Long-term serum spike protein persistence but no correlation with post-COVID syndrome ===================================================================================== * Annick Fehrer * Franziska Sotzny * Friederike Hoheisel * Elisa Stein * Laura Kim * Claudia Kedor * Helma Freitag * Cornelia Heindrich * Sandra Bauer * Rebekka Rust * Martina Seifert * Patricia Grabowski * Nina Babel * Carmen Scheibenbogen * Kirsten Wittke ## Abstract According to the World Health Organization (WHO) and the Centers for Diseases Control and Prevention (CDC), currently an estimated 3 – 6 % of people suffer from post-COVID condition or syndrome (PCS). A subset meets diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several studies have reported persistence of SARS-CoV-2 proteins or RNA in serum or tissues of both recovered individuals and PCS patients. In this exploratory study, we investigated whether serum spike protein is associated with PCS and whether it correlates with symptom severity and laboratory biomarkers. We analyzed serum spike protein levels in 121 PCS patients following mild-to-moderate COVID-19, 72 of whom met diagnostic criteria for ME/CFS (post-COVID ME/CFS, pcMECFS). Pre-pandemic seronegative healthy controls (ppHC, n = 32) and post-COVID recovered healthy controls (pcHC, n = 37) after SARS-CoV-2 infection were also included in the study. We found persistent serum SARS-CoV-2 spike protein in a subset of pcHC (11 %), PCS non-ME/CFS patients (2 %), and pcMECFS patients (14 %). There was no significant association with disease severity, symptoms, or laboratory markers. The spike protein concentration was independent of the time since last spike exposure (infection or vaccination). In five spike-positive out of a total of 22 patients who underwent immunoglobulin depletion via immunoadsorption (IA), spike protein was reduced or completely removed after treatment, indicating binding to immunoglobulins. In summary, our study identified serum spike protein in a subset of patients after SARS-CoV-2 infection without evidence for a role in the pathogenesis of PCS. Key words * COVID-19 * Chronic fatigue syndrome * Long COVID * Post-COVID syndrome * Spike protein * SARS-CoV-2 * Viral persistence ## 1 Introduction Post-COVID syndrome (PCS) refers to persistent symptoms that occur within three months of a severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and last for more than two months according to the World Health Organization (WHO) definition (*1*). It affects individuals across a broad demographic spectrum but is particularly prevalent among young and middle-aged women. PCS is a major burden for health care, economics, and society with an estimated 3 - 6% of patients suffering from chronic and often debilitating illness and no causal therapy so far (*1–4*). PCS is multisystemic, affects various bodily functions, and presents with a variety of symptoms that include fatigue, exercise intolerance with post-exertional malaise (PEM), cognitive impairments, headaches, muscle pain, and autonomic dysfunction among others. The clinical trajectory can be persistent, relapsing, or fluctuating, significantly impairing the quality of life and work capacity for many affected individuals. A subset of PCS patients meets the Canadian consensus (CCC) or Institute of Medicine (IOM) criteria for the diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (*5–7*). Although the exact pathomechanisms remain unclear, there are numerous studies providing evidence for inflammation, antibody-mediated autoimmunity, vascular inflammation and circulatory dysfunction, Epstein-Barr-Virus (EBV) reactivation, as well as SARS-CoV-2 persistence in PCS (*8, 9*). While in the majority of individuals infected with SARS-CoV-2 the virus is successfully cleared from the respiratory tract and blood within one to two weeks in correspondence with resolution of clinical symptoms, a subset of patients experience a prolonged viral persistence or reactivation (*10*). In these patients, recurrent episodes of viral shedding, as well as persisting viral RNA or spike antigen are believed to contribute to continued activation of immune responses, possibly inducing persistent tissue inflammation (*10, 11*). Contrary to common perception of coronavirus disease 2019 (COVID-19) as a respiratory disease, SARS-CoV-2 cell tropism was not only identified in lungs and trachea but also in the kidneys, pancreas, brain, heart, skin, blood vessels, and small intestines (*12*). Apart from primary infection of respiratory epithelium via angiotensin converting enzyme 2 (ACE-2) and co-receptor transmembrane protease serine subtype 2 (TMPRSS2), other cell types like gastrointestinal epithelia, endothelial cells, and neurons may also be susceptible to infection (*10*). SARS-CoV-2 RNA was detected in non-respiratory tissues, including the brain, up to several months after infection (*13, 14*). Furthermore, several studies report a persistent gastrointestinal viral reservoir in some patients with and without persistent symptoms for up to 2 years (*15–17*). Spike protein subunit 1 (S1) was found in CD16+ monocytes of PCS patients up to 15 months after acute COVID-19 (*11*). Peluso et al. showed persistence of SARS-CoV-2 antigen and most commonly spike protein in plasma for more than one year after infection in about 9.2 % of specimens, but longitudinal symptoms were not documented in this study (*18*). Others reported persistent spike protein in the plasma of PCS patients for up to twelve months after infection with a prevalence of up to 60 %, while no spike protein was detected in 26 recovered controls in one study (*19*) or less frequent in recovered controls in another study (*20*). Haddad et al. recently reported an ongoing immune response against SARS-CoV-2 antigens evident from newly activated antibody-secreting cells, suggesting viral persistence or reactivation in 40 % of 61 analyzed PCS patients and none of 25 analyzed recovered controls studied (*21*). However, these studies did not explicitly match time points of SARS-CoV-2 infection or vaccination of their study groups and did not document potential reinfections in the time frame investigated. In addition, studies often lack comprehensive patient characterization and classification as well as correlation with clinical data, or they do not include sufficient controls to contextualize results and verify assay specificity (*17–23*). To this date, the relationship between PCS and viral persistence is not resolved. Here, we quantified spike protein in serum of PCS patients, as well as pre-pandemic and recovered healthy controls, and analyzed a potential correlation of viral persistence with clinical manifestation and symptom severity. In addition, we investigated the effect of immunoglobulin depletion via immunoadsorption (IA) on serum spike protein in 22 post-COVID ME/CFS (pcMECFS) patients treated in our study as reported elsewhere (*24, 25*). ## 2 Results ### 2.1 Persistent spike protein is detectable in serum of individuals after SARS-CoV-2 infection SARS-CoV-2 spike receptor-binding domain (RBD) was quantified by ELISA in serum of three post-COVID cohorts: 37 post-COVID recovered healthy controls (pcHC), and 121 PCS patients, of whom 72 met ME/CFS diagnostic criteria (pcMECFS), 1 to 38 months after their last SARS-CoV-2 infection. Additionally, a cohort of 32 pre-pandemic healthy controls (ppHC) was analyzed to validate assay specificity (Fig. 1). While all ppHC serum samples tested negative for SARS-CoV-2 spike protein, 11 % of the pcHC serum samples, 2 % of PCS non-ME/CFS serum samples, and 14 % of the pcMECFS serum samples were positive (Fig. 1A). Both frequency and spike protein concentration (Fig. 1B) did not differ significantly between the three post-COVID cohorts. However, when comparing PCS with pcMECFS patients separately, there was a significant difference in concentration (p=0.0303) and prevalence of spike protein in serum (p=0.0261). ![Fig. 1](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/11/2024.11.11.24317084/F1.medium.gif) [Fig. 1](http://medrxiv.org/content/early/2024/11/11/2024.11.11.24317084/F1) Fig. 1 Serum spike RBD concentration of pre-pandemic healthy controls (ppHC), post-COVID healthy controls (pcHC), post-COVID syndrome (PCS) patients, and post-COVID ME/CFS (pcMECFS) patients. Spike RBD was quantified in serum of ppHC (n=32), pcHC (n=37), PCS patients (n=49), and pcMECFS patients (n=72). **(A)** Frequency of spike RBD positive (black) and spike RBD negative (grey) individuals in the different study cohorts. Percentages inside the bars indicate frequency of spike-positive individuals. **(B)** Individual serum spike RBD concentration [pg/ml] of study cohorts. ns=not significant. ### 2.2 Serum spike protein concentration is independent of the time since last SARS-CoV-2 spike protein contact Next, we examined a potential relationship between SARS-CoV-2 spike protein detection and time since last infection or vaccination in all three post-COVID study groups (pcHC, PCS, pcMECFS). Neither the time since the last SARS-CoV-2 infection (Fig. 2A), time since last SARS-CoV-2 vaccination (Fig. 2B), nor time since last spike protein contact by either infection or vaccination (Fig. 2C) correlated with the serum spike protein concentration. Furthermore, there was no correlation between time since illness-triggering SARS-CoV-2 infection and serum spike protein concentration in PCS and pcMECFS patients (Fig. 2D). Two out of ten spike-positive pcMECFS patients were vaccinated against SARS-CoV-2 shortly before their visit (three and 13 weeks respectively). Among the spike-negative individuals, five pcMECFS and four PCS patients were vaccinated within six weeks before their visit, and four pcMECFS and four PCS patients within 16 weeks before their visit. Two spike-negative patients had a SARS-CoV-2 infection seven or twelve weeks prior. ![Fig. 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/11/2024.11.11.24317084/F2.medium.gif) [Fig. 2.](http://medrxiv.org/content/early/2024/11/11/2024.11.11.24317084/F2) Fig. 2. Correlation analysis of spike RBD in serum of post-COVID study groups with time since SARS-CoV-2 infection or vaccination. Spike RBD concentration in serum of pcHC (n=37), PCS patients (n=49), and pcMECFS patients (n=72) was correlated with **(A)** the time since last SARS-CoV-2 infection, **(B)** the time since the last SARS-CoV-2 vaccination, **(C)** the time since the last contact with spike protein either during SARS-CoV-2 infection or vaccination, and **(D)** the duration of illness for patients. Correlation was assessed using Spearman’s rank-order correlation. ### 2.3 Serum spike protein is not associated with pcMECFS disease and symptom severity Persistent viral reservoirs in PCS is presumed to be associated with inflammation and hypercoagulability, which may contribute to impaired blood flow, endothelial dysfunction, and PCS symptoms (*8, 10, 26*). To evaluate the possible effect of viral persistence in pcMECFS, we investigated a potential association between persisting serum spike protein and severity of disease and key symptoms comparing ten spike-positive and 62 spike-negative pcMECFS patients. We observed no significant difference in severity of disability, assessed by Bell and Short Form Health Survey 36 (SF-36) physical function scores, nor in PEM score, severity of fatigue, pain, cognitive, immune, or autonomic symptoms, as assessed by Composite Autonomic Symptom Score 31 (COMPASS-31), between spike-positive and spike-negative pcMECFS patients (Table 1). The 49 PCS patients were not analyzed as there was only one spike-positive patient in this study group. View this table: [Table 1.](http://medrxiv.org/content/early/2024/11/11/2024.11.11.24317084/T1) Table 1. Comparative analysis of disease and symptom severity in pcMECFS patients with (Spike+) or without (Spike-) persistent serum spike RBD. A subset of pcMECFS patients had elevated interleukin-8 (IL-8) and a few had elevated D-dimer, platelet count, or mean platelet volume (MPV) as potential markers of endothelial inflammation or hypercoagulation. Levels of these markers were not associated with serum spike persistence in our study cohort (Table 2A). Patients who were treated within the IA study had elevated levels of β2 adrenergic receptor autoantibodies (β2-AdR-AABs). We did not find significant differences in levels of β2-AdR-AABs between spike-positive and spike-negative pcMECFS, nor in levels of anti-S1-IgG (Table 2B). In six of 21 pcMECFS patients we had evidence for endothelial dysfunction assessed by reactive hyperemia index (RHI) using postocclusive reactive hyperaemia peripheral arterial tonometry (RH-PAT), but no association with spike persistence was observed (Table 2C). View this table: [Table 2.](http://medrxiv.org/content/early/2024/11/11/2024.11.11.24317084/T2) Table 2. Comparative analysis of routine laboratory and functional markers of pcMECFS patients with (Spike+) or without (Spike-) persistent serum spike RBD. ### 2.4 Serum spike protein is reduced by IA and not associated with IA response Twenty-two of the pcMECFS patients studied here were treated with IA for immunoglobulin depletion (IA-pcMECFS) as reported elsewhere (*24, 25*). Levels of SARS-CoV-2 spike protein were measured before and four weeks after IA (Fig. 3). Interestingly, in all five patients with detectable serum spike protein, levels were either reduced in two or no longer detectable in three patients four weeks after IA. Patient #17 had a SARS-CoV-2 infection immediately before the four weeks after IA visit. Three of the five spike-positive IA patients were responders and two were non-responders as defined by improvement in their physical function (SF-36) four weeks after IA (*24, 25*). Thus, we have no evidence that there is an association between spike protein serum persistence and clinical response to immunoglobulin depletion. ![Fig. 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/11/2024.11.11.24317084/F3.medium.gif) [Fig. 3.](http://medrxiv.org/content/early/2024/11/11/2024.11.11.24317084/F3) Fig. 3. Spike RBD concentration in serum of post-COVID ME/CFS (pcMECFS) patients before immunoadsorption (IA) (IA-pcMECFS) and four weeks after IA. Patients who responded to IA are indicated by dotted black and those who did not by white background based on the improvement in SF-36 physical function four weeks after therapy. Spike RBD concentration [pg/ml] in patients’ serum was determined before (blue bar) and four weeks after IA (black bar). ## 3 Discussion Our study shows persistence of spike protein in serum up to 31 months after infection in a subset of PCS patients and pcHC. We found neither an association with PCS nor with severity of disease and symptoms in the pcMECFS subgroup. Moreover, we found no link to markers of endothelial dysfunction, inflammation, or hypercoagulation. The finding from our and other studies of absence of viral proteins in pre-pandemic samples provides strong evidence for the specificity of the detection of viral proteins after SARS-CoV-2 infection in a subset of individuals. The prevalence of antigen persistence in serum in our study is consistent with a previous study by Peluso et al. reporting 9.2 % positivity in 660 pandemic-era plasma samples up to 14 months after SARS-CoV-2 infection (*18*). Other studies report lower or higher levels of viral antigen persistence in serum or plasma ranging from no detectable antigen in both PCS and pcHC study groups to a prevalence of approximately 60 % in PCS patients and 0-30 % in pcHCs (*19, 20, 22, 27, 28*). A recent study reported an association between persistence of SARS-CoV-2 RNA and PCS symptoms up to four months after COVID-19 (*29*). Other studies suggested that tissue viral persistence is associated with PCS symptoms (*17, 30*). Notably, our study shows no association between persistent spike protein and symptom severity in pcMECFS patients 2-38 months after their last SARS-CoV-2 infection. We found spike protein in only 2 % of PCS patients with a significant difference to pcMECFS patients. However, as we detected spike protein in 11 % of pcHC, we consider it more likely to be a random rather than a pathomechanistically relevant finding. Spike protein can promote microvascular inflammation and thrombogenic processes (*31, 32*), but our study did not find a correlation between endothelial dysfunction, thromboinflammatory markers, and spike protein persistence in pcMECFS patients. In line with our findings, others didn’t observe a link between SARS-CoV-2 persistent shedding in saliva and PCS development or symptoms (*33*). The heterogeneity of findings in the various studies may be related to the generally low levels of viral proteins, potential cross-reactivity with other proteins and different tests that were used. The hypothesis of viral persistence playing a role in the pathomechanism of PCS is currently used as a rationale for antiviral treatment studies. Paxlovid, a drug consisting of the antiviral agents nirmatrelvir and ritonavir, has been shown to be effective in preventing a severe course of COVID-19 (*34*), which is associated with an increased risk of PCS (*35, 36*). Findings from a study using a large dataset of >281,000 participants from the US Department of Veterans Affairs suggested a protective effect of Paxlovid treatment during acute COVID-19 also for the development of PCS (*37*), while other smaller studies couldn’t reproduce these findings (*38, 39*). A first randomized placebo-controlled trial of 155 PCS patients in the STOP-PASC study showed no significant effect of 15 days of Paxlovid treatment on persistent symptoms (*40*). However, in this study viral particles were not assessed; thus, it is not possible to draw conclusions about the subgroup of patients with evidence of viral persistence. In addition, our data show a reduction or removal of serum spike protein after immunoglobulin depletion via IA. This suggests that spike protein is bound to anti-spike IgG. However, it cannot be excluded that there is an unspecific binding of spike protein with the antibody-specific sepharose gel matrix used for the IA procedure. The presence or reduction of serum spike protein was not associated with treatment response. This further suggests that persistent spike protein is not causing symptoms in these pcMECFS patients. The present study has some limitations that need to be addressed. It is a cross-sectional study, that provides a snapshot of serum spike persistence. Temporal profiling of SARS-CoV-2 antigens in the plasma of PCS patients shows fluctuating concentration profiles of both spike and nucleocapsid protein over a time period of up to twelve months after infection (*19*). Regular blood sampling within a defined time frame and interval would be necessary to shed further light on the mechanisms of viral persistence and its temporal detectability in serum. We determined the concentration of spike protein RBD in the serum. This is worth mentioning, as a previous study reported discrepancies between e.g. S1 and full spike protein detection (*19*). In addition, spike protein may not only be present in a soluble form, but may also be transported in extracellular vesicles, as previously reported (*20, 41*). Other studies have shown persistence of viral RNA in tissues (*13–17*). This should be taken into account for interpretation of the results presented here. As PCS is a highly heterogeneous disease, viral persistence may play a role only in the pathogenesis of certain subtypes of PCS. Our study focused on a subgroup of patients with ME/CFS or similar symptom complexes. Further research is needed to elucidate potential differences in spike persistence in clinically and immunologically distinct PCS subtypes and its potential relevance for the diagnosis and treatment of patients. In conclusion, despite the limitations described, our study provides evidence for serum spike persistence in a subset of individuals after SARS-CoV-2 infection without an association with PCS. ## 4 Material and Methods ### 4.1 Study design, study cohorts, and symptom assessment We conducted an exploratory, cross-sectional study investigating serum spike persistence in individuals with and without PCS symptoms up to 38 months after SARS-CoV-2 infection. The study aimed to determine whether serum spike protein is associated with PCS symptoms or correlates with disease severity and selected laboratory markers. Serum samples and clinical data from 121 PCS patients suffering from moderate to severe fatigue and exertion intolerance following mostly mild COVID-19 were collected between October 2020 and January 2024 at the ME/CFS outpatient clinic of the Institute of Medical Immunology, Charité, Berlin. From these, 72 met the CCC for diagnosis of ME/CFS (pcMECFS) (*42, 43*). Relevant cardiac, respiratory, neurological, or psychiatric comorbidities were excluded. We analyzed 22 pcMECFS patients who had participated in an observational study of immunoglobulin depletion via IA (IA-pcMECFS) (*24, 25*). Of these, serum samples at timepoints before and four weeks after IA were analyzed. Additionally, serum samples from 37 pcHC five to twelve months after their last SARS-CoV-2 infection were obtained between January 2023 and October 2023. pcHCs did not suffer from a disease with relevant impairment or take regular medication, and had no infection or vaccination within the last four weeks. To control for assay specificity, 32 pre-pandemic serum samples from ppHC, collected between January 2019 and October 2019, were analyzed. Cohort characteristics are listed in Table 3. The IA-pcMECFS study group differed significantly from the other study groups due to a longer disease duration, as well as longer time after SARS-CoV-2 infection and vaccination. Severity of disease and symptoms were quantified using questionnaires. PEM was assessed according to Cotler et al. 2018 with scores ranging from 0 to 46 (no to frequent, severe, long lasting PEM) (*44*). Functional ability was scored using the Bell Disability Scale ranging from 0 to 100 (total loss of self-dependence to no restrictions) (*45*). Daily physical activities were assessed using the SF-36 ranging from 0 to 100 (greatest to no restrictions) (*46*). The severity of the cardinal symptoms fatigue, cognitive impairment, immune symptoms, and pain were quantified using a Likert scale (1 = no symptoms to 10 = most severe symptoms). Symptoms of autonomic dysfunction were assessed using the COMPASS-31 ranging from 0 to 100 (no to strongest symptoms) (*47*). As evident from the Bell score, patients with pcMECFS suffered from more severe disease compared to PCS non-ME/CFS patients, while clinical presentation of pcMECFS and IA-pcMECFS study groups were comparable (Table 3). Ethical Committee approval for this project was obtained in accordance with the 1964 Declaration of Helsinki and its later amendments (EA2/066/20 and EA2/067/20). All study participant signed informed consent before study inclusion. View this table: [Table 3.](http://medrxiv.org/content/early/2024/11/11/2024.11.11.24317084/T3) Table 3. Cohort characteristics ### 4.2 Quantification of serum spike RBD and anti-S1 IgG Whole blood samples from participants were allowed to clot at room temperature for at least 30 min and then centrifuged at 2000 x g for 10 min at room temperature. Serum was collected and stored at −80°C. Serum concentration of the SARS-CoV-2 spike RBD was determined using Human SARS-CoV-2 RBD ELISA Kit purchased from Thermo Fisher Scientific (EH492RB) and conducted according to manufacturer’s instructions. Serum anti-S1 IgG was quantified using anti-SARS-CoV-2 QuantiVac ELISA (IgG) purchased from Euroimmun (EI 2606-9601-10 G) and conducted according to manufacturer’s instructions. Obtained arbitrary units (AU) were converted into the WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin binding activity (Binding Antibody Units, BAU) by multiplying by a factor of 3.2. ### 4.3 Assessment of routine laboratory and functional parameters D-Dimer, platelet count, MPV, and IL-8 (post erythrocyte lysis) were determined at the Charité diagnostics laboratory Labor Berlin GmbH (Berlin, Germany). Autoantibodies (AABs) against the G protein coupled receptor (GPCR) β2 adrenergic receptor (β2-AdR), were determined by CellTrend GmbH (Luckenwalde, Germany) using indirect ELISA technology. Peripheral endothelial function was assessed in IA-pcMECFS patients by the RHI using RH-PAT (endoPAT2000, Itamar Medical Ltd., Caesarea, Israel) as previously described (*48*). ### 4.4 Data Collection and Management Study data, including clinical and routine laboratory parameters, were collected and managed using REDCap electronic data capture tools hosted at Charité—Universitätsmedizin Berlin (*49, 50*). ### 4.5 Statistical analysis Study data are presented as median with range or interquartile range (IQR) for each study group (n = number of individuals in the study group) as indicated. Nonparametric statistical methods were used. Univariate comparisons of two independent groups were done using the Mann-Whitney-U test and of multiple independent groups using the Kruskal–Wallis test with Benjamini-Hochberg correction of multiple comparisons. Distribution of categorical data was compared using chi-square test. Correlation was assessed using Spearman’s rank-order correlation. A two-tailed p value <0.05 was considered significant. Microsoft Excel 2016 was used for data analysis and GraphPad Prism 9 was used for statistical analysis and graphical presentation. ## Data Availability All data associated with this study are present in the paper. Correspondence and requests should be addressed to AF. ## Funding This study was funded by the ME/CFS Research foundation and the Lost Voices foundation. AF received a scholarship from the Fridericus foundation. ## Author contributions AF conducted the laboratory work and data analysis of the study. ES, LK, CK, RR, PG, KW, and CS diagnosed and enrolled the patients, and collected the biosamples. AF, FH, and SB collected biosamples of healthy controls and processed all biosamples. FS, HF, and CH managed clinical and routine laboratory data. FS, KW, and CS provided concept, resources, and supervision. AF, FS, and CS interpreted and discussed the results. AF, FS, MS, NB, CS, and KW provided scientific insights. AF, FS, and CS wrote the manuscript. All authors have read, revised, and approved the final version of the manuscript. ## Competing interests The authors declare no conflict of interest. ## Data and materials availability All data associated with this study are present in the paper. Correspondence and requests should be addressed to AF (annick.fehrer{at}charite.de). ## One sentence summary Our study identified serum spike protein in a subset of patients after SARS-CoV-2 infection without evidence for a role in the pathogenesis of PCS. ## Acknowledgements We would like to thank the patients who participated in this study, as well as Anja Hagemann, Silvia Thiel, and Beate Follendorf for their work in patient care and data management. * Received November 11, 2024. * Revision received November 11, 2024. * Accepted November 11, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/) ## References 1. 1. J. B. Soriano, S. Murthy, J. C. Marshall, P. Relan, J. V. Diaz, A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 22, e102–e107 (2022). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(21)00703-9/ATTACHMENT/31179DEC-CF64-455B-BD13-6EF0045B7DD6/MMC1.PDF&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34951953&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 2. 2. E. J. Thompson, D. M. Williams, A. J. Walker, R. E. Mitchell, C. L. Niedzwiedz, T. C. Yang, C. F. Huggins, A. S. F. Kwong, R. J. Silverwood, G. Di Gessa, R. C. E. Bowyer, K. Northstone, B. Hou, M. J. Green, B. Dodgeon, K. J. Doores, E. L. Duncan, F. M. K. Williams, A. Steptoe, D. J. Porteous, R. R. C. McEachan, L. Tomlinson, B. Goldacre, P. Patalay, G. B. Ploubidis, S. V. Katikireddi, K. Tilling, C. T. Rentsch, N. J. Timpson, N. Chaturvedi, C. J. Steves, Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat Commun 13, 3528 (2022). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35764621&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 3. 3. N. D. Ford, D. Slaughter, D. Edwards, A. Dalton, C. Perrine, A. Vahratian, S. Saydah, Long COVID and Significant Activity Limitation Among Adults, by Age - United States, June 1-13, 2022, to June 7-19, 2023. MMWR Morb Mortal Wkly Rep 72, 866–870 (2023). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.15585/mmwr.mm7232a3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37561665&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 4. 4. A. Iba, M. Hosozawa, M. Hori, Y. Muto, I. Muraki, R. Masuda, N. Tamiya, H. Iso, Prevalence of and Risk Factors for Post-COVID-19 Condition during Omicron BA.5-Dominant Wave, Japan. Emerg Infect Dis 30, 1380–1389 (2024). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38916571&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 5. 5. C. Kedor, H. Freitag, L. Meyer-Arndt, K. Wittke, L. G. Hanitsch, T. Zoller, F. Steinbeis, M. Haffke, G. Rudolf, B. Heidecker, T. Bobbert, J. Spranger, H. D. Volk, C. Skurk, F. Konietschke, F. Paul, U. Behrends, J. Bellmann-Strobl, C. Scheibenbogen, A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat Commun 13, 5104 (2022). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-022-32507-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36042189&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 6. 6. R. Twomey, J. DeMars, K. Franklin, S. N. Culos-Reed, J. Weatherald, J. G. Wrightson, Chronic Fatigue and Postexertional Malaise in People Living With Long COVID: An Observational Study. Phys Ther 102, 1–12 (2022). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ptj/pzac005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35079817&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 7. 7. E. R. Unger, J. S. Lin, L. E. Wisk, H. Yu, M. L’Hommedieu, H. Lavretsky, J. C. C. Montoy, M. A. Gottlieb, K. L. Rising, N. L. Gentile, M. Santangelo, A. K. Venkatesh, R. M. Rodriguez, M. J. Hill, R. E. Geyer, E. R. Kean, S. Saydah, S. A. McDonald, R. Huebinger, A. H. Idris, J. Dorney, B. Hota, E. S. Spatz, K. A. Stephens, R. A. Weinstein, J. G. Elmore, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome After SARS-CoV-2 Infection. JAMA Netw Open 7, e2423555 (2024). 8. 8. H. E. Davis, L. McCorkell, J. M. Vogel, E. J. Topol, Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 21, 133–146 (2023). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41579-022-00846-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36639608&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 9. 9. Y. Su, D. Yuan, D. G. Chen, R. H. Ng, K. Wang, J. Choi, S. Li, S. Hong, R. Zhang, J. Xie, S. A. Kornilov, K. Scherler, A. J. Pavlovitch-Bedzyk, S. Dong, C. Lausted, I. Lee, S. Fallen, C. L. Dai, P. Baloni, B. Smith, V. R. Duvvuri, K. G. Anderson, J. Li, F. Yang, C. J. Duncombe, D. J. McCulloch, C. Rostomily, P. Troisch, J. Zhou, S. Mackay, Q. DeGottardi, D. H. May, R. Taniguchi, R. M. Gittelman, M. Klinger, T. M. Snyder, R. Roper, G. Wojciechowska, K. Murray, R. Edmark, S. Evans, L. Jones, Y. Zhou, L. Rowen, R. Liu, W. Chour, H. A. Algren, W. R. Berrington, J. A. Wallick, R. A. Cochran, M. E. Micikas, T. Wrin, C. J. Petropoulos, H. R. Cole, T. D. Fischer, W. Wei, D. S. B. Hoon, N. D. Price, N. Subramanian, J. A. Hill, J. Hadlock, A. T. Magis, A. Ribas, L. L. Lanier, S. D. Boyd, J. A. Bluestone, H. Chu, L. Hood, R. Gottardo, P. D. Greenberg, M. M. Davis, J. D. Goldman, J. R. Heath, Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185, 881–895.e820 (2022). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2022.01.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35216672&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 10. 10. B. Chen, B. Julg, S. Mohandas, S. B. Bradfute, R. M. P. T. Force, Viral persistence, reactivation, and mechanisms of long COVID. eLife 12, e86015 (2023). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7554/eLife.86015&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37140960&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 11. 11. B. K. Patterson, E. B. Francisco, R. Yogendra, E. Long, A. Pise, H. Rodrigues, E. Hall, M. Herrera, P. Parikh, J. Guevara-Coto, T. J. Triche, P. Scott, S. Hekmati, D. Maglinte, X. Chang, R. A. Mora-Rodríguez, J. Mora, Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection. Frontiers in Immunology 12, 746021 (2022). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35082777&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 12. 12. J. Liu, Y. Li, Q. Liu, Q. Yao, X. Wang, H. Zhang, R. Chen, L. Ren, J. Min, F. Deng, B. Yan, L. Liu, Z. Hu, M. Wang, Y. Zhou, SARS-CoV-2 cell tropism and multiorgan infection. Cell Discovery 7, 17 (2021). 13. 13. S. R. Stein, S. C. Ramelli, A. Grazioli, J.-Y. Chung, M. Singh, C. K. Yinda, C. W. Winkler, J. Sun, J. M. Dickey, K. Ylaya, S. H. Ko, A. P. Platt, P. D. Burbelo, M. Quezado, S. Pittaluga, M. Purcell, V. J. Munster, F. Belinky, M. J. Ramos-Benitez, E. A. Boritz, I. A. Lach, D. L. Herr, J. Rabin, K. K. Saharia, R. J. Madathil, A. Tabatabai, S. Soherwardi, M. T. McCurdy, A. L. Babyak, L. J. Perez Valencia, S. J. Curran, M. E. Richert, W. J. Young, S. P. Young, B. Gasmi, M. Sampaio De Melo, S. Desar, S. Tadros, N. Nasir, X. Jin, S. Rajan, E. Dikoglu, N. Ozkaya, G. Smith, E. R. Emanuel, B. L. Kelsall, J. A. Olivera, M. Blawas, R. A. Star, N. Hays, S. Singireddy, J. Wu, K. Raja, R. Curto, J. E. Chung, A. J. Borth, K. A. Bowers, A. M. Weichold, P. A. Minor, M. A. N. Moshref, E. E. Kelly, M. M. Sajadi, T. M. Scalea, D. Tran, S. Dahi, K. B. Deatrick, E. M. Krause, J. A. Herrold, E. S. Hochberg, C. R. Cornachione, A. R. Levine, J. E. Richards, J. Elder, A. P. Burke, M. A. Mazzeffi, R. H. Christenson, Z. A. Chancer, M. Abdulmahdi, S. Sopha, T. Goldberg, Y. Sangwan, K. Sudano, D. Blume, B. Radin, M. Arnouk, J. W. Eagan, R. Palermo, A. D. Harris, T. Pohida, M. Garmendia-Cedillos, G. Dold, E. Saglio, P. Pham, K. E. Peterson, J. I. Cohen, E. de Wit, K. M. Vannella, S. M. Hewitt, D. E. Kleiner, D. S. Chertow, N. C.-A. Consortium, SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/S41586-022-05542-Y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36517603&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 14. 14. J. Matschke, M. Lütgehetmann, C. Hagel, J. P. Sperhake, A. S. Schröder, C. Edler, H. Mushumba, A. Fitzek, L. Allweiss, M. Dandri, M. Dottermusch, A. Heinemann, S. Pfefferle, M. Schwabenland, D. Sumner Magruder, S. Bonn, M. Prinz, C. Gerloff, K. Püschel, S. Krasemann, M. Aepfelbacher, M. Glatzel, Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. The Lancet Neurology 19, 919–929 (2020). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33031735&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 15. 15. C. Gaebler, Z. Wang, J. C. C. Lorenzi, F. Muecksch, S. Finkin, M. Tokuyama, A. Cho, M. Jankovic, D. Schaefer-Babajew, T. Y. Oliveira, M. Cipolla, C. Viant, C. O. Barnes, Y. Bram, G. Breton, T. Hägglöf, P. Mendoza, A. Hurley, M. Turroja, K. Gordon, K. G. Millard, V. Ramos, F. Schmidt, Y. Weisblum, D. Jha, M. Tankelevich, G. Martinez-Delgado, J. Yee, R. Patel, J. Dizon, C. Unson-O’Brien, I. Shimeliovich, D. F. Robbiani, Z. Zhao, A. Gazumyan, R. E. Schwartz, T. Hatziioannou, P. J. Bjorkman, S. Mehandru, P. D. Bieniasz, M. Caskey, M. C. Nussenzweig, Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-021-03207-w&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33461210&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 16. 15. A. Natarajan, S. Zlitni, E. F. Brooks, S. E. Vance, A. Dahlen, H. Hedlin, R. M. Park, A. Han, D. T. Schmidtke, R. Verma, K. B. Jacobson, J. Parsonnet, H. F. Bonilla, U. Singh, B. A. Pinsky, J. R. Andrews, P. Jagannathan, A. S. Bhatt, Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med 3, 371–387.e379 (2022). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35434682&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 17. 17. A. M. J. Peluso, D. Ryder, R. R. Flavell, Y. Wang, J. Levi, B. H. LaFranchi, T.-M. Deveau, M. Buck, S. E. Munter, K. A. Asare, M. Aslam, W. Koch, G. Szabo, R. Hoh, M. Deswal, A. E. Rodriguez, M. Buitrago, V. Tai, U. Shrestha, S. Lu, S. A. Goldberg, T. Dalhuisen, J. J. Vasquez, M. S. Durstenfeld, P. Y. Hsue, J. D. Kelly, N. Kumar, J. N. Martin, A. Gambhir, M. Somsouk, Y. Seo, S. G. Deeks, Z. G. Laszik, H. F. VanBrocklin, T. J. Henrich, Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Science Translational Medicine 16, eadk3295 (2024). 18. 16. M. J. Peluso, Z. N. Swank, S. A. Goldberg, S. Lu, T. Dalhuisen, E. Borberg, Y. Senussi, M. A. Luna, C. Chang Song, A. Clark, A. Zamora, M. Lew, B. Viswanathan, B. Huang, K. Anglin, R. Hoh, P. Y. Hsue, M. S. Durstenfeld, M. A. Spinelli, D. V. Glidden, T. J. Henrich, J. D. Kelly, S. G. Deeks, D. R. Walt, J. N. Martin, Plasma-based antigen persistence in the post-acute phase of COVID-19. The Lancet Infectious Diseases 24, e345–e347 (2024). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38604216&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 19. 17. Z. Swank, Y. Senussi, Z. Manickas-Hill, X. G. Yu, J. Z. Li, G. Alter, D. R. Walt, Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019 Sequelae. Clin Infect Dis 76, e487–e490 (2023). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36052466&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 20. 18. V. Craddock, A. Mahajan, L. Spikes, B. Krishnamachary, A. K. Ram, A. Kumar, L. Chen, P. Chalise, N. K. Dhillon, Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19. J Med Virol 95, e28568 (2023). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.28568&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36756925&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 21. 21. N. S. Haddad, A. Morrison-Porter, H. Quehl, V. Capric, P. A. Lamothe, F. Anam, M. C. Runnstrom, A. D. Truong, A. N. Dixit, M. C. Woodruff, A. Chen, J. Park, D. C. Nguyen, I. Hentenaar, C. Y. Kim, S. Kyu, B. Stewart, E. Wagman, H. Geoffroy, D. Sanz, K. S. Cashman, R. P. Ramonell, M. Cabrera-Mora, D. N. Alter, J. D. Roback, M. C. Horwath, J. B. O’Keefe, A. W. Dretler, R. Gripaldo, S. M. Yeligar, T. Natoli, V. Betin, R. Patel, K. Vela, M. R. Hernandez, S. Usman, J. Varghese, A. Jalal, S. Lee, S. N. Le, R. T. Amoss, J. L. Daiss, I. Sanz, F. E. Lee, MENSA, a Media Enriched with Newly Synthesized Antibodies, to Identify SARS-CoV-2 Persistence and Latent Viral Reactivation in Long-COVID. medRxiv, DOI:10.1101/2024.1107.1105.24310017 (2024). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1101/2024.1107.1105.24310017&link_type=DOI) 22. 19. N. Kanberg, A. Grahn, E. Stentoft, D. Bremell, A. Yilmaz, M. Studahl, S. Nilsson, M. Schöll, J. M. Gostner, K. Blennow, H. Zetterberg, N. Padmanabhan, R. Cohen, S. Misaghian, D. Romero, C. Campbell, A. Mathew, M. Wang, G. Sigal, M. Stengelin, A. Edén, M. Gisslén, COVID-19 Recovery: Consistent Absence of Cerebrospinal Fluid Biomarker Abnormalities in Patients With Neurocognitive Post-COVID Complications. The Journal of Infectious Diseases 229, 493–501 (2023). 23. 20. A. Zollner, R. Koch, A. Jukic, A. Pfister, M. Meyer, A. Rössler, J. Kimpel, T. E. Adolph, H. Tilg, Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory Bowel Diseases. Gastroenterology 163, 495–506.e498 (2022). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35508284&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 24. 21. E. Stein, C. Heindrich, K. Wittke, C. Kedor, L. Kim, H. Freitag, A. Krüger, M. Tölle, C. Scheibenbogen, Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated ß2-Adrenergic Receptor Autoantibodies-An Interim Report. J Clin Med 12, 6428 (2023). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37835071&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 25. 22. E. Stein, C. Heindrich, K. Wittke, C. Kedor, R. Rust, H. Freitag, F. Sotzny, A. Krüger, M. Tölle, P. Grabowski, C. Scheibenbogen, L. Kim, Efficacy of Repeat Immunoadsorption in Post-COVID ME/CFS Patients with Elevated β2-Adrenergic Receptor Autoantibodies: a Prospective Cohort Study. Available at SSRN: [https://ssrn.com/abstract=4911576](https://ssrn.com/abstract=4911576), (2024). 26. 23. I. Katsoularis, O. Fonseca-Rodríguez, P. Farrington, H. Jerndal, E. H. Lundevaller, M. Sund, K. Lindmark, A. M. Fors Connolly, Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. Bmj 377, e069590 (2022). [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE5OiIzNzcvYXByMDZfNC9lMDY5NTkwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMTEvMTEvMjAyNC4xMS4xMS4yNDMxNzA4NC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 27. 24. S. M. Menezes, M. Jamoulle, M. P. Carletto, L. Moens, I. Meyts, P. Maes, J. Van Weyenbergh, Blood transcriptomic analyses reveal persistent SARS-CoV-2 RNA and candidate biomarkers in post-COVID-19 condition. The Lancet Microbe 5, 100849 (2024). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38677304&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 28. 25. A. Rahmati, S. Shahbaz, M. Osman, J. W. C. Tervaert, S. Elahi, Blood transcriptomic analyses do not support SARS-CoV-2 persistence in patients with post-COVID-19 condition with chronic fatigue syndrome. The Lancet Microbe , 101012 (2024). 29. 26. W. Zuo, D. He, C. Liang, S. Du, Z. Hua, Q. Nie, X. Zhou, M. Yang, H. Tan, J. Xu, Y. Yu, Y. Zhan, Y. Zhang, X. Gu, W. Zhu, H. Zhang, H. Li, W. Sun, M. Sun, X. Liu, L. Liu, C. Cao, R. Li, J. Li, Y. Zhang, Y. Zhang, J. Guo, L. Zhao, C.-P. Zhang, H. Liu, S. Wang, F. Xiao, Y. Wang, Z. Wang, H. Li, B. Cao, The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. The Lancet Infectious Diseases 24, 845–855 (2024). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38663423&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 30. 27. G. D. de Melo, F. Lazarini, S. Levallois, C. Hautefort, V. Michel, F. Larrous, B. Verillaud, C. Aparicio, S. Wagner, G. Gheusi, L. Kergoat, E. Kornobis, F. Donati, T. Cokelaer, R. Hervochon, Y. Madec, E. Roze, D. Salmon, H. Bourhy, M. Lecuit, P. M. Lledo, COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med 13, eabf8396 (2021). [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6InNjaXRyYW5zbWVkIjtzOjU6InJlc2lkIjtzOjE1OiIxMy81OTYvZWFiZjgzOTYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8xMS8xMS8yMDI0LjExLjExLjI0MzE3MDg0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 31. 28. L. Perico, M. Morigi, A. Pezzotta, M. Locatelli, B. Imberti, D. Corna, D. Cerullo, A. Benigni, G. Remuzzi, SARS-CoV-2 spike protein induces lung endothelial cell dysfunction and thrombo-inflammation depending on the C3a/C3a receptor signalling. Scientific Reports 13, 11392 (2023). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37452090&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 32. 32. R. A. C. Montezano, L. L. Camargo, S. Mary, K. B. Neves, F. J. Rios, R. Stein, R. A. Lopes, W. Beattie, J. Thomson, V. Herder, A. M. Szemiel, S. McFarlane, M. Palmarini, R. M. Touyz, SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Scientific Reports 13, 14086 (2023). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37640791&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 33. 29. M. J. Peluso, A. N. Deitchman, L. Torres, N. S. Iyer, S. E. Munter, C. C. Nixon, J. Donatelli, C. Thanh, S. Takahashi, J. Hakim, K. Turcios, O. Janson, R. Hoh, V. Tai, Y. Hernandez, E. A. Fehrman, M. A. Spinelli, M. Gandhi, L. Trinh, T. Wrin, C. J. Petropoulos, F. T. Aweeka, I. Rodriguez-Barraquer, J. D. Kelly, J. N. Martin, S. G. Deeks, B. Greenhouse, R. L. Rutishauser, T. J. Henrich, Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Reports 36, 109518 (2021). 34. 30. J. Hammond, H. Leister-Tebbe, A. Gardner, P. Abreu, W. Bao, W. Wisemandle, M. Baniecki, V. M. Hendrick, B. Damle, A. Simón-Campos, R. Pypstra, J. M. Rusnak, Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. New England Journal of Medicine 386, 1397–1408 (2022). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/nejmoa2118542&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35172054&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 35. 31. Y. Xie, B. Bowe, Z. Al-Aly, Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status. Nat Commun 12, 6571 (2021). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-021-26513-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34772922&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 36. 32. E. L. Hill, H. B. Mehta, S. Sharma, K. Mane, S. K. Singh, C. Xie, E. Cathey, J. Loomba, S. Russell, H. Spratt, P. E. DeWitt, N. Ammar, C. Madlock-Brown, D. Brown, J. A. McMurry, C. G. Chute, M. A. Haendel, R. Moffitt, E. R. Pfaff, T. D. Bennett, Risk factors associated with post-acute sequelae of SARS-CoV-2: an N3C and NIH RECOVER study. BMC Public Health 23, 2103 (2023). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37880596&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 37. 32. Y. Xie, T. Choi, Z. Al-Aly, Association of Treatment With Nirmatrelvir and the Risk of Post–COVID-19 Condition. JAMA Internal Medicine 183, 554–564 (2023). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36951829&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 38. 33. M. S. Durstenfeld, M. J. Peluso, F. Lin, N. D. Peyser, C. Isasi, T. W. Carton, T. J. Henrich, S. G. Deeks, J. E. Olgin, M. J. Pletcher, A. L. Beatty, G. M. Marcus, P. Y. Hsue, Association of nirmatrelvir for acute SARS-CoV-2 infection with subsequent Long COVID symptoms in an observational cohort study. J Med Virol 96, e29333 (2024). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.29333&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38175151&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 39. 34. S. Congdon, Z. Narrowe, N. Yone, J. Gunn, Y. Deng, P. Nori, K. Cowman, M. Islam, S. Rikin, J. Starrels, Nirmatrelvir/ritonavir and risk of long COVID symptoms: a retrospective cohort study. Sci Rep 13, 19688 (2023). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37951998&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 40. 40. A. L. N. Geng, H. Bonilla, H. Hedlin, K. B. Jacobson, L. Tian, P. Jagannathan, P. C. Yang, A. K. Subramanian, J. W. Liang, S. Shen, Y. Deng, B. J. Shaw, B. Botzheim, M. Desai, D. Pathak, Y. Jazayeri, D. Thai, A. O’Donnell, S. Mohaptra, Z. Leang, G. Z. M. Reynolds, E. F. Brooks, A. S. Bhatt, R. W. Shafer, M. G. Miglis, T. Quach, A. Tiwari, A. Banerjee, R. N. Lopez, M. De Jesus, L. R. Charnas, P. J. Utz, U. Singh, Nirmatrelvir-Ritonavir and Symptoms in Adults With Postacute Sequelae of SARS-CoV-2 Infection: The STOP-PASC Randomized Clinical Trial. JAMA Intern Med 184, 1024–1034 (2024). [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38848477&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 41. 35. Z. Troyer, N. Alhusaini, C. O. Tabler, T. Sweet, K. I. L. de Carvalho, D. M. Schlatzer, L. Carias, C. L. King, K. Matreyek, J. C. Tilton, Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles 10, e12112 (2021). 42. 36. B. M. Carruthers, A. K. Jain, K. L. De Meirleir, D. L. Peterson, N. G. Klimas, A. M. Lerner, A. C. Bested, P. Flor-Henry, P. Joshi, A. C. P. Powles, J. A. Sherkey, M. I. van de Sande, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Chronic Fatigue Syndrome 11, 7–115 (2003). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1300/J092v11n01_02&link_type=DOI) 43. 37. L. A. Jason, M. Evans, N. Porter, M. Brown, A. Brown, J. Hunnell, V. Anderson, A. Lerch, K. De Meirleir, F. Friedberg, The Development of a Revised Canadian Myalgic Encephalomyelitis Chronic Fatigue Syndrome Case Definition. American Journal of Biochemistry and Biotechnology 6, 120–135 (2010). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3844/ajbbsp.2010.120.135&link_type=DOI) 44. 38. J. Cotler, C. Holtzman, C. Dudun, L. A. Jason, A Brief Questionnaire to Assess Post-Exertional Malaise. Diagnostics (Basel) 8, 66 (2018). 45. 39. D. S. Bell, The doctor’s guide to chronic fatigue syndrome: understanding, treating, and living with Cfids. (Reading, Mass., Addison-Wesley Pub. Co., 1994). 46. 40. J. E. Ware, Jr., C. D. Sherbourne, The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30, 473–483 (1992). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00005650-199206000-00002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1593914&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1992HX94800002&link_type=ISI) 47. 41. D. M. Sletten, G. A. Suarez, P. A. Low, J. Mandrekar, W. Singer, COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin Proc 87, 1196–1201 (2012). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.mayocp.2012.10.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23218087&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) 48. 42. M. Haffke, H. Freitag, G. Rudolf, M. Seifert, W. Doehner, N. Scherbakov, L. Hanitsch, K. Wittke, S. Bauer, F. Konietschke, F. Paul, J. Bellmann-Strobl, C. Kedor, C. Scheibenbogen, F. Sotzny, Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J Transl Med 20, 138 (2022). 49. 43. P. A. Harris, R. Taylor, R. Thielke, J. Payne, N. Gonzalez, J. G. Conde, Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42, 377–381 (2009). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jbi.2008.08.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18929686&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000264958800018&link_type=ISI) 50. 44. P. A. Harris, R. Taylor, B. L. Minor, V. Elliott, M. Fernandez, L. O’Neal, L. McLeod, G. Delacqua, F. Delacqua, J. Kirby, S. N. Duda, The REDCap consortium: Building an international community of software platform partners. J Biomed Inform 95, 103208 (2019). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jbi.2019.103208&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31078660&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F11%2F2024.11.11.24317084.atom)