
Modelling complete dynamics of 
SARS-CoV-2 pandemics of Germany 
and its federal states using multiple 
levels of data 
Yuri Kheifetz *, Holger Kirsten, Andreas Schuppert and Markus Scholz * 

Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 

Haertelstrasse 16-18, 04107 Leipzig, Germany; holger.kirsten@imise.uni-leipzig.de 

* Correspondence: yuri.kheifetz@imise.uni-leipzig.de (Y.K.); markus.scholz@imise.uni-

leipzig.de (M.S.);  

Tel.: +49-341-97-16348 (Y.K.); +49-341-97-16190 (M.S.) 

Abstract:   

Epidemiological modelling is a key method of pandemic management including 

that of SARS-CoV-2. New insights into epidemiologic mechanics and new data 

resources require continuous adaptions of modelling approaches. We here 

present a revised and considerably extended version of our previous SARS-CoV-

2 model implemented as input-output non-linear dynamical systems (IO-NLDS). 

We now include integration of age-dependent contact patterns, immune waning, 

and new data resources such as seropositivity studies, hospital dynamics, 

variant dynamics, non-pharmaceutical intervention measures and dynamics of 

the vaccination campaigns. 

With this modelling framework, we explain the dynamics of several data 

resources for the complete pandemics in Germany as well as its 16 federal states.  

The latter also allows us to investigate the heterogeneity of model parameters in 

Germany for the first time. To achieve this goal, we extend our estimation 

approach by constraining variation of parameters among the federal states.  This 

allows reliable estimation of a few thousand parameters using hundreds of 

thousands of data points.  

Our approach can be generalized to other epidemic situations or even other 

areas of application, thus, supporting general pandemic preparedness. 

 

Keywords: COVID-19; SARS-CoV-2 epidemiologic models; dark figure; 

parameter heterogeneity; parametrization; extended multi-compartment SIR-

type model; Input-Output Non-Linear Dynamical System; Bayesian knowledge 

synthesis, Machine-Learning, pandemic preparedness 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.11.24317088doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.11.11.24317088
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 

Introduction 

 

During the last years, the SARS-CoV-2 pandemic imposed a worldwide high disease burden 

and there are estimates that it will remain high for an unforeseen period of time. 

Understanding SARS-CoV-2 induced dynamics at several levels of data is of high importance 

for a proper risk management including planning of vaccination campaigns, non-

pharmaceutical counter-measures, clinical resources and general pandemic preparedness. A 

plethora of biomathematical models were proposed for that purpose but most of them only 

describe the pandemics for a limited set of data or a limited time frame [1]. We recently 

proposed a universal approach to parametrize mechanistic epidemiologic models using 

multiple, often biased epidemiological or clinical data sets. This approach is based on 

embedding an epidemiologic model as a hidden layer into an input-output non-linear 

dynamical system (IO-NLDS, [2]), where the input layer represents factors not known by the 

model such as changing non-pharmaceutical interventions (NPI), vaccination campaigns or 

occurrence of new variants. The output layer represents different types of observational data 

which are linked to the hidden layer via so called data models addressing uncertainty and 

bias of the observational data in relation to modelled state parameters. Unknown model 

parameters can be estimated by a Bayesian approach using prior information of parameter 

ranges derived from different external studies and other available data resources.  

With the help of this approach, with our previous model we were able to describe pandemic 

dynamics of Germany until April 2021 using an age-structured SIR-type model as hidden 

layer. Several changes in the pandemic situation required an update of the underlying 

epidemiologic model. These changes comprise for example, (1) different contact behavior of 

age groups, (2) modelling of final disease states of age groups, (3) new replacement 

dynamics of variants including the possibility of more than two highly prevalent variants at 

the same time, and, (4) modelling of age-dependent vaccination efficacy, and, most 

importantly, immune waning.  

Moreover, several new data resources became available or were improved during the 

pandemic requiring new or updated data models to be linked with the updated 

epidemiologic model. We integrated, for example, data on the progression of the vaccination 

and booster campaigns per age group and considered respective differences between 

German federal states. We collected and included external study data on vaccination 

efficacy, waning dynamics and booster efficacies as well as seropositivity studies. We also 
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considered the heterogeneity of pandemic dynamics across states allowing estimating state-

wise variability of epidemiologic model parameters for the first time.  

Finally, we improved our modelling architecture in order to speed up and parallelize data 

processing and calculations coping with the high-dimensional data and parameter space 

facilitating our proposed full information approach. 

Materials and methods 
General approach 

We consider an input-output non-linear dynamical systems (IO-NLDS) originally proposed 

as time-discrete alternatives to pharmacokinetic and –dynamic differential equations models 

[2,3]. This class of models couples a set of dynamical input parameters such as external 

influences and factors with a set of output parameters, i.e. observations by a hidden model 

structure to be learned (named core model in the following). This coupling represents a hybrid 

modelling concept, in which deterministic model equations reflecting our mechanistic 

understanding of the pandemic are combined with empirical relationships of state variables 

and observational data called data models in the following. This represents a major feature of 

our approach because it allows separating the tasks of epidemiologic model development 

and addressing data issues such as corrections for incomplete or biased observational data 

prior to model parametrization. 

 

Concepts and assumptions of the core model 

Our core model is of SECIR type and consists of several sub-models to account for 

heterogeneity of model parameters and to resemble infection histories. These sub-models are 

characterized by up to three different attributes namely age group, immune status (is), 

including its waning after vaccination or infection events and virus variant (vv).  

More precisely, we considered the following categories of these features:  

• Five age groups: 1-14 years, 15-34 years, 35-59 years, 60-79 years and ≥80 years  

• Ten virus variants: WT (wild type), alpha, delta, omicron BA1, BA2 and BA5, BA.2.75 

with BQ.1, XBB, BA.2.86 and KP.3 

• Four immune statuses: naïve due to absence of vaccinations or infections (S) or 

shortly after first vaccination (Vac0), highly protected by either recent vaccination 

(Vac1) or recovery from a recent infection (R1), moderately protected (Vac2, R2), and 

weakly protected (Vac3, R3), see Table 1. 

We assume four vaccination statuses to account for the fact that protection against infection 

is incomplete and wanes much faster than protection against critical disease courses (see 

Table AA8 in Appendix A). Assignment of attributes to compartments is modelled as 

multidimensional parameter arrays (tensors). 
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We distinguish three major compartment groups by their assigned attributes:  (1) Infectable 

subjects without previous infection events (Sc, Vac) carry attribute age, (2) Infectable subjects 

with previous infection events (R) carry attributes age, previous virus variant (one of the ten 

variants: WT; alpha, delta BA1, BA2, BA5, BA.2.75/ BQ.1, XBB, BA.2.86, KP.3), immune status 

prior to previous infection (naïve, highly, moderately or weakly protected), and, (3) Infected 

subjects (E, I) with attributes age, virus variant and immune status prior to infection.  For the 

latter, we assume that only I is contagious. Compartments H and C representing patients 

admitted to hospital ward or ICU are only count compartments. They have the same 

attributes of their originating compartment I and represent a second hidden layer of our 

model, which is later connected to respective observational data.    

In more detail, we make the following assumptions.  

1. Infected compartments are those carrying a specific virus variant. This applies for the 

compartments E, I, H, and C.  

2. The latent state E comprises infected but non-contagious subjects. This is the transient 

state between becoming infected and becoming contagious.  

3. To model time delays in transitions, we frequently divided compartments into sub-

compartments with first order transitions. This approach is extensively used in 

pharmacological models [4]. It was shown that this approach resembles Gamma-

distributed transit times [5]. 

4. The infected state I is the only state assumed to be contagious and is divided into four 

sequential compartments. There is a single branching for the compartment I2, from 

which patients can proceed either to D (death compartment, representing deaths due 

to COVID-19) or to I3. Finally, the efflux of I4 enters R1 representing resolved disease 

courses. 

5. All sub-compartments of I contribute to new infections, depending on age, virus 

variant, and immune status of target subjects. 

6. The compartment I2 is considered the source of severe disease outcomes comprising 

treatment at hospital wards H or ICU (C). These contributions are not modelled by 

fluxes but as counting respective bed occupancies.  

7. The compartment H represent disease states requiring hospital ward care. We assume 

that these patients are not infectious due to isolation. The compartment is divided 

into three sub-compartments, H1, H2, and H3 to allow comparisons with data of 

hospital ward bed occupancies. Rhosp counts resolved disease courses after hospital 

ward station care. 

8. The compartment C represents critical disease states requiring intensive care. Again, 

we assume that these patients are not infectious due to isolation. In analogy to the 

compartment of hospital ward treatment, this compartment is also divided into three 

sub-compartments to mimic disease courses allowing comparing the compartment 

with data of ICU bed occupancies. Ricu counts resolved disease courses after critical 

state to model cumulative data. 

 

Basic qualitative properties of infectable compartments assigned with different immune 

statuses are provided in Table 1. Respective transitions are displayed in Figure 1. More 
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details of model compartments and their properties are provided in Table AA1 of Appendix 

A. 

 

Table 1. Qualitative properties of the sub-models reflecting different immune statuses. These 

properties mirror the immune memory induced by vaccination or last infection event.  

 

Compartment Risk of 

infection  

Immune 

status (see 

Figure 2) 

Risk of severe course of disease 

(Hospital ward H, ICU requirement C, 

death D)  

S, Vac0 highest Naive Highest risk for H, C and D 

Vac1, R1 small Protected  No risk for C and D, reduced risk for H 

(40% compared to S, Vac0) 
Vac2, R2 medium 

Vac3, R3 high  Waned Medium risk for H, C and D (40% 

compared to S, Vac0) 

 

 

All model assumptions are translated into a difference equation system (see Appendix 

B).  The mathematical structure is that of an Input-Output Non-linear System as depicted 

in Figure 1. Relationships between immune statuses obtained by vaccination or a 

previous infection event and possible disease courses are displayed at Figure 2. Model 

parameters are explained in the Appendix A. 
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Figure 1: General scheme of our epidemiologic model. Our epidemiologic SECIR model is 

embedded as a hidden layer into an IO-NLDS. Respective equations are provided in Error! 

Reference source not found.B. Compartments are grouped according to whether they 

correspond to infectable (green) or infected (blue) subjects. Attributes of sub-models (i.e. age, 

vv and and is) are not displayed for simplicity. The infectable compartments without 

previous infection events (S, Vac) only depend on age while the other compartments depend 

on age, virus variant, and if applicable, on the last infection event. The input layer consists of 

external factors acting on the epidemic such as vaccination campaigns or parameter changes 

due to changes in testing policy, and non-pharamceutical interventions. The output layer is 

derived from respective hidden layers via stochastic relationships (data models, see later). The 

output layer is compared with real-world data. The number of hospital (H) and ICU (C) 

admissions are described as additional hidden layers counting these events and describing 

dynamics of bed occupancies.  
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Figure 2.  General scheme of the relationships between immune status,  infection and 

severity of disease course. Probability and course of infection depends on the current 

immune status. Three immune statuses are distinguished: (1) immune-naïve and freshly 

vaccinated subjects (left), (2) Subjects with recent vaccination or freshly recovered subjects 

(middle) and (3) subjects with waned immune protection (right). Transition probabilities 

pIS(Z,a) depend on the current immune status and the infecting variant a. Stronger risks are 

illustrated by broader arrows. 

 

Input Layer 

We here describe the structure of the input layer of our IO-NLDS. This layer is designed to 

model the impact of external factors acting on the epidemiologic dynamics such as changing 

infection rates due to non-pharmaceutical interventions, vaccination and booster campaigns 

and changing testing policies.  Effectively, these input functions dynamically affect 

parameters of the hidden layer containing the epidemiologic model.  We describe these 

different external factors in the following. Respective parameters are described in table 4. 

Dynamical infection rate: We define a step function b1 as time-dependent input parameter 

modifying the rate of infections. To identify time points of steps, we used a data-driven 

approach based on Bayesian Information Criterion (BIC) informed by time points of 

governmental changes in non-pharmaceutical counter-measures in Germany, changing 

testing policies as well as events with significant impact on epidemiological dynamics such 

as holidays or sudden outbreaks [2]. Details can be found in Error! Reference source not 

found..  

Daily testing and number of undetected cases (estimation of dark figure): It is well-known that 

reported numbers of infections are largely underestimated and that this bias is time-

dependent during the pandemic. We estimate the dark-figure (DF)  based on calibration 

analyses of seropositivity-data and near-representative  systematic testing from the 

SentiSurv study (See Error! Reference source not found. Respective time-dependent 
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estimates are used for nowcasting true infection numbers to be compared with respective 

epidemiologic model compartments.  

Vaccination and booster campaigns: Numbers of applied vaccination and booster doses are 

available from the German Robert-Koch institute on a daily scale and per age-group and 

federal state.  We distribute respective vaccination rates over eligible model compartments 

according to their relative size. 

Output Layer, Data and Parameter Fitting 

Unknown parameters of the model are determined by parameter-fitting. For this purpose, 

compartments of our hidden layer epidemiologic model are coupled with observational data 

via the output layer of our IO-NLDS using appropriate (stochastic) link functions called data-

models. We here present these data, respective data-models and objective functions in the 

following.  

We fit our model to age- and federal state-specific time series data of reported numbers of 

infections IM, occupation of hospital stations NM, occupation of ICU beds CM and deaths DM 

representing the output layer of our IO-NLDS model. Moreover, we fitted data of the variant 

dynamics.  

Data sources of infections, normal ward admissions and deaths were publicly available from 

the Robert-Koch-Institute (RKI). For our modelling, we used data from March 4th, 2020 to 

September 12th, 2024. Number of critical cases, i.e. ICU admissions were retrieved from the 

German Interdisciplinary Association of Intensive and Emergency Medicine (Deutsche 

Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin e.V.—DIVI) for the time 

window March 25th, 2020 to September 12th, 2024. Time points in proximity to Christmas and 

the turn of the year 2020/21 (i.e. December 19th, 2020 to January 19th, 2021) were heavily 

biased and therefore discarded during parameter fitting. 

Despite this fact, considered data are still largely biased, i.e. cannot be directly linked to state 

parameters of our epidemiologic model. This was addressed by the following pre-processing 

steps and data models aiming at removing major biases of  

 

Infected cases: We first smoothed reported numbers of infections with a sliding window approach of 

seven days centered at the time point of interest to remove the strong weekly periodicity of the data. 

We assume that these numbers correspond to a certain percentage of registered symptomatic patients. 

To project true infection numbers, we estimate the time-dependent dark figure as explained above. We 

further account for delays in the reporting of case numbers by introducing a log-normally 

distributed delay time as explained in Error! Reference source not found..  

Deaths and hospital ward admissions:  Deaths and hospital ward admissions were reported at a 

daily scale by the RKI since the beginning and end of March 2020 [22], respectively. 

However, due to data privacy, RKI did not provide exact dates of deaths or hospital ward 

admissions. Rather than this, reported dates of death and hospitalized patients correspond to 

the dates of reported infections of these patients. We aimed to remove the resulting reporting 

delay by assuming log-normally distributed delay times where the expected delay time is 

derived from the respective transit times of our model. Details can be found in Error! 

Reference source not found.. 

Critical cases: Number of critical COVID-19 cases (DIVI reported ICU) was available since 

the end of March 2020 [21]. We assumed that these data are complete since April 16th, 2020 

when reporting became mandatory by law in Germany. Earlier data were extrapolated from 
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the number of reporting hospitals using the total number of ICU beds available according to 

the reported ICU capacity at 2018. These estimates are coupled with the sum of critical sub-

compartments Ci (i = 1,2,3) of our model. 

 

Frequency of variants: We consider ten virus variants constituting major waves in Germany, 

namely WT, alpha, delta, omicron BA1, BA2, BA5, BA.2.75/ BQ.1, XBB, BA.2.86 and KP.3. 

The latter summarizes BA4 and 5 [23].      Entry of new variants is modeled by an 

instantaneous influx of infected subjects  into the compartments E and I [24]. Respective 

parameters are estimated separately for each federal state. For the purpose of parameter 

fitting, we also consider data of variant frequencies available for Germany taken from public 

reports of the RKI [23]. Details can be found in Error! Reference source not found., formula 

(AE10).   

 

Parametrization approach 

We carefully searched the literature to establish ranges for mechanistic model parameters. 

We considered two alternatives for parameter estimation: usage of these data as prior 

information for a Bayesian approach (implemented in our earlier work [2]) or set the 

parameters from the literature parameters as fixed values (Table A2, justification see 

Appendix F). Comparison of goodness of fits favoured the second alternative. Parameter 

estimation is achieved via likelihood optimization. The likelihood is constructed using 

similar principles as reported previously [25]. In short, the likelihood consists of three major 

parts, namely a penalty term to ensure that model parameters are within prescribed ranges, 

as well as penalties for the variability of parameters across federal states as explained in 

Appendix E. Penalization of variability of parameters across federal states is a sort of 

pruning to avoid overfitting [26]. We follow a full-information approach intended to use all 

data collected during the epidemic as explained in Error! Reference source not found..  

Consequently, our parametrization approach is intended to describe complete dynamics of 

the epidemic in Germany and its federal states in the time period covered by the data (Error! 

Reference source not found. and Error! Reference source not found.). 

Likelihood optimization is achieved using a variant of the Hooke-Jeeves algorithm [27].  

 

This is a zero-order algorithm, which does not require expensive calculations of derivatives 

of the fitness function to be optimized. In brief, the method relies on iterated updates of 

current fitness values and respective parameter settings by comparisons with fitness values 

in the neighborhood of the current parameter settings separately for all coordinates. 

Perturbation sizes at each dimension are adapted in dependence on the result of the previous 

iteration step, i.e. a perturbation in the s-th dimension becomes larger if a better fitness value 

was found for this dimension in the previous iteration. Otherwise, it is reduced in the next 

step, provided that it does not drop below a specified lower limit. An exception are 

parameters related to the time of entry of new variants for which we used a constant step 

size of one day in order to stabilize convergence since these parameters are highly sensitive. 

The algorithm stops if the last four steps did not provide a relative improvement of the 

fitness function of more than a specified tolerance parameter δtol.  

 

Identifiability of parameters was checked using profile likelihood technique [28]. Details are 

explained in the supplement. Dynamical parameters were determined by step functions. The 

number of these steps was determined based on pre-described events or empirically. The 

Bayesian Information Criterion was applied to penalize the number of steps. 
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We proved identifiability of key parameters using profile likelihood technique [28]. The 

profile likelihood of a parameter is obtained when optimizing the likelihood conditional to 

this parameter: we fix different values of the given parameter and reoptimize all other by 

maximizing the likelihood. We obtain thus functional dependence of the likelihood function 

on fixed values of a given parameter. If the fixation of these  parameters to the known from 

the literature values does not lead to improve of the likelihood compared to the case of their 

estimation, we consider this parameter as redundant. However, this technique is very time 

consuming. Thus, we applied it to determine identifiability of only few system parameters: 

the contact matrix terms, relative initial influxes ���������� and parameters ��, ��, ��,  ��, 

�� and �� , for which reliable  prior values are known from the literature.   

 

Implementation 

The model and respective parameter estimation procedures are implemented in the 

statistical software package R from which external publicly available functions are called. 

The model’s equation solver is implemented as C++ routine and called from R code using the 

Rcpp package.  

Results 

We aim to explain the dynamics of the COVID-19 pandemic regarding infected subjects, 

hospital ward and ICU occupation, deaths and variant frequency for the entire time period 

between March 4th, 2020 up to September 12th, 2024 for Germany and its federal states. We 

first present the results of our parameter fittings. We then show the resulting agreement of 

model and data for Germany and its federal states and discuss the dynamics of immune 

statuses. Based on the observation of largely deviating dynamics between federal states, we 

analyse respective heterogeneity in data and parameters in more detail. Finally, we present a 

number of validated model predictions.  

 

Parameter fitting and identifiability.  

Most of the model parameters were obtained by fitting the predictions of the model to 

available data of infection dynamics, hospital burden, deaths and variant frequencies. 

Parameters were set constant based on profile likelihood examination. Overfitting was 

further controlled by a BIC-based model selection process (see methods).  

Likelihood profiling showed that most of the mechanistic parameters of the SECIR model 

such as the transition rates, ��, ��,  �� and ��, could be fixed to the values, derived from other 

studies (Error! Reference source not found.). The likelihood was only sensitive to parameters 

�� representing the basic infection rate and �� representing the hospitalization rate.   

The results of parameter estimates can be found in Appendix K and Appendix L.   

Comparison of model predictions and observed data for Germany and its federal states 

Throughout the pandemic, we observed a good agreement of modelled state variables and 

their linked output layers representing the data given the underlying data model. Agreement 

was uniform for the five considered age groups (Figure 3 upper panel) as well as for all 16 

federal states (Error! Reference source not found. and Error! Reference source not found.). 
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The model is also in good agreement with the dynamics of virus variant frequencies (Figure 

3 lower panel) thereby effectively separating the impact of the variant on the transmission 

dynamics from other reasons of differing infectivities such as contact behavior or immunity 

and its waning.  

We account for temporarily differing unreported cases specific for age groups and federal 

counties by estimating a time-variant dark figure based on the reported percentage of 

positive tests and seroprevalence data. It revealed that the DF is subject to considerable 

changes in between 50% and 150% unreported infections compared to reported infections for 

Germany and the modelled time period. DF was even larger for some of the federal states 

(see Appendix G for details). 

Temporal changes of infectivity not explained by virus variants, dynamics of the dark figure 

and dynamics of immune statuses of subjects is attributed to a stepwise dynamic change of 

transmission parameter b1 (Figure 3 middle panel). This parameter reflects the strength of 

contact inhibition at different phases of the pandemic due to NPI or changes in individual 

contact behaviour, e.g. due to holidays or increased awareness. It is specific for age groups 

and federal states.  
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Figure 3: Agreement of model and data for Germany 

We present the pandemic phase of Germany between March 4th, 2020 and September 12th, 

2024 and compare observations (dashed lines) with the predictions of our IO-NLDS model 

(solid lines). Panel A shows good agreement of model and reported incidence of test 

positives for all age-groups considered. Panel B shows the dynamical parameter of relative 

infectivity b1 for the different age groups. Panel C shows the agreement of model and data of 

variant frequencies. At Panel D we present the model/data comparisons for age-specific 

dynamics of severe disease states, i.e. hospital ward and ICU occupation and cumulative 

deaths. Respective figures of the federal states are provided in the supplement. 

Dynamics of immune states and their impact on severe disease courses 
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In our model, (re-)infection probability and susceptibility to severe courses of infection does 

not only depends on the attacking virus variant but also on the immune states of subjects 

including their immunization history. Here, we distinguish four different immune states: (1) 

the immunological naïve state (S/Vac0) with the highest susceptibility to infection and a 

severe course, (2) high and (3) moderate protection either due to vaccination (Vac1 and Vac2, 

respectively) or previous infection (R1 and R2, respectively); and (4) low protection due to 

immune-waning (Vac3, R3). The dynamics of these modelled immune states for Germany is 

shown at Figure 4, and separately, for the federal states at Error! Reference source not 

found.. Age-group specific immune states are presented at Error! Reference source not 

found.. 

 

 

Figure 4 Estimated dynamics of modelled immune states for Germany: We present 

estimated dynamics of modelled different immune states for Germany (upper panel, 

S/Vac0 = immune naïve, Vac3/R3 = high risk, Vac2/R2 = moderate risk, Vac1/R1 = low risk). 

For comparison, we present dynamics of the vaccination campaigns (middle panel) and 

cumulative number of infections (lower panel). 

 

These dynamics affect the courses of age-specific numbers of hospitalized patients shown in 

Figure 3D for Germany, and, separated for  the federal states, Error! Reference source not 

found..  

 

The SARS-CoV-2 pandemic in Germany exhibited strong regional heterogeneity  

Epidemic dynamics of federal states differed considerably, which could not be fully 

explained by difference in vaccination campaigns or age distribution. In this section, we 

analyse this heterogeneity in more detail by comparing respective data and model results.  
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We assumed between state heterogeneity for parameters related to severity, i.e. rates 

affecting the hospitalization (N), ICU (C), and death (D) compartments. We also assumed 

state-specific parameters related to entries of new virus variants such as timing and initial 

infection numbers. Moreover, dynamics of the residual infectivity b1 was assumed state-

specific. Selection of state-specific parameters was again based on BIC. Of note, it turned out 

that no differences in viral properties need to be assumed but that the majority of state-

specific parameters correspond to population structure and pandemic management, which 

indeed was heterogeneous across states. During fitting of state-specific parameters, we 

penalized deviations from the estimates obtained for Germany.   

We first analysed the heterogeneity with respect to infection numbers, deaths and test-

positivity (see Figure 5A-C). For example, Saxony had a death burden four times higher than 

that of Schleswig Holstein. Testing policy varied across regions, as evidenced by differences 

in test positivity rates of up to 75%. Moreover, DF estimates different considerably during 

the pandemic and between federal states.  

Estimates of differences of the rates to develop a severe course are shown in Figure XXX and 

appeared to be plausible: Exemplarily, federal countries Saxony and Thuringia show highest 

parameter estimates for transition rates to the compartment D (death) in the oldest age group 

80+ during the Delta and Omicron-BA1 wave (Figure 5D). Correspondingly, both regions are 

reported to have suffered from high excess mortality in the elderly.  Furthermore, death-

rates of Omicron variants are consistently lower than from previous variants (Figure 5D), 

again in line with the literature. According to our findings, disease dynamics vary across 

states primarily because of variations in the timing and magnitude of variant introductions, 

differences in infectivity, which are likely contact-intensity-driven, and differences in 

severity parameters. 

In Figure 6, we compared the between-state heterogeneity of infection dynamics with test 

positivity and residual infectivity estimates. We also estimated the number and timing of 

successive introductions of SARS-CoV-2 virus variants in each federal state (Figure 7).  
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Figure 5:  Heterogeneity of the SARS-CoV-2 pandemics between federal countries 

and region-specific parametrisation of the model. Considerable between-state 

differences were observed regarding the course or the pandemic examplarily shown 

by the dynamics of infected subjects (A), reported total number of deaths (B), and 

probability of test-positivity reflectign testing policy (C).  

By estimating region-specific parameters as examplarily shown for the transfer rates 

from compartment infected I2 to compartment D dead the model can account for 

such differences (D). Consistently, federal countries Saxony and Thuringia, having 

suffered from high excess mortality in elderly in the alpha and delta wave, show 

highest parameter estimates in the oldest age group 80+. Regional specific 

parameter estimation for hospitalization rates and rates progressing to ICU are 

shown in Error! Reference source not found. and Error! Reference source not found., 

respectively 
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Figure 6: Comparison of between-state heterogeneity of infection dynamics, 

testpositivity rates and residual infectivity. A) Reported test-positives per region 

B) test positivity C) Estimated dynamical infecting rate b1. Time periods with 

increased heterogeneity between states are indicated with dashed rectangles. Here, 

heterogeneity is particularly high for both reported testpositivity and residual 

infectivity b1. 
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Figure 7: Region-specific model - estimation of the number and timepoints when successive 

SARS-Cov-II virus variants were introduced in each federal country 

Validated Model Predictions  

We regularly used our model to predict scenarios of the future course of the epidemic and 

published these predictions via our website (XXX). We here present comparisons of our 

predictions with the actual course of the pandemic in order to validated our model. 

Comparsion of lockdowns December 2020 and November 2021 in Saxony: We used our model to 

predict the impact of lockdown measures on residual infectivities of our age groups. 

Comparing the lockdowns implemented in December 2020 and November 2021 in Saxony, it 

revealed that similar reductions were achieved except for the youngest age group (Figure 

8A). Indeed, this is plausible because schools and day care facilities remained open in the 

November 2021 lockdown compared to the December 2020 lockdown.  

Based on these estimates, we predicted the further course of the pandemic after initiating the 

November 2021 lockdown and compared the results with a scenario without lockdown 

measures (Figure 8B). We estimated that the lockdown might have saved a four-digit number 

of lifes. In addition, the lockdown might have roughly halved the peak in ICU bed 

occupancy compared to the scenario without lockdown assuming that these ICU bed 

numbers could be supported. Finally, the further course of the pandemic closely resembles 

our model prediction for several weeks. 
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Figure 8: Estimation of the impact of the lockdown measures introduced in November 2021 in Saxony 

and compared to the December 2020 lockdown. A) Model-based estimate in decline of infectivity after 

the introduction of more stringent lockdown measures at December 2020 and November 2021 as a three-

week average. While clear and comparable reductions in infectivities was estimated for the age-groups 

older than 14, the reduction for the younger age-group was much smaller in 2021 compared to 2020. This 

is plausible because schools and day care remained open in the 2021 lockdown. B) Modeled scenarios 

with and without  introduction of lockdown. Without lockdown, the model predicted that infection 

numbers would increase until the end of December, and that the number of deaths would be increased 

in the order of >1,000 (https://www.health-atlas.de/documents/34). Model predictions are in reasonable 

agreement to the actual data. We used data from 2020-03-04 to 2021-12-13 to fit the model (dashed line). 

NPI: Non-pharmaceutical interventions 

 

Impact of higher vaccination rate: In Figure 9, we show the results of another modeled scenario 

to assess the impact of the higher vaccination rate in the federal state Saarland compared to 

the average German vaccination rate. We modeled the time course in Saarland in two 

scenarios, one with the actual vaccination rate and one with the reduced German vaccination 

rate. In the higher vaccination scenario, infections in the delta wave were significantly lower, 

while infections in the later omicron BA4+5 wave were significantly higher. This is likely due 

to the immune escape of the omicron variants regarding vaccination. However, the total 

number of deaths remained lower in the scenario observed with the higher vaccination rate, 

consistent with the reported lower pathogenicity of the Omicron variant. This suggests that 

the higher vaccination rate in Saarland may have played a relevant role in preventing severe 

outcomes also in the long term. 
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Figure 9: Estimation of the impact of the higher vaccination rate in the federal state Saarland 

compared with the German average. A) Comparison of the reported testpositives and COVID-19 deaths 

(grey) with the model under the observed vaccination rate (red). In blue, we show the hypothetical 

scenario of the lower average German vaccination rate applied in Saarland. Under this scenario, higher 

infection numbers of Omicron BA4+5 would be expected but still, death toll remains lower, B) 

Cumulative vaccination rates in Saarland compared with Germany. The occurrence of new SARS-CoV-II 

variants at frequencies higher than 5% is shown as dashed lines. 

Discussion 

In this paper, we implement the early proposed method of parametrization of COVID-19 

epidemiologic extended SECIR-type model [2]  to explain the course of the epidemic in 

Germany as well as in all 16 German federal lands.  

As in the previous case, we embed differential equations-based epidemic modelling into 

an input-output dynamical system (IO-NLDs), combining explicit mechanistic models of 

epidemic spread and phenomenological considerations of external impacts on model 

parameters via the input layer. As earlier, we assumed here also a non-direct link between 

state parameters of the embedded SECIR model and observables. This allows interposing a 

data model considering known biases of the available data resources. 

Our current model updates the previous one by assuming age-dependent sub-models 

with known contact matrix and extending virus-variant dependent sub-models from two to 

unlimited (currently ten). We modelled vaccination, waning and boostering as well. The 

resulting updates enable us to get rid of two from three empirical dynamical parameters 

pcrit and pdeath, explaining variations in probability to develop critical symptoms or dye to 

age differences, different NPI for each age category and difference between virus variants. 

This shows, how unexplained empirical inputs can be later mechanically modelled, when 

additional information becomes available. This proofs universal importance of IO-NLDs, 

which enable to implement all current knowledge and ready update the model. 
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We model currently also hospital station occupancy. Along with ICU we model these 

outputs as an additional layer “hospitalization”, based indirectly on symptomatic 

compartments, rather than assuming separate model compartments. 

Based on our IO-NLDS formulation and data models, we parametrized our model on the 

basis of data of infection numbers, critical and general hospital occupations, and deaths 

available for Germany and Saxony. Here, we chose a full-information approach considering 

all data in between start of the epidemic 4 March 2020 to 12 September 2024. We also applied 

a Bayesian learning process by considering other studies to inform model parameter’s 

settings. Thus, we combine mechanistic model assumptions with results from other studies 

and observational data. This approach is very popular in pharmacology [4] but despite its 

importance it is yet rarely applied in epidemiology [5].  

Model parametrization resulted in a good and unbiased fit of data for the period 

considered for Germany and all its federal lands. Fixed parameter values of the SECIR model 

did not significantly deviated from known from literature values if available. A total of 37 

intensification and relaxation events were necessary to describe the epidemic dynamics over 

the time course of observations for each federal subject and each age category, i.e. 85 

different dynamical parameters of residual infectivity b1.  

We estimated higher values of b1 at the very beginning of the epidemic, which could be due 

to natural contacting behaviour but could also be caused by issues regarding reporting or 

lack of testing capacities, i.e. we cannot exclude that this is an unresolved data artifact.   

 

Seasonal changes can be discernable only in 2020. In 2021 the seasonality cannot be clearly 

traced. In the year 2021 the variability of b1 between federal states was large, exceeding 

variability among age groups for the overall data of Germany. This is plausible because NPI 

implementation was very heterogeneous between states. Only later in the pandemic (end of 

2021), there were attempts to implement nation-wide harmonization of NPI rules and 

measures (see Error! Reference source not found.). 

In 2022 b1 was mostly less than 0.2 in all age categories and stable with very little variability 

between federal states, showing effectivity of  these nation-wide harmonization of NPI rules. 

Please note that the model's predictions are based solely on data and assumptions. Therefore, 

the results should be interpreted with caution. 

In this work we estimated 8917 parameters using more than 560000 data points: 1653 

data points for 17 federal subjects for five age categories for new registered cases, death, 

hospital and ICU stations occupations as well as daily age-specific data on vaccination and 

waning. 

Estimated infectivity roughly correlated with the Governmental Stringency Index [29]. 

We regularly contributed forecasts of our model to the German forecast Hub [27]. 

We also demonstrated utility of our model by several mid-term simulations of scenarios 

of epidemic development in Saxony, a federal state of Germany. We could show that 

predictions of reported infections were in the range of later observations for scenarios 

considered likely. 

As future extensions and improvements of our model, we will consider stochastic effects 

on a daily scale, for example to model random influxes of cases or to model random 

extinctions of infection chains. These effects are relevant to be considered in times of low 

incidence numbers such as those observed in Germany in the summers 2020 and 2021. Our 

IO-NLDS framework is well suited to implement such extensions [3]. Furthermore, another 

application of our model is to provide infection scenarios for hospital data exposure models 

as previously successfully applied for german ICU admission forecasts or similar hospital 

resource planning tools currently being developed. This leveragaes the advantage of our 
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modell, that compartments reflecting severe course are modeled solely as output-

compartments, without serving as input for other model compartments. 

In summary, the primary focus of the paper is an adequate parametrization of 

epidemiological models on the basis of complex, possibly biased data, as well as its coupling 

with structurally unknown dynamical external influences. This approach allows for a clear 

separation of mechanistic model compartments from random or time-dependent non-

mechanistic influences and biases in the data. We believe that this approach is useful not 

only for the parametrization of the SECIR model presented here but also for other 

epidemiologic models including other disease contexts and data structures. 
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