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ABSTRACT1

The genome‑wide burdens of deletions, loss‑of‑function mutations, and duplications correlate with2

many traits. Curiously, formost of these traits, variants that decrease expression have the same genome‑3

wide average direction of effect as variants that increase expression. This seemingly contradicts the4

intuition that, at individual genes, reducing expression should have the opposite effect on a phenotype5

as increasing expression. To understand this paradox, we introduce a concept called the gene dosage6

response curve (GDRC) that relates changes in gene expression to expected changes in phenotype. We7

show that, for many traits, GDRCs are systematically biased in one trait direction relative to the other8

and, surprisingly, that as many as 40% of GDRCs are non‑monotone, with large increases and decreases9

in expression affecting the trait in the same direction. We develop a simple theoretical model that ex‑10

plains this bias in trait direction. Our results have broad implications for complex traits, drug discovery,11

and statistical genetics.12
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INTRODUCTION17

Genome‑wide association studies (GWASs) have identified thousands of variants associated with com‑18

plex traits [1, 2], most of which are in non‑coding regions of the genome [3]. This suggests that a substan‑19

tial proportion of phenotypic variance is likely explained by variation in gene expression [3–8].20

One source of variation in gene expression is gain or loss of functional copies of a gene [9]. Such21

gene dosage changes can have phenotypic consequences, with aneuploidies being an extreme example22

[10–13]. Copy number variants (CNVs), which typically perturb the dosage of a few genes, are another23

source of expression variation [14]. CNVs segregate in humans [15–18] and have measurable effects on24

various traits and disorders [19–27], presumably by varying the expression of one or more of the genes25

with atypical copy numbers [9].26

There has been substantial work associating the total genome‑wide CNV burden to traits [19–22, 24,27

25, 27–29]. An individual’s genome‑wide burden is estimated by counting the total number of CNVs car‑28

ried by an individual, regardless of which genes are affected. Associating this burden with a trait can be29

thought of as roughly estimating howmuch deleting or duplicating a random gene affects the trait. The30

large number of traits significantly associated with genome‑wide deletion burden suggests that the ef‑31

fect of reducing the expression of a randomly chosen gene is often biased in a particular trait direction.32

Interestingly, genome‑wide duplication burden and genome‑wide deletion burden often have the same33

direction of effect [20–22]. That is, increasing expression has the same effect as decreasing expression on34

average (Appendix A). This seemingly contradicts the intuition that, for a given gene, increasing expres‑35

sion should have the opposite effect of decreasing expression.36

Tomake senseof these genome‑wideCNVburden test results fromtheperspectiveofwhat is happen‑37

ing at individual genes, we estimated the gene‑level effects of loss‑of‑function (LoF) variants, deletions,38

and duplications usingwhole‑exome sequencing (WES) andwhole‑genome sequencing (WGS) data from39

the UK Biobank (UKB) [30, 31].40

Our analysis of 91 continuous traits revealed that, across traits, the average effects of deletions and41

duplications are often non‑zero and usually affect the trait in the same direction. Although the data con‑42

firm the intuition that for most genes deletions have opposite effects to duplications, we identified a43

substantial number of cases where deletions and duplications of a single gene affect a trait in the same44

direction. To explain these counterintuitive observations, we introduce the concept of gene dosage re‑45

sponse curves (GDRCs), study their properties, and develop a simple model of their evolution.46
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RESULTS47

GENE-LEVEL BURDEN TESTS FOR LOSS-OF-FUNCTION VARIANTS AND DUPLICATIONS48

To better understand how variants with different effects on dosage impact traits, we performed burden49

tests for 410 continuous traits using LoF variants, deletions, and duplications in the UKB. In the analysis50

presented, we focused on LoF variant burden tests because they are better powered than deletions, but51

deletions showed broadly similar patterns of effect (Appendix F). We took care to keep the analysis of the52

different variant types as similar as possible so that the burden effect sizes could be interpreted jointly.53

We used the gene burden test implemented in REGENIE [32]. Continuous traits were selected from vari‑54

ous blood biochemistry, blood count, bloodmetabolite, and anthropometricmeasurements available in55

theUKB (Data Availability). We accounted for sex, age, batch effects, andother sources of confoundingby56

including appropriate covariates (Methods) and performed quality control steps (Appendix F). The sum‑57

mary statistics from these burden tests are provided as a resource to the community (Data Availability).58

We selected a subset of 91 continuous traits for analysis in the paper (Data Availability).59

GENE DOSAGE RESPONSE CURVES COULD EXPLAIN PARADOXICAL PATTERNS IN BURDEN TESTS60

Estimating the effect of genes on complex traits is central to understanding the mechanisms underlying61

trait biology. Changes in gene expression, which we refer to here as ‘gene dosage’, are often assumed to62

have a linear effect on a trait (Figure 1A). For example, transcriptome‑wide association studies (TWASs)63

use a linear model for the relationship between predicted expression and trait value [5, 6]. However,64

LoF and duplication burden tests assess phenotypic effects at opposite ends of the dosage spectrumand65

under a linearmodel would have opposite directions of effect. Thus, a linearmodel is incompatible with66

the genome‑wide burden effects of LoF variants and duplications having the same sign (Appendix A).67

Recent work on the effects of gene dosage on molecular traits shows these relationships are often non‑68

linear [33, 34]; as we will show below, an assumption of nonlinearity is necessary but not sufficient to69

explain these observations.70

We next extended the observations of directionality by estimating the effect of each individual gene71

on the trait using burden tests, and then averaging those estimates across all genes for a trait. We found72

that the estimated average burden effect for LoF variantswas almost always in the same direction as that73

ofduplications (Figure1B). Curiously, however,whenwe lookat tophits fromGWASs,we findnoevidence74

for such an effect (Figures 1C and F.8).75

Taken together, these observations provide contradictory information about the relationship be‑76

tween dosage and trait. To explain these observations, we need to understand the gene‑level hetero‑77

geneity present in the dosage‑response relationships. We envision the relationship between gene ex‑78

pression and trait as a gene dosage response curve (GDRC): the continuous relationship between gene79

expression and average trait value. The core idea is that if a gene is involved in the biology of a trait, then80

different baseline expression values for the gene will result in different trait values on average. A given81
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FıGURE 1. Explaining the paradoxical observations in burden data. A. The hypothetical relationship between gene dosage
(E) and expected trait value (Y) is often assumed to be linear. LoF variants and duplications estimate the gene effect at dif‑
ferent dosage values (γ̂LoF and γ̂Dup). B. The average burden effect from LoF variants and duplications across traits. Yellow
points represent significant effects from both variant classes (p < 0.05), and the regression line was estimated using total
least squares (β = 0.77, z = 17.09). C. Conditionally independent GWAS top hits for height. The LOESS curve shows no bias
across the frequency spectrum. D. Burden estimates and 95% confidence intervals for two gene‑trait pairs, with hypothetical
GDRCs. E. The first model explains the non‑monotone average GDRC of FVC (with 95% confidence intervals) using monotone
gene curves. F. The secondmodel explains the non‑monotone average GDRC of FVC (with 95% confidence intervals) using
non‑monotone gene curves.

point on the GDRC is the hypothetical mean trait value of individuals whose gene expression is set to a82

particular level. In other words, the GDRC characterizes the relationship between expression and trait83

value for all possible dosage perturbations. The GDRC acts as a conceptual framework to unify various84

estimates of gene effects, allowing us to understand the source of non‑linearity in the data.85

Averaging over genetic backgrounds, a particular variant will have a specific effect on expression and86

thus correspond to a specific part of the GDRC. We define the origin to be the mean trait and expression87

value in the population (Appendix A). A burden estimate of the LoF effect, γ̂LoF, is an estimate of a point88

on the left tail of the curve, while a burden estimate of the duplication effect, γ̂Dup, is an estimate of a89
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pointon the right tail of the curve (Figure1A). Theeffect estimatedbyTWAS, γ̂TWAS, is the slopeof a linear90

approximation to the GDRC in the region of expression levels spanned by common expression quantita‑91

tive trait loci (eQTL).Whilewe visualize LoF variants andduplications as having specific dosage effects on92

expression (50% and 150% respectively), our theoretical arguments will require only that they generally93

decrease, or increase, expression respectively to understand the general characteristics of GDRCs.94

Intuition suggests thatGDRCs shouldbemonotone,meaning that reducingand increasingexpression95

should have opposite phenotypic effects (Figure 1D) [24, 25, 27, 35, 36]. The genome‑wide average bur‑96

den effects that we computed can be interpreted as points on the average GDRC obtained by averaging97

the GDRC of each gene for a given trait. If average deletion and duplication effects are in the same direc‑98

tion, it would imply a non‑monotone GDRC. It therefore seems surprising that aggregating presumably99

monotone GDRCs would result in a non‑monotone average GDRC.100

We suggest two models that could explain observations of non‑monotone average GDRCs. In the101

monotone model, the non‑monotone average GDRC can be explained using only monotone gene‑level102

GDRCs if the monotone curves are systematically buffered against one trait direction (Figure 1E). In the103

non‑monotonemodel, a subset of GDRCs are non‑monotone, and aremore often non‑monotone in a par‑104

ticular direction, driving the average GDRC to be non‑monotone (Figure 1F). Thesemodels are notmutu‑105

ally exclusive andmay both contribute to the non‑monotone average GDRC observed for a trait.106

Top hits from burden tests reveal both monotone and 
non-monotone gene effects

M
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N
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FıGURE 2. Top hits from burden tests. The Z scores from regression‑based burden tests using LoF and duplication variants
across various continuous traits. Top hits are separated into monotone and non‑monotone relationships. The green arrow
represents a Z score smaller than ‑10.

To understand the relative contribution of thesemodels to the average burden effects, we started by107

looking at top genes for various traits (Figure 2). As we expected, most top genes havemonotone effects108

on traits. However, surprisingly, a sizable minority of the top hits had non‑monotone effects. Thus, both109
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models could plausibly contribute to the observed average GDRCs.110

MOST TRAITS ARE MONOTONE ON AVERAGE111

To better understand the contribution of our proposed models to the non‑monotone average burden112

effects (Figures 1E and 1F), we wanted to understand the overall monotonicity of GDRCs, beyond just113

significant hits.114

A BSecond uncentered moment of burden effects measures 
average monotonicity GDRCs for complex traits are monotone on average
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FıGURE 3. Monotonicity inference for traits. A.Monotone curves (red) and non‑monotone curves (gray) fall in different
quadrants on the burden effect plot. A natural estimate of comparing points in these quadrants is the second uncenteredmo‑
ment between burden effect sizes. B. Estimated values of ϕ. Red and gray points are significantly non‑zero (p < 0.05). We
inferred a distribution over the latent monotonicity values, which has more density over positive monotonicity values.

We started with the observation that monotone GDRCs imply that LoF variants and duplications115

should have effects in opposite directions (Figure 3A), which we visualized by plotting the LoF burden116

effect against the duplication burden effect. If a duplication and an LoF variant have a large effect in the117

same direction, the GDRC would be non‑monotone and the product of their effects would be positive. If118

the GDRC is monotone, then LoF variants and duplications will have opposite effects, and their product119

will be negative. We define ϕ to be a normalized version of the negative product of the effect sizes and120

term this themonotonicity (Methods, Appendix B). ϕ is positive if genes with large effects on a trait tend121

to have monotone effects on average.122

Across traits, we found that the burden signal was explained predominantly bymonotone GDRCs, al‑123

though five traits had significantly negative monotonicity estimates (Figures 3B and F.9). To get a sense124

of the average level of monotonicity across traits, we inferred a distribution over the monotonicity esti‑125

mates across traits, which confirmed that both positive and negativeϕmaybe observed (Figure 3B). 71%126

of the density of the inferred distribution was over positive values of ϕ, while the rest was negative.127

Our monotonicity estimates do not explain the non‑monotone average burden effect. For example,128

while forced vital capacity (FVC) has a high degree of non‑monotonicity and a non‑monotone average129

GDRC, height and cystatin C both have a high degree of monotonicity but also have non‑monotone av‑130
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erage GDRCs (Figure 3B). However, the predominance of positive values of ϕ suggests that most of the131

overall burden signal comes from monotone genes. This matches our biological expectations of mono‑132

tone gene‑level effects, and is potentially consistent with the monotonemodel.133

NON-MONOTONE GENES ALIGN WITH THE DIRECTION OF AVERAGE EFFECTS134

The distribution of monotonicity estimates suggests that the genome‑wide signal is composed of both135

monotoneandnon‑monotoneGDRCs. To systematically assess ifwe coulddetect non‑monotoneGDRCs,136

we ascertained genes with marginally significant LoF and duplication effects (|z| > 2) in any trait. We137

identified 633 gene‑trait association pairs across all of our traits, of which 287 (45.3%) exhibited a non‑138

monotone relationship (Figure 4A). This suggests that the burden data is potentially consistent with the139

non‑monotonemodel.140

The non‑monotone model (Figure 1F) proposes that there are more non‑monotone curves aligned141

with the average burden effect than not. To assess this, we polarized ascertained gene‑trait pairs based142

on the direction of the average burden effect. Consistent with our model, non‑monotone genes were143

significantly more likely to be found in the quadrant concordant with the average effect (Figures 4A and144

4B). As a specific exampleof a gene that falls in the concordantquadrant, the averageLoFandduplication145

burden effect is to reduce hand grip strength (Table F.1), and one of the top non‑monotone genes,G6PC1,146

reduces hand grip strength upon perturbation in either direction (Figure 2).147

The presence of non‑monotone GDRCs that contribute strongly to the average burden effect is sur‑148

prising. We can use a simple mechanistic model to see why such non‑monotone GDRCs are unexpected.149

Consider a gene that affects a trait via a single biological pathway (Figure 4C). Intuition about biological150

mechanisms suggests that each step along a pathway should bemonotone, but possibly non‑linear. For151

instance, protein levels are often buffered against large changes in gene expression [9], which results in a152

non‑linear, but monotone response of protein levels to gene expression (Figure 4C). Similarly, perturba‑153

tions of the expression levels of transcription factors can result in non‑linear changes in the expression154

of their targets [33, 34]. As the dosage effect percolates through a pathway towards the focal trait, these155

curves compose with one another to form the relationship between gene dosage and trait. If each curve156

along the pathway ismonotone, then the overall relationship between gene expression and trait ismath‑157

ematically guaranteed to also be monotone (Figure 4C, Appendix A).158

However, non‑monotone GDRCs can arise if a gene’s effects flow through two ormore pathways (Fig‑159

ure 4D). 3‑hydroxybutyrate levels, which increase in blood during ketogenesis, provide an interpretable160

example. CYP11B1 has a non‑monotone relationship with 3‑hydroxybutyrate levels in the blood, with161

both LoF variants and duplications increasing 3‑hydroxybutyrate on average (γ̂LoF = 0.15, zLoF =162

3.03, γ̂Dup = 0.68, zDup = 2.66). CYP11B1 encodes a key adrenal enzyme involved in the production163

of cortisol. Deficiency of the enzyme encoded by CYP11B1, referred to as 11ꞵ‑hydroxylase deficiency,164

is a cause of a congenital adrenal condition that results in reduced cortisol levels and subsequent hy‑165

poglycemia [37]. Without sufficient glucose levels, the body generates increased amounts of ketones,166
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FıGURE 4. Large fraction of non‑monotone GDRCs. A. Top gene‑trait pairs (|z| > 2) for traits with significant average bur‑
den effects (Table F.1). The burden effects were polarized by the direction of the average burden effect. B. The proportion of
concordant versus discordant non‑monotone GDRCs per trait show that non‑monotone GDRCs tend to align themselves with
the average burden effect (Student’s t‑test p = 1.59 × 10−2). C.Monotone curves along a pathway will compose to form a
monotone GDRC. D. The effect of CYP11B1 propagates through two separate paths to affect 3‑hydroxybutyrate levels, which
may explain the non‑monotone GDRC.

especially 3‑hydroxybutyrate, to serve as an alternative energy source [38]. Meanwhile, duplications in167

CYP11B1 can lead to increased production of cortisol, which over time can lead to the development of168

Cushing’s syndrome and insulin resistance [39, 40]. This insulin resistance can then lead to a state of169

perceived hypoglycemia, resulting in increased ketone levels, especially increased 3‑hydroxybutyrate, in170

the blood [41]. Generalizing these biological principles, non‑monotone GDRCs can arise whenever the171
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effect of a gene propagates throughmultiple pathways to affect the trait (Figure 4D).172

Overall, non‑monotone GDRCs exist and can have reasonable biological underpinnings. The number173

of non‑monotone GDRCs is imbalanced, and suggestively aligns with the average burden effect across174

traits. This provides support that our secondmodel contributes to the average burden effect.175

GENES ARE BUFFERED AGAINST ONE TRAIT DIRECTION176

The analysis of monotonicity and the imbalance in non‑monotone GDRCs suggest that both the mono‑177

tone and non‑monotone models are plausible explanations of the non‑monotone average GDRCs. If178

the mixture of GDRCs for the trait are depressed in one direction, then the average GDRC will be non‑179

monotone (Figure 5A). Another interpretation of these curves is that traits aremore likely to be perturbed180

in one direction than the other regardless of the direction of expression perturbation. Therefore, this is181

a form of buffering that occurs at the trait level. We refer to this as trait buffering. We endeavored to182

quantify how much each of our models contributed to the non‑monotone average GDRC by measuring183

and decomposing the trait buffering for various traits.184

In the burden effect plot, curves experiencing trait buffering preferentially map to a region that is185

away from a diagonal line (Figure 5A). The diagonal line represents perfectly linear GDRCs (Appendix E).186

Points above the diagonal line correspond to GDRCs that are buffered against negative trait values, and187

points below the diagonal line correspond to GDRCs buffered against positive trait values.188

To develop some preliminary intuition about the trait buffering model, we estimated γLoF and γDup189

for each gene. Since burden effect estimates are noisy for individual genes, we performed Bayesian in‑190

ference using a flexible multivariate adaptive shrinkage (MASH) prior [42], which models the joint distri‑191

bution of γLoF and γDup as a mixture of bivariate normal distributions. This prior distribution is learned192

from the data. We used posterior samples of γLoF and γDup for each gene to better understand the dis‑193

tribution of genes on the burden effect plot. As an example, the posterior means of γLoF and γDup for194

height are displayed in Figure 5B. Both monotone and non‑monotone GDRCs are predominantly below195

the diagonal, concordant with the direction of the average burden effect.196

To formalize our intuition, we developed a statistic to measure this trait buffering, ξ, that aggregates197

the signed strength of deviation from the diagonal line across all GDRCs (Appendix E). We calculate the198

statistic using posterior samples of γLoF and γDup.199

The signof ξ indicateswhichdirection is beingbufferedagainst. For example, ourmodel predicts that200

height should have a negative value of ξ and cystatin C should have a positive value of ξ. If GDRCs are not201

preferentially buffered against either direction of a trait, our statistic should be close to zero. Indeed this202

measure of trait buffering showed strong concordancewith both the average LoF andduplication burden203

effects (Figure 5C).204

To understand the extent to which our proposed models (Figures 1E and 1F) contributed to trait205
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FıGURE 5. Trait buffering as amodel for GDRC architecture. A. Combining both models of GDRCs contributing to the av‑
erage burden effect. The GDRCs fall below a diagonal line for traits with negative average burden effects such as height. The
average loss‑of‑function and duplication burden effects will be in the direction of trait buffering (green and blue points). B.
Estimates of the latent burden effects show, visually, that height is consistent with trait buffering. Yellow and green genes
have a local false sign rate less than 0.05. C. (Left) The measure of trait buffering is strongly correlated with the average bur‑
den effects. Yellow and green genes have a local false sign rate less than 0.05. (Right) When we decompose the trait buffering
measure, both monotone and non‑monotone genes contribute to trait buffering, with more contribution from non‑monotone
curves. The direction of trait buffering is shown in the column on the right.

buffering, we decomposed ξ into the contribution from non‑monotone andmonotone GDRCs (Appendix206

E). Thesemeasures revealed that bothmonotone and non‑monotone curves contribute to trait buffering207

(Figure 5D), with non‑monotone GDRCs contributing a median of 80% to trait buffering.208

Overall, traits with large non‑monotone average burden effects have GDRCs that are buffered against209

one direction of the trait. Both of our proposed models (Figures 1E and 1F) contribute to produce the210

non‑monotone average GDRCs, with non‑monotone GDRCs contributing more strongly than monotone211

GDRCs.212
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A DYSREGULATION PHENOTYPE MAY BE UPSTREAM OF MANY COMPLEX TRAITS213

To recapitulate, we found evidence for twomodels contributing to the observed average burden effects.214

Thesemodels imply thatGDRCs for complex traits areorganized inamanner that results in trait buffering.215

A GDRCs of traits under directional selection 
will be non-monotone

B GDRCs of traits under stabilizing selection 
can be monotone or non-monotone

D A mixture of direct and indirect regulators explain the observed non-monotone average burden 
effects
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C An upstream dysregulation phenotype model
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FıGURE 6. A theoretical model to explain trait buffering. A. GDRCs of traits under directional selection will become non‑
monotone over evolutionary time. B. GDRCs of traits under stabilizing selection will have no preference for GDRC shape. C.
Traits with non‑zero average burden effects have an upstream dysregulation phenotype, which we hypothesize is under direc‑
tional selection. D. Example GDRCs of genes that follow specific paths to affect the focal trait (for example, height) under our
theoretical model.

Two observations initially seem to imply that the complex traits with non‑monotone average GDRCs216

are under directional selection. First, the GDRCs for these traits are buffered against a particular trait217

direction. Second, the non‑monotone average GDRC suggests that any variant should have an average218

non‑zeroeffect in the samedirection regardlessofwhether the variant increasesordecreases expression.219

To see why these observations are signatures of directional selection, we consider how the average220

expression of a given gene will evolve over time in response to directional selection. Suppose a gene221

affects a trait that is under negative selection (Figure 6A). Then, selection will tune the expression of the222

gene until the trait is minimized, resulting in non‑monotone GDRCs where both deletions and duplica‑223
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tions increase the trait. Thus, the non‑monotone average GDRC and trait buffering in the direction of224

the average burden effects suggests that the GDRCs of these complex traits are shaped by directional225

selection.226

However, prior analyses using GWAS data for many of these traits suggest that they are under a dif‑227

ferent mode of selection – stabilizing selection [43–47]. Additionally, we do not see a non‑zero average228

effect in GWAS data (Figure 1C, Appendix F), inconsistent with directional selection.229

Stabilizing selection affects GDRCs differently than directional selection. Suppose a gene affects a230

trait under stabilizing selection (Figure 6B). Stabilizing selection acts tomaintain an optimum trait value,231

andwill tune the expressionof the gene to reach the optimumtrait value. Unlike in the case of directional232

selection, the local shape of the GDRC around the optimum trait value is not restricted tominima. In this233

case, we do not expect any particular GDRC shape to dominate, and we do not expect LoF variants or234

duplications to be biased in a particular direction.235

To explain the incongruous non‑zero average burden effects and zero average GWAS effect, we pro‑236

pose that traits with non‑monotone average GDRCs are downstream of an unobserved trait under neg‑237

ative selection that we refer to as ‘dysregulation’ (Figure 6C). If the focal trait is downstream of dysregu‑238

lation, the GDRC of the gene for the focal trait may be shaped by both forms of selection depending on239

if the gene is a direct or indirect regulator of the focal trait (Figure 6D). For genes that act primarily on240

the trait via dysregulation, the GDRCs will be non‑monotone and in the direction of increasing dysregu‑241

lation. For genes that directly modulate the focal trait, we expect no particular preference for monotone242

or non‑monotoneGDRCs. Genes that act on the focal trait both directly and via dysregulation explain the243

monotone curves that experience trait buffering.244

Overall, this model explains the non‑monotone average effects that we observe in the data. Depend‑245

ing on the balance between direct regulation or indirect regulation via dysregulation, we can still have246

predominantly monotone GDRCs but have a consistent bias toward one direction of the focal trait.247

Ourmodel also explainswhy the non‑zero average effect is apparent in LoF variants and duplications248

across various traits, but is not discernible in GWAS effect sizes. Consider two variants that have the ex‑249

act same effect on the focal trait. One variant affects the trait directly, while the other affects the trait via250

dysregulation. Under our model, the second variant that acts via dysregulation can only affect the focal251

trait in one direction because it has a non‑monotoneGDRC,while the first variant has no such restriction.252

Both variants will experience the exact same fitness consequences from stabilizing selection on the trait.253

However, the variant acting via dysregulation will experience additional fitness consequences. Thus,254

holding all other factors equal, the variant acting via dysregulationwill have a lower allele frequency and255

be more challenging to detect in a GWAS, thus making it less likely to contribute to a non‑zero average256

effect.257

We believe that this unobserved latent phenotype is a measure of dysregulation because the down‑258

stream traits with large non‑monotone average burden effects are readouts of general dysfunction. The259
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traits with significant non‑monotone average effects (Table F.1) include measures of organ dysfunction260

such as alkaline phosphatase, cystatin C, and C‑reactive protein, which all have positive average LoF and261

duplication effects. Put another way, both deletion or duplication of a randomgene tend to increase dis‑262

ease risk and measures of organ dysfunction. Similarly, measures of lung capacity and muscle strength263

have negative average LoF and duplication effects. Overall, the average effect is often in the direction of264

dysregulation across the continuous traits we studied.265

Recent analyses of predicted biological age in the UKB also support the presence of a dysregulation266

phenotype [48, 49]. Age is associated with general dysregulation and disease [50]. Strong predictors of267

biological age in predictivemodels include FEV1, cystatin C, HbA1c, alkaline phosphatase, and hand grip268

strength [48, 49], suggesting that these continuous traits with large non‑monotone average effects may269

act as readouts of dysregulation.270

DISCUSSION271

In this study, we interpreted dosage‑perturbing rare variants through the lens of the GDRC. Our analysis272

suggests that both monotone and non‑monotone GDRCs contribute to the concordant average burden273

effects of LoF and duplication variants. This results in GDRCs that are buffered against one trait direc‑274

tion. We hypothesized that this may be explained by the effect of genes on an upstream dysregulation275

phenotype. The shape of GDRCs may thus be molded by the effects of directional selection.276

IMPLICATIONS OF THE OBSERVED CHARACTERISTICS OF GENE DOSAGE RESPONSE CURVES277

In a “linear world” where dosage has a linear relationship with trait, ascertaining any point on the GDRC278

along the dosage spectrum would carry all the information about the gene’s effect on trait. However,279

biology is inherently non‑linear, and our analysis shows that these assumptions break down for variants280

with large effects. This has significant implications for drug design. If the GDRC of the target gene is281

non‑monotone, perturbation in either direction may only increase disease risk. This occasional lack of282

concordance between LoF and duplication burden effectsmotivates the use of assays that test both ends283

of the dosage spectrum [51]. The shape of the GDRC implied by the burden estimates can also be useful284

prior for fine‑mapping causal variants [52] and linking variants to genes [53–57].285

The assumption of linearity in TWAS [5, 6, 58] and Mendelian randomization [59] approaches may286

cause estimated effect sizes to be close to zero for non‑monotone genes. The ability of TWAS to recover287

trait‑associated genes with non‑linear GDRCs needs to be explored further. Yet, TWAS‑type methods288

would be invaluable for understanding the behavior of the GDRC in the physiological range of expres‑289

sion, thus motivating the continued development of suchmethods.290
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TOWARDS THE INFERENCE OF GENE-LEVEL CURVES ACROSS TISSUES AND CONTEXTS291

Moving from genetic associations towards mechanistic insights for complex traits remains challenging.292

The GDRC captures a large fraction of the biological insights that we want to extract from association293

studies. Although inference of the GDRCmay be challenging, it is worth considering what aspects of the294

GDRC we can estimate using population‑level and experimental approaches.295

In principle, each tissue or cell type has its own specific GDRC for a gene‑trait pair. In our approach,296

we focused on the global GDRC – which we could interpret as a weighted sum of tissue‑specific GDRCs297

– by using variants that affect all tissues and contexts to understand the aggregate effect of dosage per‑298

turbation on trait. Modern approaches that estimate the effect of genes in specific tissues or cell types,299

such as TWASs, can be thought of as estimating or approximating aspects of tissue‑specific GDRCs.300

Even with methodological advances, it is unlikely that we will be able to infer all points of the GDRC301

of a genewith population‑level data alone. The effects of selectionmake it challenging to detect variants302

in geneswith large effects on traits [60, 61]. This suggests that the ability to effectively infer the GDRCwill303

vary across the genome, and likely be most challenging for genes that are particularly important to the304

biology of traits.305

These limitations of population‑level data suggest that sequence‑to‑expression models [62–65] and306

experimental approaches [66–68] will play a critical role in fleshing out the GDRC for key genes. Missense307

variants, which in aggregate have ameasurable effect on complex traits [30], are challenging to integrate308

into the GDRC framework. Accurate computational effect prediction [69] or experimental approaches309

such as deep mutational scanning [70] are critical for translating the effect of missense variants into an310

“effectivedosage”,whichwould allow them tobeplacedon theGDRC. Similarly, for commonvariants, we311

are restricted tousingdosageeffect estimates fromeQTL studies in tissues thathavebeenassayed,which312

are often post‑mortemand fromadult donors [71]. However, we cannot feasibly assay all tissues and cell313

types in all contexts. Thus, predicting common variant effects from sequence and multi‑omic context314

or using experimental approaches such as massively parallel reporter assays [67] will be necessary to315

estimate full GDRCs.316

In summary, we have explored the nature of the relationship between gene dosage and trait for vari‑317

ous complex traits. Our finalmodel explains the initial observation of non‑monotone average effects and318

provides intuition for how these relationships may be shaped by natural selection. The insights about319

GDRCsunderlying complex traitswill be informative for variousdownstreamapplications, including ther‑320

apeutics andmethods development.321
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METHODS322

Thegoalofourdataanalysis approachwas toestimateburdensummarystatistics for LoFvariants,whole‑323

gene deletions, whole‑gene duplications, and partial deletions using a consistent set of decisions and324

tools. This consistency between the burden tests allowed us to compare effect sizes across the variant325

classes. We performed burden test using synonymous variants as a negative control to estimate any326

residual confounding,whichwedetail inAppendixF.We improveduponpreviousLoFburdenapproaches327

by using variable frequency filters based on gene constraint (Appendix F). We also improved upon prior328

duplication burden tests in the UKB [23–25, 27] by using copy number calls from WGS data rather than329

microarray data. CNV calls from WGS have the advantage of more accurate copy number estimation,330

higher resolution of CNV breakpoints, and better detection of rare CNVs [72].331

Tomake our approach amenable to researchers without access to individual level data, wemodeled332

the summary statistics rather than the underlying genotype data. We use the regression with summary333

statistics (RSS) likelihood [73], which provides a likelihoodmodel for association test summary statistics.334

To our knowledge, this is the first use of the RSS likelihood for burden regression. To demonstrate its335

applicability and correctness, we performed extensive simulations, which are catalogued in Appendix D.336

INDIVIDUALS337

We followed a protocol similar to a prior analysis of rare LoF variants in the UKB [30]. We use all 460K338

individuals with WES data in the UKB data. This is slightly larger than the fraction used by Backman et339

al., who focused on 430K individuals with genetic similarity to the EUR “superpopulation” as defined by340

the 1000 Genomes Project. Although relatedness and population structure can introduce environmen‑341

tal confounding, our pilot analyses with synonymous variants (Appendix F) indicated minimal levels of342

uncorrected confounding.343

PHENOTYPES344

We curated 410 continuous phenotypes in the UKB on which to perform burden tests, of which 91 were345

used for the main analysis in the paper. We required phenotypes to have measurements in at least 40K346

individuals. We also excluded any traits where more than 50% of the instances match the mode of the347

trait. This is to remove quasi‑categorical traits, and is more relaxed compared to Backman et al., who348

exclude traitswith a cutoffof 20%. For phenotypes thatwere collectedmore thanonce in returning visits,349

weuse the first instance of the observation for each individual. Backmanet al. took themeanacross such350

instances, but we believe that this would reduce the noise for some individualsmore than others in a not351

completely at random fashion. It would also make it challenging to interpret the relationship between352

mean phenotype and covariates that are observed at specific instances, such as age. Some of our traits353

hadarrayedmeasurements, but theywere all taken in the samevisit sowedecided to use themean value354

across the arrayed items.355
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Separately, we acquired access to the full 500K baseline metabolomics data from the nuclear mag‑356

netic resonance (NMR) metabolomics data set generated by Nightingale Health PLC [74].357

GENOTYPES358

We included 15 genotyping principal components (PCs), estimated previously in the UKB [75]. Backman359

et al. performed ancestry‑specific analyses and included 10 genotyping PCs for each ancestry. Since we360

used all 460KWES samples, we included an additional 5 PCs to address potential stratification. Our anal‑361

ysis of synonymous variants (Appendix F) supported this choice.362

Following the lead of Backman et al., we included 20 rare variant PCs, bywhichwemean PCs derived363

from rareWES variants. We subsampled 300K variants uniformly at random from the rare fraction, which364

we defined as variants with minor allele count (MAC) greater than 20 and minor allele frequency (MAF)365

less than 1%. We used an approximate principal components analysis (PCA) algorithm implemented in366

FlashPCA2 [76].367

We restricted our burden analysis to LoF sites with MAF less than 1%. High‑confidence LoF sites were368

annotated using Ensembl’s Variant Effect Predictor [77] with the LOFTEE plugin [78]. LOFTEE filters re‑369

move annotated LoF sites that might escape nonsense‑mediated decay (NMD). Instead of using progres‑370

sively stricter MAF cutoffs as in Backman et al., we use all LoF siteswithMAF less than 1%but require that371

the misannotation probability be less than 10%. The misannotation probability [61] takes into account372

both the frequency of the site and the constraint experienced by the gene to determine a posterior prob‑373

ability of beingmisannotated as a LoF. These probabilities were previously reported for LoF‑introducing374

single nucleotide polymorphisms (SNPs) for genes with estimated shet values [61]. A small number of375

genes do not have shet estimates, and not all variants in theWES datawere SNPs. For genes withmissing376

shet values, shet was imputed using the mean shet value. Then, for all LoF variants missing a misannota‑377

tion probability, misannotation probabilities were imputed using k‑nearest neighbors (kNN) regression378

with 10 nearest neighbors as determined by allele frequency and shet. A 10% cutoff on this probability379

retains 96.46% of variants. We demonstrated that relative to standard frequency cutoffs, using a misan‑380

notationprobability cutoff increases the signal in the burden testswithout increasing the size of standard381

errors (Appendix F).382

CNVswere previously called in the UKB using Illumina’s DRAGEN software [31, 79]. A deletionwas de‑383

finedasany loss that affected theentire genebodywithanadditional 1Kbp flanking region. Aduplication384

was defined as any gain that affected the entire gene body with an additional 1 Kbp flanking region. Any385

deletions that affected only part of the gene body were categorized as potential loss‑of‑function (pLoF)386

alleles. For deletions and pLoF variants, the alternative allele coded the number of copy loss events. For387

duplications, a copy number of two was coded as the reference homozygote and a copy number greater388

than twowas coded as a heterozygote. We observed that some samples had a large amount of genome‑389

wide copy gain or loss, which is likely a genotyping error (Appendix F). To account for this, we removed390

any sample with greater than 10 Mbp of deleted or duplicated genome sequence.391
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Weused GENCODE version 39 to define gene intervals [80]. We excluded genes on the Y chromosome392

and the mitochondrial genome.393

BURDEN TESTS394

WeusedREGENIE toperformgene‑level burden tests [32]. For thewhole‑genome regression,which is the395

first step in REGENIE, SNPs from the genotyping array were pruned with a 1000 variant sliding window396

with 100 variant shifts and an R2 threshold of 0.9. SNPs were then filtered to have MAF > 1%, genotype397

missingness < 10%, and Hardy‑Weinberg equilibrium (HWE) test p‑value < 10−15.398

For LoF burden tests, we used the following covariates: age, sex, age‑by‑sex, age squared, 15 geno‑399

typing PCs, 20 rare variant PCs, and WES batch. For the duplication, deletion, or pLoF burden tests, we400

used the following covariates: age, sex, age‑by‑sex, age squared, 15 genotyping PCs, 20 rare variant PCs,401

and WGS batch. When analyzing NMR metabolites, we additionally included the spectrometer and pro‑402

cessing batch as covariates.403

After whole‑genome regression, we used the second step of REGENIE to perform burden tests. Phe‑404

notypes were rank‑inverse‑normal transformed in both the first and second step. The same covariates405

were used in both steps.406

MONOTONICITY MODEL407

Wemodeled the standardized trait of interestY inN individuals as408

Y = Xγ1 + Zγ2 + ϵ ,

whereX and Z are the burden genotypes from LoF variants and duplications respectively. The error ϵ409

was assumed to be drawn from a normal distribution. Polygenic signal, population stratification, and410

other sources of confounding were accounted for when performing the burden tests by including covari‑411

ates. We built a hierarchical model by specifying a distribution on the latent effect sizes of the jth gene:412 [
γ1j

γ2j

]
∼ N

([
γ1

γ2

]
,

[
σ211 σ12

σ12 σ222

])
.

This allowed us to model the quantities of interest. The average effect of deletions and duplications is413

represented by γ11 and γ21 respectively. We defined themonotonicity,ϕ ∈ [−1, 1], to be a quantity that414

is proportional to the negative uncentered secondmoment of the latent effect sizes,415

ϕ
△
∝ −E [γ1jγ2j ] .

Thus, if genes with large effects tend to have opposite signs on average, ϕwill be closer to 1. Similarly, if416

genes with large effects tend to have the same sign on average, ϕwill be closer to−1.417
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The observed burden effect sizes for the jth gene, γ̂1j and γ̂2j , are noisy estimators of the underlying418

latent effect size. Furthermore, due to correlation between duplication burden genotypes, γ̂2j is not an419

unbiased estimator of γ2j because the observed effect size is inflated by the effect of nearby genes. To420

account for these concerns, we utilized the RSS likelihood [73]. An extensive description of the model is421

provided in Appendix B.422

We developed unbiased estimators of γ1 and γ2. Since the monotonicity is a complex function of423

the parameters of the prior, it was challenging to derive unbiased estimators. Instead, we opted to use424

maximum likelihood estimation for ϕ, which guarantees consistency. Inference and simulations under425

this model are described in Appendices C and D respectively.426

BUFFERING MODEL427

Since the monotonicity, ϕ, is a function of first and second moments of the latent effect sizes, we used428

a normal distribution as the prior. However, our buffering model proposed a more complex hypothesis429

about the distribution of the latent effect sizes, which required amore flexible prior over the latent effect430

sizes.431

To address this, we modified our monotonicity model to use the MASH model prior [42], which is a432

flexible multivariate prior. We continued to use the RSS likelihood to model the observed effect sizes.433

MASH uses a mixture ofK multivariate normal distributions to model the latent space:434 [
γ1j

γ2j

]
∼

K∑
k=1

πk N (0,Vk) .

Since the true latent distribution is unknown, MASH uses a grid of fixed covariance matrices and learns435

the mixture weights π using empirical Bayes. In its original implementation, MASH assumes indepen‑436

dence between observed samples, allowing for efficient optimization. Since the RSS likelihood neces‑437

sarily induces dependencies between the observations via linkage disequilibrium (LD), we implemented438

a stochastic approximation expectation maximization (SAEM) algorithm to optimize π [81, 82]. An alter‑439

native approach to this model has been proposed that uses variational inference [83–85].440

Aswedefined it, theamountof directional buffering canbeestimatedby taking thedotproduct of the441

latent effect size with the normal vector of the hyperplane separating the two types of buffering, which442

we explain further in Appendix E. We used the posterior distribution over γ to estimate443

ξ
△
= E

[
log2

(
3

2

)
γ1j + γ2j

∣∣∣ γ̂] ,
which corresponds to theposterior expectationof thedotproduct given theobserveddata. Todetermine444

howmuch is contributed to ξ by monotone or non‑monotone genes, we conditioned on the type of the445
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GDRC:446

ξnm = E
[
log2

(
3

2

)
γ1j + γ2j

∣∣∣ γ̂, γ1jγ2j > 0

]
ξm = E

[
log2

(
3

2

)
γ1j + γ2j

∣∣∣ γ̂, γ1jγ2j < 0

]
.

Using the law of total expectation, we can decompose ξ into the contribution from non‑monotone and447

monotone GDRCs as448

ξ = ξnmP (γ1jγ2j > 0) + ξmP (γ1jγ2j < 0) .

ξ is zero under the null model where GDRCs are equally likely to be buffered against increasing or de‑449

creasing the trait. The details of the model can be found in Appendix E.450

DATA ANALYSIS451

Throughout, we use unbiased maximum likelihood estimates (MLEs) for the duplication burden esti‑452

mates when they are displayed in the paper, which account for LD with neighboring genes.453

In Figure 1B, we used total least squares to fit a regression line with no intercept. Weights in the454

regressioncorresponded to the inverse varianceof theestimates. Toprovideabetter fit, weusedmultiple455

initial parameter values. We retrieved GWAS summary statistics from the UKB to generate trumpet plots456

(Figures 1C and F.8). The collection and analysis of these data is described in Appendix F. We fit a locally457

estimated scatterplot smoothing (LOESS) curve to visualize the conditional mean of the derived allele458

effect given the derived allele frequency.459

In Figure 2, top gene‑trait pairs were ascertained with |z| > 3 for both LoF and duplication burden460

estimates. Gene‑trait pairs were then ordered by γ̂2LoF since we are more confident in the LoF estimate,461

and the top trait was chosen per gene. Thus, each gene was only represented once in the plot. Then, we462

ordered gene‑trait pairs by |zLoFzDup| and chose the top hit per trait. By doing so, each trait also appears463

only once in the plot.464

We inferred a distribution of effects for ϕ across traits for Figure 3B using a hierarchical model that465

was fit using empirical Bayes. The model is described in Appendix F.466

In Figure 4A, tophitswere ascertainedas gene‑trait pairswith |zLoF| > 2 and |zDup| > 2 for traitswith467

significant average burden effects (Table F.1). Then, to plot polarized Z scores, wemultiplied the Z score468

by the sign of the average burden effect. Thismeans that geneswith positive burden effect estimates are469

in the samedirection as the average burden effect. Since both the LoF and duplication burden effects are470

noisy estimates, we use the first PC of the Z scores to represent the trend of the data. The data was not471

centered or scaled before running PCA.472

We estimated confident separation from the diagonal line in Figure 5B using the local false sign rate473

[86]. This rate is calculated using the number of posterior samples that fall on either side of the diagonal474
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for a given gene. A rate of less than 0.05 implies that less than 5% of the posterior density is on one side475

of the diagonal. Figure 5C represents the sample plot as Figure 1B. Points are colored based on the sign476

of ξ and the local false sign rate. Traits with significant average burden effects (Table F.1) were used in477

Figure 5D. The proportion of contribution from non‑monotone GDRCs was estimated as478

ξnmP (γ1jγ2j > 0)

ξmP (γ1jγ2j < 0)
.
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Appendices

A GENE DOSAGE RESPONSE CURVES1

GENOME-WIDE BURDEN2

We retrieved genome‑wide burden effect estimates from work by Auwerx et al., where burden was de‑3

fined as the number of genes affected by deletions or duplications [1]. We subset to traits where both the4

genome‑wide deletion and duplication burden effects had a p‑value of less than 0.05. In all cases, the5

deletion and duplication burden effect is in the same direction.6

Genome-wide Burden Effect
-0.01 0.00 0.01

Grip strength
Vitamin D

FVC
HDL cholesterol

Total cholesterol
Height

LDL cholesterol
Birthweight

Monocyte count
Reticulocyte count
WHR-adjusted BMI

Glucose
HbA1c

Neutrophil count
WBC count

Waist-hip ratio
C-reactive protein

ALP

Duplication
Deletion

FıGURE A.1. Genome‑wide burden data, reprocessed fromwork by Auwerx et al. [1]. These effects have a p‑value of less than
0.05. The deletion or duplication effect is the effect of increasing numbers of deleted/duplicated genes on the trait.

SCALE OF THE DOSAGE AND TRAIT7

The scale and shapeof the curve dependonhowgene expression and the trait aremeasured. We assume8

that expression is measured on a logarithmic scale relative to the population mean. This allows us to9

define the expression effect of loss‑of‑function (LoF) and duplication variants on a logarithmic scale such10

that expression‑decreasing variants have negative expression values and expression‑increasing variants11

havepositive expressionvalues. AheterozygousLoFgenotype thushasanexpressioneffectof log2
(
1
2

)
=12

−1, and a duplication resulting in a copy number of three has an expression effect of log2
(
3
2

)
≈ 0.59.13

For traits, we chose to use an inverse rank normal transform. By centering the trait, we implicitly define14

trait‑decreasingvariantsashavingnegativeeffectsand trait‑increasingvariantsashavingpositiveeffects.15
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The consequence of centering both expression and trait is that the gene dosage response curve (GDRC)16

always passes through the origin.17

COMPOSITION OF MONOTONE CURVES18

Letγ : E 7→ Y be theGDRC for a gene. Suppose that thedosageeffect percolates to the trait via apath, as19

diagrammed in Figure 4C. Consider a path consisting of two edges with associated functions f : R → R20

and g : R → R. The GDRC along this path will then be Y = γ (E) = f (g (E)) = (f ◦ g) (E). Here, f21

and g can are the curves of individual arrows along the path.22

Now, suppose that g is a monotone increasing function. That is, x ≤ y implies that g (x) ≤ g (y)23

for any x, y ∈ R. Similarly, suppose that f is a monotone increasing function. Then, x ≤ y implies that24

g (x) ≤ g (y), which implies that f (g (x)) ≤ f (g (y)). Thus, the composition (f ◦ g) is also monotone25

increasing. Similar arguments for monotone decreasing functions or pairs of increasing and decreasing26

functions demonstrate that the composition of monotone functions is also monotone.27

2
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B MONOTONICITY MODEL28

Here, we endeavor to jointly model burden summary statistics from different points on the dosage spec‑29

trum. Burden summary statistics areoften reportedasaneffect size anda standarderror fromregression.30

We use hierarchical models to account for the sampling error and pool information across genes.31

LetY ∈ RN be a standardized phenotype of interest, measured inN individuals. LetX,Z ∈ RN×M32

represent the burden genotypematrices for two variant classes respectively. By variant class, wemean a33

set of variants with a dosage effect in the same direction, such as deletions, duplications, or LoF variants.34

We assume that there areM genes that are polymorphic for both classes of variants. The genotypes are35

encoded as copies of the dosage‑perturbing allele.36

We use the following linear system tomodel the phenotype:37

Y = Xγ1 + Zγ2 + ϵ .

Here, γ1,γ2 ∈ RM are the unobserved, per‑allele effect sizes of perturbations of each gene on the phe‑38

notype. The residual error is represented by ϵ ∈ RN and is assumed to be drawn from an isotropic39

normal distribution,40

ϵ ∼ N
(
0, σ2ϵ I

)
.

DISTRIBUTION OF EFFECT SIZES41

Wemodel the latent effect sizes as coming from an uncentered normal distribution. Effect sizes between42

genes are assumed to be independent, but effect sizes for the same gene covary between the variant43

classes. That is to say, the effect of a deletion or LoF variant is assumed to carry some information about44

the effect of a duplication of the same gene. This covariance structure is represented with diagonal ma‑45

tricesΣ11,Σ12, andΣ22.46 [
γ1

γ2

]
∼ N

([
γ1

γ2

]
,

[
Σ11 Σ12

Σ⊤
12 Σ22

])
Suppose we collect the block matrices above into γ,γ ∈ R2M and Σ ∈ R2M×2M . Then, we can suc‑47

cinctly state that48

γ ∼ N (γ,Σ) .

Letγ·j ∈ R2 represent the latent effect sizes for the jth gene. For instance, the first coordinatemay repre‑49

sent the LoF effect, and the second coordinate may represent the duplication effect. Then, the marginal50

distribution is written as51 [
γ1j

γ2j

]
iid∼ N

([
γ1

γ2

]
,

[
σ211 σ12

σ12 σ222

])
.
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PARAMETER OF INTEREST52

We consider a gene to have a “monotone” effect on trait if the dosage‑reducing alleles have an opposite53

direction of effect compared to dosage‑increasing alleles. To this end, we define themonotonicity ϕ as a54

value proportional to the negative uncentered secondmoment of the effect sizes,55

ϕ
△
∝ −E [γ1jγ2j ] .

Thus, a positive ϕ represents monotone behavior. To compare monotonicity across traits, we restrict its56

codomain to [−1, 1]. We do this using the Cauchy‑Schwarz inequality, which guarantees that57

|E [γ1jγ2j ]|2 ≤ E
[
γ21j
]
E
[
γ22j
]
,

so that58

ϕ
△
= − E [γ1jγ2j ]√

E
[
γ21j

]
E
[
γ22j

] = − γ1γ2 + σ12√(
γ21 + σ211

) (
γ22 + σ222

) .
When the effect sizes are centered (that is, γ1 = γ2 = 0), this is equivalent to the negative correlation59

coefficient,60

ϕ = −ρ = − σ12
σ11σ22

.

DISTRIBUTION OF GENOTYPES61

We begin by assuming that there is no linkage disequilibrium (LD) between the different variant classes.62

This is reasonable toassumebecausedifferent variants arise throughdifferentmutational processes, and63

burden genotypes represent aggregates of multiple rare variants which generally have negligible LD [2].64

However, this assumption does not apply across genes within a variant class. Within duplications, for65

instance, large duplications consisting of multiple genes will induce LD between the burden genotypes.66

We assume that theM burden genotypes are in Hardy‑Weinberg equilibrium (HWE), which implies a67

binomial likelihood. Let pj represent the allele frequency of the jth gene’s dosage‑perturbing allele for68

the first variant class and let qj represent the allele frequency of the jth gene’s dosage‑perturbing allele69

for the second variant class. Without loss of generality, we assume that the genotypes are centered but70

not scaled:71

Xij + 2pj
iid∼ Binomial (2, pj)

Zij + 2qj
iid∼ Binomial (2, qj) .

There is no LD between variant classes,72

E [XijZkℓ] = 0 ∀i, j, k, ℓ .

4
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However, there is LD between the same variant class. The correlation matricesR1 andR2 are used to73

represent this LD. Let Pj = 2pj (1− pj) andQj = 2qj (1− qj) represent the heterozygosity of the bur‑74

den genotypes for the jth gene. Then,75

E
[
X⊤X

]
= P

1
2R1P

1
2

E
[
Z⊤Z

]
= Q

1
2R2Q

1
2 ,

where76

P = diag
(
{Pj}Mj=1

)
Q = diag

(
{Qj}Mj=1

)
.

Since LoF variants affect individual genes, andwe restrict ourselves to analyzing rare variants, we assume77

that the LoF burden genotypes are independent and that there is no LD between them. That is,R1 = I.78

Since deletions and duplications can spanmultiple genes, the burden genotypes are not independent.79

BURDEN REGRESSION80

Burden test results are reportedas summary statistics fromregressionbetween theburdengenotypeand81

the phenotype. Regression is performed on centered and scaled phenotypes. The marginal summary82

statistics are calculated based on the following model for each gene:83

Y = X·jγ1j + ϵ1

Y = Z·jγ2j + ϵ2 .

The effect size is approximately the following. Note that
(
X⊤

·jX·j

)−1
≈ 1

NPj
and

(
Z⊤
·jZ·j

)−1
≈ 1

NQj
, so84

γ̂1j =
(
X⊤

·jX·j

)−1
X⊤

·jY ≈ 1

NPj
X⊤

·jY

γ̂2j =
(
Z⊤
·jZ·j

)−1
Z⊤
·jY ≈ 1

NQj
Z⊤
·jY .

The standard error is approximately the following. Here, we assume that any individual gene explains a85

small fraction of the total variance. That is, σ2ϵ1 ≈ 1 and σ2ϵ2 ≈ 1. Thus,86

ŝ1j
△
= ŜE (γ̂1j)=

√
σ2ϵ1

(
X⊤

·jX·j

)−1
≈ 1√

NPj

ŝ2j
△
= ŜE (γ̂2j) =

√
σ2ϵ2

(
Z⊤
·jZ·j

)−1
≈ 1√

NQj

.
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Therefore, the Z scores are87

z1j ≈
1√
NPj

X⊤
·jY

z2j ≈
1√
NQj

Z⊤
·jY .
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C MONOTONICITY INFERENCE88

MAXIMUM LIKELIHOOD ESTIMATION89

For inference, wewill use the summary statistics directly rather than the underlying genotype data. That90

is, we are given the estimated effect sizes (γ̂1 and γ̂2) and their standard errors (ŝ1 and ŝ2). To simplify91

notation, we represent the prior as92

γ ∼ N (γ (θ) ,Σ (ω)) ,

where θ andω represent values used to parameterize the priors.93

Next, the likelihood of the estimated effect sizes is defined using the approximate regression with94

summary statistics (RSS) likelihood [3]. Under this likelihood, the estimated effect sizes are patterned95

by the LD in the cohort. Furthermore, the standard error of the sampling distribution is used as an es‑96

timate of the dispersion around the mean. Zhu et al. showed that this likelihood asymptotically ap‑97

proaches the sampling distribution of the estimated effect sizes [3]. Let Ŝ1 = diag
(
{s1j}Mj=1

)
and98

Ŝ2 = diag
(
{s2j}Mj=1

)
, and let R̂1 and R̂2 represent the in‑sample correlationmatricesof the twovariant99

classes respectively. Then, in notation reflecting the RSS likelihood, we define100

Ŝ
△
=

[
Ŝ1 0

0 Ŝ2

]

R̂
△
=

[
R̂1 0

0 R̂2

]
.

Then, the RSS likelihood for the observed effect sizes is101

γ̂ | γ ∼ N
(
ŜR̂Ŝ−1γ, ŜR̂Ŝ

)
.

Some genes are in perfect LD with each other. That is, the sample correlation matrix R̂ is not strictly102

positive definite. To improve numerical stability and to account for perfect LD, we project the data onto103

the linear subspace of dimension L < M spanned by the LD matrix (that is, a projection orthogonal to104

the null space). Consider the following eigendecomposition, with a matrix with orthogonal columns of105

eigenvectorsU ∈ RM×L and a diagonal matrix of eigenvaluesΛ ∈ RL×L,106

ŜR̂Ŝ = UΛU⊤ .

In practice, these are derived by dropping small eigenvalues from the numerical eigendecomposition of107

ŜR̂Ŝ. Rather thanmodeling the observations γ̂, we model the projected data,108

U⊤γ̂ | γ ∼ N
(
U⊤ŜR̂Ŝ−1γ,Λ

)
.

7
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Note that under this model, the marginal likelihood of the estimates is109

U⊤γ̂ ∼ N
(
U⊤ŜR̂Ŝ−1γ,U⊤ŜR̂Ŝ−1ΣŜ−1R̂ŜU+Λ

)
.

To simplify notation, letA = U⊤ŜR̂Ŝ−1 and letK = AΣA⊤ +Λ. Then,110

U⊤γ̂ ∼ N (Aγ,K) .

The pseudoinverseA+ is a useful quantity in downstream derivations. Since the rotation of the data111

is defined, we can construct a pseudoinverse using components of the eigendecomposition. The pseu‑112

doinverse is113

A+ = Ŝ2UΛ−1 .

This pseudoinverse is a right pseudoinverse, as can be seen by114

AA+ = U⊤ŜR̂Ŝ−1Ŝ2UΛ−1

= U⊤ŜR̂ŜŜ−2Ŝ2UΛ−1

= U⊤UΛU⊤UΛ−1

= I .

The other properties of the pseudoinverse are readily confirmed using matrix algebra.115

INFERENCE116

We maximize the marginal likelihood of the observed effect sizes with respect to the parameters of the117

model. The likelihood is118

L (θ,ω | γ̂, ŝ) = N
(
U⊤γ̂ ;Aγ,K

)
= (2π)−M (detK)−

1
2 exp

(
−1

2

(
U⊤γ̂−Aγ

)⊤
K−1

(
U⊤γ̂−Aγ

))
.

The log likelihood is119

ℓ (θ,ω | γ̂, ŝ) = logL (γ,ω | γ̂, ŝ)

= −M log (2π)− 1

2
log detK− 1

2

(
U⊤γ̂−Aγ

)⊤
K−1

(
U⊤γ̂−Aγ

)
.

We are interested in obtaining the maximum likelihood estimates θ̂ and ω̂ such that120

θ̂ = argmax
θ

L (θ,ω | γ̂, ŝ)

ω̂ = argmax
ω

L (θ,ω | γ̂, ŝ) .
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For maximum likelihood estimation of θ and γ, we use natural gradient ascent [4]. This is an opti‑121

mization approach that uses both first‑ and second‑order information about the log likelihood via the122

gradient and Fisher information matrix. The gradient of the log likelihood function with respect to γ is123

∇γ ℓ = ∇γ

[
−1

2

(
U⊤γ̂−Aγ

)⊤
K−1

(
U⊤γ̂−Aγ

)]
= A⊤K−1

(
U⊤γ̂−Aγ

)
.

Using the matrix chain rule, the derivative of the log likelihood with respect to one of the mean parame‑124

ters is125
∂ℓ

∂θi
= Tr

[(
∇γ ℓ

)⊤ ∂γ

∂θi

]
=
(
∇γ ℓ

)⊤ ∂γ

∂θi
.

Therefore, it follows that the gradient of the log likelihood with respect to the mean parameters is126

∇θ ℓ =
(
∇γ ℓ

)⊤ ∂γ

∂θ
.

Thematrix derivative of the log likelihood with respect toK is127

∂ℓ

∂K
=

∂

∂K

[
−1

2
log detK− 1

2

(
U⊤γ̂−Aγ

)⊤
K−1

(
U⊤γ̂−Aγ

)]
= −1

2
K−1 +

1

2
K−1

(
U⊤γ̂−Aγ

)(
U⊤γ̂−Aγ

)⊤
K−1 .

The derivative ofKwith respect to a given covariance parameter is128

∂K

∂ωi
= A

∂Σ

∂ωi
A⊤ .

Using the matrix chain rule, the derivative with respect to a given covariance parameter is129

∂ℓ

∂ωi
= Tr

[(
∂ℓ

∂K

)⊤ ∂K

∂ωi

]
.

TheFisher information formultivariate normal distributions has a special form [5] such that themean130

and covariance parameters do not share any information,131

I (θ,ω) =

[
Iγ (θ,ω) 0

0 IK (ω)

]
.

The Fisher information of the mean parameter is132

[
Iγ (θ,ω)

]
ij
=

(
∂γ

∂θi

∣∣∣∣∣
θ

)⊤

A⊤ [K (ω)]−1A

(
∂γ

∂θj

∣∣∣∣∣
θ

)
.
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The Fisher information of the covariance parameters is133

[IK (ω)]ij =
1

2
Tr

[
[K (ω)]−1

(
∂K

∂ωi

∣∣∣∣∣
ω

)
[K (ω)]−1

(
∂K

∂ωj

∣∣∣∣∣
ω

)]
.

Natural gradient ascent involves Newton‑Raphson updates with the Fisher information matrix. A134

dampening parameter 0 < αt ≤ 1 is chosen using a backtracking line search [6] at each iteration to135

improve stability and serve as a stopping condition,136

θ̂t+1 = θ̂t + αt

[
Iγ

(
θ̂t, ω̂t

)]−1
[
∇θ ℓ

∣∣∣
θ=θ̂t

]
ω̂t+1 = ω̂t + αt [IK (ω̂t)]

−1

[
∇ω ℓ

∣∣∣
ω=ω̂t

]
.

In practice, we estimate the gradients and Fisher information matrix for each chromosome separately137

and sum them up because effect estimates are assumed to be independent across chromosomes. The138

derivatives ∂γ
∂θi

and ∂K
∂ωi

are computed using automatic differentiation [7, 8].139

UNCERTAINTY ESTIMATION140

Let θ̂ and ω̂ be the maximum likelihood estimates (MLEs) of θ andω respectively. Let ψ (θ,ω) be any141

continuous map from the parameters to a real number. ψ can itself be interpreted as a parameter of the142

model. In our model, ϕ is an example of such a parameter. A natural estimate for ψ is to map the MLEs,143

ψ̂ = ψ
(
θ̂, ω̂

)
.

By the properties of the MLE, the estimator converges to the following in distribution.144

θ̂
d−→ N

(
θ,
[
Iγ (θ,ω)

]−1
)

ω̂
d−→ N

(
ω, [IK (ω)]−1

)
By the delta method, the estimator for ψ converges to145

ψ̂
d−→ N

(
ψ,

[
∇θψ

∣∣∣
θ,ω

]⊤ [
Iγ (θ,ω)

]−1
[
∇θψ

∣∣∣
θ,ω

]
+

[
∇ωψ

∣∣∣
θ,ω

]⊤
[IK (ω)]−1

[
∇ωψ

∣∣∣
θ,ω

])
,

which canbeused toderive approximate confidence intervals. Confidence intervals forϕwere estimated146

using this method.147

FIXED-EFFECTS MODEL148

In addition to consistent estimators provided by maximum likelihood estimation, it is useful to have un‑149

biased estimators of parameters as well. In the fixed‑effects model, we assume that γ is fixed, implying150

10
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that the observations have the following likelihood:151

U⊤γ̂ | γ ∼ N (Aγ,Λ) .

For unbiased estimation, the projection matrixA+A is used frequently throughout our derivations.152

To see that it is a projection matrix, note that153

A+A = Ŝ2UΛ−1U⊤ŜR̂Ŝ−1

= Ŝ2UΛ−1U⊤ŜR̂ŜŜ−2

= Ŝ2UΛ−1U⊤UΛU⊤Ŝ−2

= Ŝ2UU⊤Ŝ−2 .

Then, it follows that154

(
A+A

) (
A+A

)
= Ŝ2UU⊤Ŝ−2Ŝ2UU⊤Ŝ−2

= Ŝ2UU⊤UU⊤Ŝ−2

= Ŝ2UU⊤Ŝ−2

= A+A .

This makesA+A an idempotent matrix and implies that it is a projection matrix.155

MEAN EFFECT156

Suppose that themean effect size is γ1 for the first variant class and γ2 for the second variant class. Then,157

γ̂1 =
1

M

[
1

0

]⊤
A+U⊤γ̂

γ̂2 =
1

M

[
0

1

]⊤
A+U⊤γ̂

are unbiased estimators for thesemean effect sizes under certain conditions discussed below. Since the158

estimator is the sum of normal random variables, we can easily construct confidence intervals from the159

variance. A straightforward computation shows that the variances of the estimators are160

V
[
γ̂1
] △
=

1

M2

[
1

0

]⊤
A+Λ

(
A+
)⊤ [1

0

]

V
[
γ̂2
] △
=

1

M2

[
0

1

]⊤
A+Λ

(
A+
)⊤ [0

1

]
.
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These estimators are guaranteed to be unbiased if Ŝ−2 [ 1 0 ]⊤ and Ŝ−2 [ 0 1 ]⊤ are orthogonal to the null161

space ofU⊤.162

To see that γ̂1 and γ̂2 are unbiased under these conditions, we will focus on the former without loss163

of generality. In expectation,164

E

[1
0

]⊤
A+U⊤γ̂

 =

[
1

0

]⊤
A+E

[
U⊤γ̂

]

=

[
1

0

]⊤
A+Aγ

=

[
1

0

]⊤
A+A

([
γ1

0

]
+

[
0

γ2

])

=

[
1

0

]⊤
A+A

[
γ1

0

]
+

[
1

0

]⊤
A+A

[
0

γ2

]

=

[
1

0

]⊤
A+A

[
γ1

0

]
.

The last equality holds becauseA+A is block diagonal. Note here thatA+A is a projection matrix and165

has the formA+A = Ŝ2UU⊤Ŝ−2. Therefore, for our estimator to be unbiased, we require that166 [
1

0

]⊤
A+A =

[
1

0

]⊤
,

which is true if Ŝ−2 [ 1 0 ]⊤ is orthogonal to the null space ofU⊤. A similar derivation demonstrates that167

for γ̂2 to be unbiased, Ŝ−2 [ 0 1 ]⊤must be orthogonal to the null space ofU⊤. We tested this numerically168

with the eigendecomposition involving our specific LDmatrix.169

MEAN SQUARED EFFECT170

Themean squared effect is a usefulmeasure of the amount of burden signal present for each trait. In this171

paper, we estimate the squared effect for the LoF burden effects. The LoF burden genotypes are assumed172

to not be in LD, meaning that the likelihood for the jth gene is173

γ̂1j | γ1j ∼ N
(
γ1j , s

2
1j

)
.

Since the secondmoment of a univariate normal random variable is174

E
[
γ̂21j
]
= γ21j + s21j ,

12
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we note that175

γ̂21
△
=

1

M

M∑
j=1

γ̂21j − s21j

is an unbiased estimate of the squared burden effect size.176

We invoke the Central Limit Theorem, noting that each element in the sum is an independent and177

unbiased estimate of the quantity of interest, to derive approximate confidence intervals. We use an178

empirical estimate of the standard error to derive the approximate confidence intervals.179

RANDOM-EFFECTS MODEL180

A random‑effects model is required to develop estimators for the covariance components. We use an181

approach inspired by linkage disequilibrium score regression (LDSC) [9], and similar to that outlined in182

[3]. We assume that γ is random, with finite first and second moments. We also assume that the latent183

effect sizes are independent given Ŝ and R̂. Wemake the followingminimal assumptions about first and184

secondmoments of the joint distribution of the latent effect sizes:185

E
[
γ | Ŝ, R̂

]
= γ

V
[
γ | Ŝ, R̂

]
= Σ .

The Z scores from the burden regression can be defined as186

z = Ŝ−1γ̂.

By the properties of the normal distribution, the Z scores are distributed as187

z | Ŝ, R̂,γ ∼ N
(
R̂Ŝ−1γ, R̂

)
,

and Z scores for the two variant classes are independent,188

z1 | Ŝ, R̂,γ ∼ N
(
R̂1Ŝ

−1
1 γ1, R̂1

)
z2 | Ŝ, R̂,γ ∼ N

(
R̂2Ŝ

−1
2 γ2, R̂2

)
.

Without loss of generality for the second variant class, we focus on the jth gene of the first variant class.189

Let r̂1ji be the jith element of R̂1. The marginal distribution of the Z score for a given gene is then190

z1j | Ŝ, R̂,γ ∼ N

(
M∑
i=1

r̂1ji
ŝ1i

γ1i, 1

)
.

13
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We define the scaled LD score for the jth gene as191

ℓ1j
△
=

M∑
i=1

r̂21ji
ŝ21i

.

It is also useful to define192

l1j
△
=

M∑
i=1

r̂1ji
ŝ1i

.

Themarginal distribution of the Z scores between the two variant classes is193

z·j | Ŝ, R̂,γ ∼ N

([∑M
i=1 r̂1jiŝ

−1
1j γ1i∑M

i=1 r̂2jiŝ
−1
2j γ2i

]
, I

)
.

We define the cross‑variant LD score as194

ℓj
△
=

M∑
i=1

r̂1jir̂2ji
ŝ1j ŝ2j

.

It is also useful to define195

lj
△
=

[
M∑
i=1

r̂1ji
ŝ1j

][
M∑
i=1

r̂2ji
ŝ2j

]
.

COVARIANCE COMPONENTS196

Similar to LDSC, we now proceed by evaluating the expected squared Z score to develop estimators for197

σ211 and σ
2
22. We integrate over the latent effect size, γ, using the law of total expectation and the law of198

total variance. In the following, the conditioning on R̂1, Ŝ1, and ℓ1j is implicit to simplify notation. The199

expected squared Z score is200

E
[
z21j
]
= V [z1j ] + (E [z1j ])

2

= V [E [z1j | γ]] + E [V [z1j | γ]] + (E [E [z1j | γ]])2 .

The first term introduces the LD score into the expectation,201

V [E [z1j | γ]] = V

[
M∑
i=1

r̂1ji
ŝ1i

γ1i

]

=

M∑
i=1

r̂21ji
ŝ21i

V [γ1i]

= σ211ℓ1j .

14
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The second term introduces a constant,202

E [V [z1j | γ]] = 1 .

The last term is a bias introduced by the uncentered prior,203

E [E [zj1 | γ]] = E

[
M∑
i=1

r̂1ji
ŝ1i

γ1i

]

=
M∑
i=1

r̂1ji
ŝ1i

E [γ1i]

= γ1l1j .

Taken together, the expected squared Z score is204

E
[
z21j
]
= σ211ℓ1j + γ21l

2
1j + 1 .

Given the relationship of the expected squared Z score with σ211, we propose the following method‑of‑205

moments (MoM) estimator. A similar derivation follows forσ222. We use γ̂1, which is unbiased for γ1 under206

the random effects model as well. Our estimators are207

σ̂211
△
=

1

M

M∑
j=1

z21j −
(
γ̂1l1j

)2 − 1

ℓ1j

σ̂222
△
=

1

M

M∑
j=1

z22j −
(
γ̂2l2j

)2 − 1

ℓ2j
.

Wecanuse the expectedproduct of Z scores tobuild anestimator for the covarianceσ12. We integrate208

over the latent effect size γ using the law of total expectation and the law of total covariance. In the209

following, the conditioning on R̂, Ŝ, and ℓj is implicit to simplify notation. The expected product of Z210

scores is211

E [z1jz2j ] = V [z1j , z2j ] + E [z1j ]E [z2j ]

= V [E [z1j | γ] ,E [z2j | γ]] + E [V [z1j , z2j | γ]] + E [E [z1j | γ]]E [E [z2j | γ]] .
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The first term introduces the cross‑variant LD score into the expectation,212

V [E [z1j | γ] ,E [z2j | γ]] = V

[
M∑
i=1

r̂1ji
ŝ1i

γ1i,

M∑
k=1

r̂2jk
ŝ2k

γ2k

]

=
M∑
i=1

M∑
k=1

r̂1jir̂2jk
ŝ1iŝ2k

V [γ1i, γ2k]

=

M∑
i=1

r̂1jir̂2ji
ŝ1iŝ2i

V [γ1i, γ2i]

= σ12ℓj .

The second term does not contribute to the conditional expectation because the covariance between213

observed effect sizes is zero given the latent effect size:214

E [V [z1j , z2j | γ]] = 0 .

The last term is bias introduced by the uncentered prior,215

E [E [z1j | γ]]E [E [z2j | γ]] = E

[
M∑
i=1

r̂1ji
ŝ1i

γ1i

]
E

[
M∑
k=1

r̂2jk
ŝ2k

γ2k

]

=

[
M∑
i=1

r̂1ji
ŝ1i

E [γ1i]

][
M∑
k=1

r̂2jk
ŝ2k

E [γ2k]

]
= γ1γ2l1jl2j .

Taken together, the expected product of Z scores is216

E [z1jz2j ] = σ12ℓj + γ1γ2l1jl2j .

This suggests the use of the following unbiased estimator for σ12,217

σ̂12
△
=

1

M

M∑
i=1

z1jz2j − γ̂1γ̂2l1jl2j
ℓj

.

MONOTONICITY218

These estimators of individual parameters in the model allow us to define the MoM estimator for mono‑219

tonicity as220

ϕ̂
△
= − γ̂1γ̂2 + σ̂12√(

γ̂
2
1 + σ̂211

)(
γ̂
2
2 + σ̂222

) .
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MoM estimators are not unbiased, but they are consistent. Since the estimator represents a function221

of various estimators, we used the bootstrap with 1000 iterations to estimate the standard error of the222

estimate. If the estimate was undefined due to a negative square root, we set ϕ̂ to zero.223
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D SIMULATIONS224

We used the UK Biobank (UKB) LoF and duplication burden genotypes for simulation. These simulations225

are not from themodelsweused to derive the various estimators. Thus, these tests are fair evaluations of226

our estimators and also demonstrate the validity of using the RSS likelihood to model burden summary227

statistics. Some of our estimators assume fixed effect sizes, while others assume randomeffect sizes. We228

performed two separate suites of simulations for these estimators.229

The fixed‑effect simulations assumed that each gene had some fixed effect γ1 via LoF variants and γ2230

viaduplicationvariants. Wealsoperformed fixed‑effect simulationswhereeachgenehadauniqueeffect,231

with a genome‑wide average effect of γ1 and γ2 respectively. The random‑effect simulations assumed232

that the effect size for each gene was generated from233

γ·j ∼ N

([
γ1

γ2

]
,

[
σ211 σ12

σ12 σ222

])
.

Wesimulatedeffect sizes for genes that hadboth LoFandduplicationburdengenotypes, correspond‑234

ing to passing our genotyping filters described in our methods. Once effect sizes were assigned to each235

gene, we used PLINK [10] to score each sample based on the effect sizes. This provided us with genetic236

values for each individual under the simulation. Next, we added noise using draws from a normal distri‑237

bution such that the expected variance of the phenotype would be one.238

We used PLINK to run a single‑variant association scan with the burden genotypes. We included 15239

genotyping principal components (PCs), 20 rare variant PCs, and genotyping batch as covariates. Since240

we simulated from the actual genotypes, we had to include these covariates to control for confounding241

from population structure. Each parameter value was tested with 100 simulations. When perturbing242

one parameter, the other parameters were held constant at γ1 = 0, γ2 = 0, σ211 = 0.01, σ12 = 0,243

and σ222 = 0.01. The default variance values are based on the order of magnitude of burden heritability244

estimates from prior work [11].245

UNBIASED AVERAGE BURDEN EFFECT ESTIMATORS246

Fixed‑effect simulations were used to test γ̂1 and γ̂2. These estimators were convincingly unbiased for247

the various realistic values that we simulated (Figure D.1). We also developed estimators for the variance248

of these fixed‑effect average burden effect estimators. Confidence intervals built using these variance249

estimates are well‑calibrated (Figures D.2 and D.3). We also tested the estimators under a regime where250

each gene had a unique effect size, with relatively unbiased behavior and good calibration (Figures D.4,251

D.5, and D.6).252
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FıGURE D.1. (Left) The difference in the estimated value γ̂1 and the true value γ1 for various tested values are shown for 100
simulations. (Right) The difference in the estimated value γ̂2 and the true value γ2 for various tested values are shown for 100
simulations.
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FıGURE D.2. The plot shows 95% confidence intervals from 100 simulations for various values of γ1. Confidence intervals in
red represent realizations that do not cover the true value.
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UNBIASED AVERAGE SQUARED BURDEN EFFECT ESTIMATOR253

We used the fixed‑effect simulations with different gene‑level effects to test γ̂21. The estimator was rela‑254

tively unbiased for various realistic values that we simulated (Figure D.7). The approximate confidence255

intervals using the Central Limit Theorem are well‑calibrated (Figure D.8).256
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FıGURE D.7. The difference in the estimated value γ̂2
1 and the true value γ2

1 for various tested values are shown for 100 simula‑
tions.
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FıGURE D.8. The plot shows 95% confidence intervals from 100 simulations for various values of γ2
1. Confidence intervals in

red represent realizations that do not cover the true value.

METHOD-OF-MOMENTS MONOTONICITY ESTIMATOR257

Our covariance component estimatorswere close tounbiased (FigureD.9). Wenoteda slight upwardbias258

in the LoF burden effect variance estimator σ̂222. However, themagnitude of this biaswas only around 5%259

of the true parameter value. We believe that this represents residual confounding that is not corrected260

for using the genotyping and rare variant PCs used in our simulations.261
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FıGURE D.9. (Left) The difference in the estimated value σ̂2
11 and the true value σ2

11 for various tested values are shown for 100
simulations. (Center) The difference in the estimated value σ̂12 and the true value σ12 for various tested values are shown for
100 simulations. (Right) The difference in the estimated value σ̂2

22 and the true value σ2
22 for various tested values are shown

for 100 simulations.

Our MoM estimator formonotonicity was surprisingly close to unbiased, even for extreme deviations262

from zero (Figure D.10). The confidence intervals estimated using the bootstrapwere also relatively well‑263

calibrated (Figure D.11).264
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FıGURE D.10. The difference in the estimated value ϕ̂ and the true value ϕ for various tested values are shown for 100 simula‑
tions.
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FıGURE D.11. The plot shows 95% confidence intervals from 100 simulations for various values of ϕ. Confidence intervals in
red represent realizations that do not cover the true value.

MAXIMUM LIKELIHOOD AVERAGE BURDEN EFFECT ESTIMATORS265

For themaximum likelihood estimation approach, we used random‑effect simulations to test γ̂1 and γ̂2.266

These estimators were also convincingly unbiased, similar to our unbiased estimators (Figure D.12). The267

approximate confidence intervals are well‑calibrated (Figures D.13 and D.14).268
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FıGURE D.12. (Left) The difference in the estimated value γ̂1 and the true value γ1 for various tested values are shown for 100
simulations. (Right) The difference in the estimated value γ̂2 and the true value γ2 for various tested values are shown for 100
simulations.

24

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.11.24317065doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.11.24317065
http://creativecommons.org/licenses/by-nc/4.0/


-0.01
-0.001

0
0.001

0.01

-0.005

-0.008

-0.012

0.006

0.003

0.000

-0.003

-0.006

0.004

0.000

-0.004

0.004

0.016

0.012

0.008

0.004

0.000

-0.004

FıGURE D.13. The plot shows 95% confidence intervals from 100 simulations for various values of γ1. Confidence intervals in
red represent realizations that do not cover the true value.

-0.01
-0.001

0
0.001

0.01

0.005

0.010

0.015

-0.004

0.000

0.004

0.008

-0.005

-0.005

0.000

0.000

0.005

0.005

-0.015

-0.010

-0.005

FıGURE D.14. The plot shows 95% confidence intervals from 100 simulations for various values of γ2. Confidence intervals in
red represent realizations that do not cover the true value.

25

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.11.24317065doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.11.24317065
http://creativecommons.org/licenses/by-nc/4.0/


MAXIMUM LIKELIHOOD MONOTONICITY ESTIMATOR269

Our covariance component estimators from the maximum likelihood approach had a similar perfor‑270

mance to the unbiased estimators (Figure D.15). We noted a slight upward bias in the LoF burden effect271

variance estimator, similar to the unbiased estimator. The bias was again only around 5% of the true272

parameter value.273
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FıGURE D.15. (Left) The difference in the estimated value σ̂2
11 and the true value σ2

11 for various tested values are shown for
100 simulations. (Center) The difference in the estimated value σ̂12 and the true value σ12 for various tested values are shown
for 100 simulations. (Right) The difference in the estimated value σ̂2

22 and the true value σ2
22 for various tested values are

shown for 100 simulations.

The maximum likelihood estimate for monotonicity was slightly biased towards zero for very large274

values of ϕ (Figure D.16). The magnitude of bias was small compared to the true value, and the approx‑275

imate confidence intervals using the delta method remained well‑calibrated (Figure D.17). The variance276

of the estimator was approximately half that of the MoM estimator (Figure D.10).277
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FıGURE D.16. The difference in the estimated value ϕ̂ and the true value ϕ for various tested values are shown for 100 simula‑
tions.
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E BUFFERING MODEL278

In the buffering model, we are interested in evaluating if GDRCs are systematically buffered against one279

trait direction. This could occur if non‑monotone GDRCs are preferentially present in one direction over280

the other. This can also occur if monotone GDRCs achieve larger values for the trait in one direction com‑281

pared to the other.282

We use the multivariate adaptive shrinkage (MASH) model [12] as a flexible prior for our latent effect283

sizes. The MASH prior consists of a mixture of multivariate normal distributions. Suppose {Vk}Kk=1 rep‑284

resents a fixed set of covariancematrices inR2×2 forKmixture components. Weusebivariate covariance285

matrices over a grid of variances and correlation values. Let π ∈ ∆K−1 represent the mixture weights.286

Then, the gene‑level prior is287

γ·j | π ∼
K∑
k=1

πk N (0,Vk) .

The prior over the entire set ofM genes is288

γ | π ∼
M∏
j=1

K∑
k=1

πk N
(
γ·j ;0,Vk

)
.

The likelihoodmodel remains the same as before.289

U⊤γ̂ | γ ∼ N
(
U⊤ŜR̂Ŝ−1γ,Λ

)
The joint likelihood is290

p
(
U⊤γ̂,γ | π

)
= p

(
U⊤γ̂ | γ

)
p (γ | π)

= N
(
U⊤γ̂ ;U⊤ŜR̂Ŝ−1γ,Λ

) M∏
j=1

K∑
k=1

πk N
(
γ·j ;0,Vk

)
.

INFERENCE USING EMPIRICAL BAYES291

In our model, the mixture weights, π, are unknown. Following MASH [12], we use an empirical Bayes292

approach that combines both frequentist and Bayesian techniques. The first step, the frequentist step of293

empirical Bayes, involvesmaximizing themarginal likelihood toestimate π̂, whichwedousing stochastic294

approximationexpectationmaximization (SAEM) [13, 14]. Thesecondstep, theBayesianstepofempirical295

Bayes, uses π̂ as a plug‑in estimate of π for downstream posterior sampling.296

The ideal approach to obtain the MLE ofπ is to directly maximize the marginal likelihood297

p
(
U⊤γ̂ | π

)
=

∫
R2M

p
(
U⊤γ̂,γ | π

)
dγ .
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However, this integral is intractable. Instead, we can use expectationmaximization (EM) tomaximize this298

marginal likelihood [15]. Suppose π(t) represents the estimate at the tth iteration of the EM algorithm.299

The expectation step involves evaluating300

Q
(
π | π(t)

) △
= Eγ∼p(·|U⊤γ̂,π=π(t))

[
log p

(
U⊤γ̂,γ | π

)]
.

Since the analytical formofQ
(
π | π(t)

)
is also intractable under ourmodel, weuse SAEM toapproximate301

the expectation. We sample γ(1), . . . ,γ(B) iid∼ p
(
· | U⊤γ̂,π = π(t)

)
using Hamiltonian Monte Carlo [16,302

17]. Then, we approximate the expectation with303

Eγ∼p(·|U⊤γ̂,π=π(t))

[
log p

(
U⊤γ̂,γ | π

)]
≈ 1

B

B∑
b=1

log p
(
U⊤γ̂,γ(b) | π = π(t)

)
.

To speed up computation, we use stochastic gradient ascent, with each chromosome representing one304

mini‑batch [18]. In the mini‑batch approach, each expectation is a convex sum of the previous expecta‑305

tion and the current expectation. Let (ct)t≥1 be a positive, decreasing sequence such that
∑∞

t=1 ct = ∞306

and
∑∞

t=1 c
2
t <∞. We use307

Q̃
(
π | π(t)

) △
= (1− ct) Q̃

(
π | π(t−1)

)
+
ct
B

B∑
b=1

log p
(
U⊤γ̂,γ(b) | π = π(t)

)

in the expectation step of EM. To define a valid recursion, we set Q̃
(
π | π(0)

)
= 0. Maximization, the308

second step in EM, is performed using a fixed number of iterations of stochastic gradient ascent with a309

fixed step size to obtain310

π(t+1) = argmax
π

Q̃
(
π | π(t)

)
.

Gradients were estimated using automatic differentiation [7, 8]. After some number of iterations, T , until311

convergence, we set π̂ = π(T ).312

E

Y

FıGURE E.1. The boundary between buffering curves is represented by the yellow gene dosage response curves on the left.
These map to a diagonal across the burden effect plot. To estimate signal in one direction of the diagonal versus the other, we
use the normal vector in black shown on the right.

We use Hamiltonian Monte Carlo [16, 17] to sample from the posterior distribution of γ. Following313

the empirical Bayes approach, π̂ is used as a plug‑in estimate. That is, we draw samplesγ(1), . . . ,γ(B) iid∼314
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p
(
· | U⊤γ̂,π = π̂

)
. The estimand of interest is315

ξ
△
= E

[
log2

(
3

2

)
γ1j + γ2j

∣∣∣U⊤γ̂

]
≈ 1

BM

B∑
b=1

M∑
j=1

log2

(
3

2

)
γ
(b)
1j + γ

(b)
2j ,

which is estimated using the posterior samples. The estimand represents the dot product ofγ·j with the316

normal vector of the diagonal separating the two types of buffering within our model (Figure E.1). To317

estimate the buffering frommonotone curves (ξm) versus non‑monotone curves (ξnm), we use posterior318

samples that are only monotone or non‑monotone respectively. That is,319

ξnmP (γ1jγ2j > 0) = E
[
log2

(
3

2

)
γ1j + γ2j

∣∣∣U⊤γ̂, γ1jγ2j > 0

]
P (γ1jγ2j > 0)

≈ 1

BM

B∑
b=1

∑
γ
(b)
1j γ

(b)
2j >0

log2

(
3

2

)
γ
(b)
1j + γ

(b)
2j

ξmP (γ1jγ2j > 0) = E
[
log2

(
3

2

)
γ1j + γ2j

∣∣∣U⊤γ̂, γ1jγ2j < 0

]
P (γ1jγ2j < 0)

≈ 1

BM

B∑
b=1

∑
γ
(b)
1j γ

(b)
2j <0

log2

(
3

2

)
γ
(b)
1j + γ

(b)
2j .
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F DATA ANALYSIS320

SYNONYMOUS VARIANTS321

Stratification or other confounding can inflate the estimated effect sizes from association analyses. We322

can ensure that we are adequately controlling for confounding by estimating the effect of synonymous323

variants, which are expected to not affect protein function and downstream traits.324

We used synonymous variants to test the effect of using different subsets of individuals. The original325

analysis of LoF variants in the UKB [19] used a subset of around 430K individuals with genetic similarity326

to the EUR superpopulation from the 1000 Genomes Project. In addition to a population with genetic327

similarity to EUR (called EUR for brevity), we tested the subset of 390K unrelated individuals in the EUR328

subset (calledunrelated) and the subset of all 460K individualswithwhole‑exomesequencing (WES) data329

(called WES). This allowed us to determine if relatedness or population stratification inflated our esti‑330

mates of effect size. The EUR population was defined using self‑reported information and boundaries in331

genotypingPC space fromprior genetic analysis in theUKB [20]: −20 ≤ PC1 ≤ 40 and−25 ≤ PC2 ≤ 10332

(Array items 1 and 2 from field 22009 in the UKB) for either self‑identified White British or self‑identified333

non‑British White (Field 21000 in the UKB).334

Additionally, we also used synonymous variants to test the effect of using different numbers of geno‑335

typing PCs. The original analysis used 10 genotyping PCs when performing association analyses within336

populationswith high genetic similarity [19]. In addition to 10 genotyping PCs, we tested 15 and 20 geno‑337

typing PCs since we planned to use as many individuals in the UKB as possible, which might introduce338

additional confounding due to population stratification.339

To test for stratification, we ran synonymous variant burden tests on a subset of nine continuous340

traits: height, body mass index (BMI), low‑density lipoprotein cholesterol (LDL‑C), mean corpuscular341

hemoglobin (MCH), red blood cell distribution width (RDW), forced vital capacity (FVC), creatinine, cys‑342

tatin C, and the north coordinate of the place of birth in the United Kingdom (NC). Strong effects for NC343

should be a goodmeasure of uncontrolled stratification.344

NUMBER OF GENOTYPING PRINCIPAL COMPONENTS345

Synonymous variants are expected to not have any effect on traits. Therefore, the mean squared effect346

of synonymous variant burden associations should provide an estimate of inflation in effect sizes due to347

other sources of confounding. The gold standard for genetic association analysis is using the cohort of348

unrelated individuals with high genetic similarity. Compared to this cohort, the amount of inflation was349

indistinguishable in the EUR and WES cohorts (Figure F.1). Thus, we decided to use the WES cohort to350

maximize our sample size.351
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FıGURE F.1. Themean squared effect of synonymous variants for various cohorts of individuals and different numbers of
genotyping PCs. The unrelated and EUR cohort burden tests used 15 genotyping PCs. We tested 10, 15, and 20 genotyping PCs
in the WES cohort burden tests.

The effect of including 10 genotyping PCs was also indistinguishable from 15 or 20 genotyping PCs352

(Figure F.1). The original analysis included 10 genotyping PCs [19], but performed analyses in cohorts of353

high genetic similarity. Since we were including all individuals in the UKB, we decided to conservatively354

use 15 genotyping PCs.355

INFLATION FROM CONFOUNDING356

Since we detected a significant mean squared effect for NC, we were concerned about inflation of effect357

sizes due to confounding. To test the effect of this inflation, we compared themean squared effect of LoF358

variant burden associations with the mean squared effect of synonymous variant burden associations359

across various traits. We noted that the mean squared effect of LoF burden associations was an order of360

magnitude larger than the effect of synonymous burden associations (Figure F.2). Thus, we concluded361

that although confounding is likely present in our association tests, the signal is at least 10 times greater362

than the bias.363
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FıGURE F.2. LoF variants have a magnitude larger effect on traits than synonymous variants across various continuous traits.
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UTILITY OF MISANNOTATION PROBABILITY364
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FıGURE F.3. Themean squared effect of genes in various buckets of log10 (shet) for various traits. Genes with larger effects
tend to bemore constrained. All data here uses a MAF < 1% filter other than the MAF < 0.001% associations from [19]. The use
of the misannotation probability increases the signal detected. The signal in the original analysis of the LoF data is also shown
for reference. 95% confidence intervals are displayed for each estimate.

Burden tests often use various maximum minor allele frequency (MAF) filters. For instance, Backman365

et al. used MAF filters of 1%, 0.1%, 0.01%, and 0.001% [19]. Presumably, such filters assume that in‑366

creasingly stringent filters will increase the true positive LoF variants that are aggregated into the burden367

genotype, as LoF variants that are at high frequency in the populationmight representmisannotated LoF368

variants. However, such filters result in asymmetric behavior across genes dependingon their constraint.369

For example, the highly stringent 0.001% filter will reduce the false‑positive rate in highly constrained370

genes, but will remove true LoF variants in unconstrained genes. Ideally, a gene under high constraint371

should use a stringent MAF filter, while a gene under low constraint should use a liberal MAF filter.372
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confidence intervals are present on the plots but not visible due to their small length.

To account for this, Zeng et al. have calculatedmisannotation probabilities for all potential single nu‑373

cleotide polymorphisms (SNPs) in genes for which they had estimated shet values [21]. We used various374

misannotation probability filters instead of MAF filters. We tested filters of 10%, 5%, and 1%misannota‑375

tion probability for all variants with MAF < 1%. We estimated the total signal, as measured by the mean376

squared effect size, in various buckets of gene constraint (Figure F.3). Increasingly stringent misanno‑377

tation probability filters increased the signal across various selection buckets. In addition, the various378

filters were as or more effective than both the 1% and 0.001%MAF filters from [19].379

Increasing stringency with themisannotation probability filters does increase the amount of estima‑380

tion noise in γ̂LoF as more LoF variants are removed from the burden genotypes (Figure F.4). We found381

that a misannotation probability filter of 10% provided signal comparable to or better than a MAF filter382

of 0.001%with a minimal increase in noise. This filter was used in all subsequent analyses.383
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CNV GENOTYPING ERROR384

Whenwe first estimated the LDmatrices for the duplication burden genotypes, wenoticed large amounts385

of long‑range LD (Figure F.5).386

R
1.0

0.5

0.0

-0.5

-1.0

FıGURE F.5. The correlation matrix for the first 200 genes on chromosome 3 using all the samples. Although segregating du‑
plications can be large, they are not expected to capture so many genes.

We reasoned that this is driven by a few poor‑quality samples with systematically higher copy num‑387

ber. In their initial report on theUKBwhole‑genome sequencing (WGS) data, Li et al. reported an average388

structural variant (SV) burden of 3.6 Mbp per haploid genome [22]. Assuming that the total copy number389

variant (CNV) burden is on a similar order of magnitude, we decided to exclude any samples with more390

than 10Mbp of either deletion or duplication burden. Most samples had less than 10Mbp of duplications391

or deletions. However, some samples had upwards of 100 Mbp of affected sequence (Figure F.6).392
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FıGURE F.6. The empirical cumulative density function (eCDF) of the total amount of genome sequence affected by either
deletion or duplication. Our 10 Mbp filtering step impacted only a few samples.

Filtering out 2,674 sampleswith deletion or duplication burden greater than 10Mbp resulted inmore393

reasonable duplication LD estimates (Figure F.7).394
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FıGURE F.7. The correlation matrix for the first 200 genes on chromosome 3 using the filtered set of samples.
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ESTIMATING CNV LINKAGE DISEQUILIBRIUM395

Multiple covariates need to be accounted for when performing burden tests. Suppose that Zc ∈ RN×C396

represents the covariate values for the deletion or duplication burden tests forC covariates. The burden397

test model used to derive summary statistics in REGENIE is398

Y = Zγ2 + Zcλc + ϵ2 ,

where λc ∈ RC are the effects of the covariates on the phenotype. To remove these effects before esti‑399

mating the LDmatrix, wepartial out the covariates by projecting the burden genotypes into the subspace400

orthogonal to the column space of the covariates. Specifically, we define401

Z′ △
= Z− Zc

(
Z⊤
c Zc

)−1
Z⊤
c Z ,

which removes the effect of the covariates by removing their contribution to the burden genotypes using402

theprojectionmatrixZc

(
Z⊤
c Zc

)−1
Z⊤
c . Then,weestimate the correlationmatrix using these augmented403

burden genotypesZ′.404

SIGNIFICANT AVERAGE EFFECTS405

We estimated average burden effects using unbiased estimators. Traits with significant LoF and duplica‑406

tion burden effects were ascertained at an α = 0.05 level (Table F.1).407
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Trait γ̂1
(
×102

)
γ̂1 95% CI γ̂2

(
×102

)
γ̂2 95% CI

Alkaline phosphatase 1.04 [ 0.79, 1.29] 0.59 [ 0.25, 0.93]
Cystatin C 1.02 [ 0.78, 1.25] 1.27 [ 0.94, 1.59]
White blood cell count 0.92 [ 0.65, 1.19] 0.53 [ 0.16, 0.89]
Neutrophil count 0.84 [ 0.57, 1.11] 0.52 [ 0.15, 0.89]
C‑reactive protein 0.84 [ 0.57, 1.11] 0.53 [ 0.16, 0.90]
Bodymass index (BMI) 0.79 [ 0.53, 1.05] 0.77 [ 0.41, 1.13]
Waist circumference 0.78 [ 0.54, 1.01] 0.81 [ 0.49, 1.14]
Pulse rate 0.70 [ 0.42, 0.98] 0.61 [ 0.23, 0.99]
Body fat percentage 0.64 [ 0.44, 0.84] 0.49 [ 0.21, 0.76]
Glycated haemoglobin (HbA1c) 0.55 [ 0.30, 0.81] 0.48 [ 0.13, 0.83]
Hip circumference 0.45 [ 0.19, 0.72] 0.50 [ 0.14, 0.87]
Vitamin D ‑0.46 [‑0.74, ‑0.18] ‑0.65 [‑1.03, ‑0.27]
Apolipoprotein A ‑0.64 [‑0.90, ‑0.38] ‑0.65 [‑1.00, ‑0.31]
HDL cholesterol ‑0.68 [‑0.93, ‑0.43] ‑0.69 [‑1.03, ‑0.36]
Seated height ‑0.74 [‑0.94, ‑0.53] ‑0.34 [‑0.62, ‑0.07]
Standing height ‑0.81 [‑0.98, ‑0.65] ‑0.48 [‑0.70, ‑0.26]
Hand grip strength (right) ‑0.85 [‑1.04, ‑0.66] ‑0.78 [‑1.04, ‑0.52]
Hand grip strength (left) ‑0.85 [‑1.04, ‑0.66] ‑0.65 [‑0.91, ‑0.39]
FEV1 ‑0.96 [‑1.17, ‑0.75] ‑0.96 [‑1.24, ‑0.68]
Forced vital capacity (FVC) ‑0.98 [‑1.18, ‑0.78] ‑0.84 [‑1.11, ‑0.56]
Peak expiratory flow (PEF) ‑1.04 [‑1.27, ‑0.80] ‑0.99 [‑1.31, ‑0.67]

TABLE F.1. Traits with significant average burden effects were ascertained at an α = 0.05 level. All such traits have non‑
monotone average effects. These estimates are from unbiased estimators with exact confidence intervals.
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LACK OF AVERAGE EFFECT IN GENOME-WIDE ASSOCIATION STUDIES408

For traits with significant average burden effects (Table F.1), we downloaded genome‑wide association409

study (GWAS) summary statistics from the Neale Lab (https://www.nealelab.is/uk‑biobank, version410

3, both sexes) based on 337,199 White British individuals in the UKB. In their processing pipeline, phe‑411

notypic values were inverse‑rank normal transformed. Age, age squared, inferred sex, age‑by‑sex, age‑412

squared‑by‑sex, and 20 genotyping PCs were included as covariates.413

Weestimated conditionally independent hits and their effect sizes usingGCTA‑COJO [23]with param‑414

eters --cojo-p 5e-8 --cojo-slct. We used the genotypes of 10,000 unrelatedWhite British individu‑415

als in the UKB to compute the LD reference panel. We polarized significant trait‑associated variants into416

ancestral and derived states with variation features obtained from the Ensembl Variation database [24].417
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FıGURE F.8. Trumpet plots of the derived allele effect size versus the derived allele frequency for top genome‑wide associa‑
tion study (GWAS) associations for traits with significant loss‑of‑function (LoF) and duplication average burden effects.

In the trumpet plots of derived allele effect versus derived allele frequency (Figures 1B and F.8), we418

use top significant conditionally independent hits per locus detected in a GWAS. One concern in such a419

plot is that some top hits may be tagging SNPs, and the causal SNPs may be in negative or positive LD420

with the tagging SNPs. Tagging SNPs in negative LD with the causal SNP can mask an underlying true421

non‑zero average effect.422

To address these concerns, we point to recent work done to understand selection using common423

variation [25]. Under neutral coalescent simulations, the causal and tagging SNPs are expected to be in424
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positive LD with high probability for derived allele frequencies in the interval [0, 0.5] as shown in Figure425

S14 of [25]. The trumpet plot continues to display a nearly zero average effect in this interval, suggesting426

that the underlying causal SNPs also do not show an average effect on the trait.427

ANALYSIS OF MONOTONICITY EFFECT ESTIMATES428

To better understand the distribution of monotonicity estimates, we used a hierarchical model to infer429

the distribution of effects. Let
{
ϕ̂i

}T

i=1
represent the observed monotonicity estimates for T traits with430

standard errors ĉi = ŜE
(
ϕ̂i

)
. Suppose that431

ϕ̂i | ϕi, ĉi ∼ N
(
ϕi, ĉ

2
i

)
.

We assume that ϕi is drawn from a transformed beta distribution over the interval [−1, 1],432

ϕi
iid∼ TransformedBeta (α, β, [−1, 1]) .

The likelihood for the transformed beta distribution can be derived using the transformation of ran‑433

dom variables approach. Suppose thatU ∼ Beta (α, β). We define V as434

V = g (U) = (b− a)U + a

for a, b ∈ R and a < b. Note that the support of V is [a, b]. We then define435

V ∼ TransformedBeta (α, β, [a, b]) .

The inverse transform is436

g−1 (V ) =
V − a

b− a

and the derivative is437
d

dV
g−1 (V ) =

1

b− a
.

The likelihood is therefore438

TransformedBeta (v ;α, β, [a, b]) = Beta
(
g−1 (v) ;α, β

) ∣∣∣∣ ddv g−1 (v)

∣∣∣∣
=

1

b− a
Beta

(
v − a

b− a
;α, β

)
.

We use an empirical Bayes approach to fit the prior distribution. We do so by maximizing the evi‑439
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dence,440

α̂, β̂ = argmax
α,β

T∏
i=1

P
(
ϕ̂i, α, β | ĉi

)
= argmax

α,β

T∏
i=1

∫ 1

−1
P
(
ϕ̂i | ϕi, ĉi

)
P (ϕi | α, β) dϕi

= argmax
α,β

T∏
i=1

∫ 1

−1
N
(
ϕ̂i ;ϕi, ĉ

2
i

)
TransformedBeta (ϕi ;α, β, [−1, 1]) dϕi .

Weused Riemann integration to numerically evaluate the evidence and used gradient ascentwith a fixed441

number of steps to estimate α̂ and β̂. Gradients were estimated using automatic differentiation [7, 8].442

We estimated ϕ̂ using both the MLE and the MoM estimates. The main results for the MLEs are pre‑443

sented in Figure 2B. The point estimates and confidence intervals for the MLEs are displayed in Figure444
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The same analysis was conducted with the MoM estimates, which provided a similar support for446

monotonicity across traits (Figure F.10). 99.96% of the density of the inferred effect size distribution was447

over the positive part of the domain ofϕ. For this analysis, we removed traits with estimates greater than448

one. We also excluded traits where the estimatewas undefined, which can occurwith negative estimates449

of σ̂211 or σ̂
2
22. The point estimates and confidence intervals for theMoM estimates are displayed in Figure450

F.11.451
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FıGURE F.10. (Top) The method‑of‑moments (MoM) point estimates for monotonicity for the traits that were analyzed. (Bot‑
tom) The inferred distribution of effects from a random‑effects meta‑analysis.
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CONCORDANCE OF LOF AND DELETION EFFECTS452

To estimate the extent to which the burden tests using LoF variants are concordant with burden tests453

performedusingdeletions,weestimated thegenetic correlationbetween theeffects fromthe twovariant454

classes. We did so by performing maximum likelihood estimation using the monotonicity model. When455

we assume that the average effects are zero (γ1 = γ2 = 0), the correlation456

ρ =
σ12

σ11σ22

is similar to the genetic correlation derived under the LDSCmodel [26]. While we assume a normal prior457

distribution over the latent effect sizes, the original LDSC model assumes no functional prior form and458

only specifies finite first and secondmoments.459

Wederived theMLE ρ̂using the same inferencemachineryused formonotonicity, assuming fixed zero460

average effect sizes. Approximate confidence intervals were estimated using the delta method.461

Next, similar to themonotonicity analysis,weestimated the latentdistributionof genetic correlations462

by fitting a transformed beta distribution. That is, let {ρ̂i}Ti=1 represent the observed genetic correlation463

estimates for T traits with standard errors ĉi = ŜE (ρ̂i). Suppose that464

ρ̂i | ρi, ĉi ∼ N
(
ρi, ĉ

2
i

)
.

We assume that ρi is drawn from a transformed beta distribution over the interval [−1, 1],465

ρi
iid∼ TransformedBeta (α, β, [−1, 1]) .

We estimate α̂ and β̂ using the same strategy as the monotonicity estimates.466
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FıGURE F.12. (Top) The maximum likelihood estimates (MLEs) for genetic correlation for the traits that were analyzed. The
genetic correlation is estimated between loss‑of‑function (LoF) burden effects and deletion burden effects. (Bottom) The
inferred distribution of effects from a random‑effects meta‑analysis.

This analysis demonstrates that LoF variant and deletion burden tests are markedly similar (Figure467

F.12). 93.53% of the density of the inferred distribution of genetic correlations is over the positive part of468

the domain of ρ. For this analysis, we removed traits with ĉi < 10−6 as these might represent unstable469

estimates from the optimization procedure. The estimated genetic correlation for these estimates was470

ρ̂ = 1, meaning that dropping them from our analysis biased our inferred distribution towards zero.471
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