-dependent
AUC between the Extended MAGGIC score and the original
MAGGIC score are illustrated. Time-dependent ROC curves
at (C) 6 months and (D) 1 year, along with the corresponding
AUCs, are also shown.
Data are presented as violin plots or mean ± standard deviation
from the UMHS cohort. Abbreviations are as defined above.

Phenomapping
Phenomapping in HF, using ML techniques to identify

distinct subgroups among HF patients [8–15, 19], faces
several key limitations. The data sources are often chosen
based on ease of access and prior knowledge, leading to
significant variability across studies. Phenogroups identi-
fied in different studies often differ substantially in both
number and composition. While certain subgroups may
share some clinical characteristics across studies, the clas-
sification boundaries are often unclear, with considerable
overlap between groups in different studies [27]. Addi-
tionally, the heterogeneity of HF as a syndrome is usually
overlooked, and studies tend to under-explore important
mimickers, such as amyloidosis, which can obscure the
phenomapping results [28]. Moreover, many studies lack
hemodynamic measurements, which are crucial, especially
in the early stages of HFpEF. These challenges highlight the

need for more comprehensive data integration, the inclusion
of under-explored variables like hemodynamics, and a fo-
cus on discovering novel insights beyond existing clinical
knowledge.

Our digital twin hybrid with unsupervised ML helps to
overcome some of these limitations. Here phenomapping is
driven by simulations matched to hemodynamic and heart
geometrical measurements. Moreover, our approach avoids
using dimensionality reduction methods, which, while pow-
erful, often result in less interpretable outcomes. Instead, our
computational model maps patient data onto physiological
functional parameters. Because physiological knowledge is
embedded in the simulation framework, it yields identifica-
tion of novel phenogroups and risk factors, providing more
interpretable insights than those available from purely data-
driven approaches.

Prognostic value
Since the phenotypes of patients represented in digital

twins encapsulate physiological/pathological interrelation-
ships among clinical data, the digital twin is a robust vehicle
for incorporating domain knowledge into supervised ML.
Integration of digital twin features into AI-based analyses
of patient data improves survival prediction and generaliz-
ability of predictive models.

Our analysis identifies novel risk and protective factors,
as well as predictors for outcomes in patients with HF.
Factors derived from clinical characteristics, such as high
BNP levels being associated with poor outcomes, align with
prior knowledge and are not particularly novel. However,
the factors identified from digital twins, which are often
difficult or impossible to measure directly, represent promis-
ing new insights. First, both supervised and unsupervised
ML revealed that high vascular compliance is associated
with better outcomes, a potential prognostic factor that has
not been well investigated [29]. Second, passive stiffness
of the ventricle emerged as a risk factor from unsupervised
ML. While this factor cannot be measured directly, it can
be assessed through indicators of diastolic dysfunction and
is increasingly recognized for its prognostic value in both
HFrEF and HFpEF [30]. Additionally, pericardial constraint
was identified as a risk factor by both supervised and
unsupervised ML. While researchers have recognized the
potential role of the pericardium in the etiology of HF-
pEF [31], its significance in prognosis has been under-
explored and warrants further investigation. Lastly, some
known but challenging-to-measure risk factors, such as
LVEDP, were also identifiable through digital twins. This
capability highlights the substantial application potential of
digital twins, suggesting they can provide critical insights
that are difficult to derive from raw clinical data alone.
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