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Abstract 

Introduction 

Wearable accelerometers are a valuable tool for monitoring sleep, sedentary behaviour, 

and physical activity patterns within 24h time-use in free-living environments. While wrist-

worn accelerometers are favoured for monitoring sleep, they do not accurately distinguish 

between sitting and lying positions (Narayanan et al., 2020). This study aims to determine 

whether back or thigh-mounted accelerometers yield sleep metrics comparable to wrist-

worn devices using an open-source algorithm originally validated for the wrist. 

Methods 

Data from 20 healthy sleepers were collected using Axivity AX3 accelerometers. Participants 

wore accelerometers on their right thigh, low-back, and wrist for one night of sleep in their 

own bed. Sleep metrics were calculated using the van Hees algorithm through the GGIR 

package in R. The primary outcomes were: Total Sleep Time (TST), Wake After Sleep Onset 

(WASO), Awakenings (AWK), Sleep Efficiency (SE), Sleep Interval (SI) and Sleep Onset 

Timestamp (SOT). Within-subject ANOVA with Tukey’s post hoc, Pearson correlation 

coefficients, Bland-Altman plots, and Cohen’s d were used to assess the comparability of 

sleep metrics between the body placements. 

Results 

Data analysis included all 20 participants. Mid-thigh accelerometers demonstrated a strong 

linear relationship with wrist accelerometers across all metrics (r = 0.86-0.98). Bland-Altman 

plots demonstrated a narrow 95% confidence interval suggesting that wrist and mid-thigh 

metrics are in good agreement, except for AWK which is slightly underestimated by the 

mid-thigh device. Conversely, low-back accelerometers demonstrated moderate linear 
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relationship with the wrist (r = 0.63-0.98) and the Bland-Altman results showed wide limits 

of agreement with significant overestimations of TST, SE, SI and underestimations of WASO, 

AWK, SOT. Cohen’s d demonstrated small differences between mid-thigh and wrist devices, 

except for AWK (d= 0.42). Low-back values for WASO, SE, and AWK showed moderate 

differences. 

Conclusions 

This analysis demonstrates that the mid-thigh accelerometer yields comparable sleep 

metrics to wrist-worn devices when processed with the van Hees algorithm.  
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Introduc�on 

The emerging field of 24-hour behavioural �me use epidemiology is calling for valid and 

reliable measures of behavioural sleep, physical ac�vity, and sedentary behaviour to beter 

understand the rela�onship between the 24-hour composi�on of behaviour and health. 

Understanding the interdependence between different facets of human func�on is essen�al 

in health research, as it enables us to measure their influences effec�vely and comprehend 

how they relate to overall health (Crowley et al., 2019; Johansson et al., 2022; Perez-Pozuelo 

et al., 2020). Therefore, there is a need to ensure that these measures can reliably and 

accurately measure all three behaviours. Finding a common loca�on that provides valid, 

useful results for both wake and sleep phases of an individual's day is compelling as an 

endeavour as it will help to simplify the research process. Addi�onally, it may also unlock 

further insights from retrospec�ve analysis for many studies using data that has already 

been collected. 

Sedentary, light, and moderate to vigorous physical behaviours are collec�vely considered to 

encompass all waking behaviours with sleep consuming the remaining �me in a 24-hour 

period (Rosenberger, 2019). The �me spent in each aspect of behaviour throughout the day 

is mutually exclusive and perfectly collinear. In other words, you can only be performing one 

of these behaviours at a �me, and the sum �me spent in each behaviour, will result in a total 

of 24 hours (Pedišić, 2014). The distribu�on of these component behaviours has been 

associated to health outcomes related to both physical and mental health (Baillot, 2022; 

Brakenridge et al., 2021; Dumuid et al., 2022). Of these behaviours, sleep is encouraged to 

take around one-third of the 24-hour period and is also in and of itself highly associated with 

health outcomes (Cappuccio et al., 2010; Watson et al., 2015). It is vital in the recovery from 
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previous waking events and in the prepara�on of the body and mind for subsequent waking 

ac�vi�es. Ineffec�ve and/or insufficient sleep has been associated with both immediate and 

long term health outcome risks including premature mortality, cardiovascular disease, 

hypertension, inflamma�on, obesity, diabetes and impaired glucose tolerance, and 

psychiatric disorders, such as anxiety and depression (Ferrie et al., 2011). Insufficient sleep 

in the general popula�on has been iden�fied by countries around the globe and along with 

the personal health risk factors go with it economic costs to personal finance, business, and 

government (Hafner, 2017). Indeed, sleep is a public health issue that is worthy of 

inves�ga�on.  

Sleep tracking using wearable accelerometers has gained substan�al aten�on as a non-

invasive and objec�ve method to monitor sleep paterns and behaviours in free-living 

environments. The use of accelerometers offers the advantage of capturing con�nuous data 

over extended periods, providing insights into sleep quan�ty and quality, as well as its 

rela�onships with movement behaviours across a full 24-hour period. As such the use of 

wearable accelerometers over 24-hour periods and longer is increasingly popular as an 

objec�ve research approach for tracking both waking and sleep behaviours (Hills et al., 

2014; Sundararajan et al., 2021). The ways in which accelerometric data can be interpreted 

by these devices is dependent on factors including body placement, sampling frequency, and 

computa�onal methods. 

The most common body placement loca�ons used for accelerometery studies include the 

wrist, hip, and thigh (Evenson et al., 2022; Le�nk et al., 2022). Gao et al. (2021) iden�fied a 

shi� from hip to wrist worn accelerometers ci�ng advantages of improved compliance, being 

less intrusive, improved capability of assessing sleep behaviours, along with the capability of 
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capturing more upper extremity movements. Nonetheless, this approach has limita�ons in 

accurately detec�ng body posture (Rosenberger, 2019). A wrist mounted device has no 

ability to determine whether a person is standing, si�ng, or lying, a cri�cal aspect in 

understanding sleep behaviour or sedentary behaviour. The defini�on of sedentary 

behaviour requires that the individual be waking as well as si�ng or lying (Tremblay et al., 

2017). Thus, differen�a�ng between standing, and si�ng or lying is necessary for achieving 

accurate measurements of different waking physical behaviours. Stewart et al. (2018) found 

that a dual accelerometer system that placed devices on the mid-thigh and low back 

performed well in iden�fying the posi�ons and ac�vi�es of standing, si�ng, lying, walking, 

and running. Narayanan et al. (2020) furthered this, valida�ng its applica�on in semi free-

living condi�ons. However, it was also noted that this work would need expansion in its 

measurement of other components of behaviour such as sleep. As such more work needs to 

be completed to validate device placements and data processing algorithms to measure 

physical ac�vity, sedentary behaviour, and sleep concurrently. 

Sampling frequency in data collec�on is another crucial considera�on that can influence the 

granularity and accuracy of sleep and physical behaviour tracking outcomes. The sampling 

frequency, also known as sampling rate, refers to the number of data points taken by the 

accelerometer each second. A higher sampling frequency translates to more data points 

captured within a given �meframe. Higher sampling rates enable a more accurate 

representa�on of movements during both wake and sleep phases. The �me a device can 

record for is also dependent on the sampling frequency as higher sampling rates will reduce 

batery length. A balance must therefore be decided upon where the researcher is able to 

record the highest detail while s�ll ensuring that the full dura�on of the recording period is 
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completed. Migueles et al. (2017) suggests that using the highest frequency possible is the 

recommended approach to sampling. They go on to suggest that 100Hz is preferable over 

frequency mul�ples of 30Hz when researchers are filtering and processing the signal on 

their own (e.g., open-source so�ware). The Axivity brand AX3 is a commonly used 

accelerometer in sleep and 24-hour �me use research. It has a sampling frequency that can 

be specified from 12.5 to 3200Hz with the default se�ng being 100Hz and can be used with 

open-source so�ware. AX3 devices set to record at 100Hz are reported by Axivity (Axivity 

opera�ng manual), to have a batery life of 14 days of con�nuous recording. As such we can 

see a need to have a system of sleep metric analysis that uses the default se�ng for AX3 

accelerometers.  

To interpret the raw data collected from any accelerometric recording device a computer 

algorithm is required to synthesise the enormous volume of data points. The computa�onal 

algorithms used to analyse accelerometery data play a pivotal role in transla�ng raw data 

into meaningful metrics, for example, sleep dura�on or minutes of moderate physical 

ac�vity. In the endeavour to create reproducible, comparable, and composite insights that 

accurately reflect habits of 24-hour �me use, a key component of the task is using methods 

that are transparent. Proprietary so�ware, while common, brings challenges like 

transparency and consistency in algorithmic computa�on (Karas et al., 2019). Non-

proprietary and open-source methods offer several benefits over proprietary offerings 

including transparency, the avoidance of vendor lock-in, long-term availability, and cost 

efficiency. These aspects all contribute to the promo�on of collabora�on and reproducibility. 

It is essen�al for research purposes that raw frequencies are collected and disclosed, and 

that non-proprietary, open-source algorithms are able to be shared and applied. The 
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emergence of open-source algorithms have paved the way for researchers to compare 

results across samples in a transparent and innova�ve manner. These open-source 

algorithms also have the advantage of being interchangeable with most popular brands of 

accelerometery recorders like Axivity and Ac�Graph. Indeed, Crowley et al. (2019) found 

that these brands were interchangeable in their ability to report accelerometric data when 

using the same algorithm for calcula�on of metrics.  

This study aims to address the above intricacies by inves�ga�ng the valida�on of mid-thigh, 

and low-back mounted accelerometers against a computa�onal algorithm primarily 

designed for wrist-mounted accelerometery where the sampling frequency is set to 100Hz. 

The primary objec�ve is to assess whether either the mid-thigh or low-back placements 

yield comparable and reliable sleep metrics, when compared against wrist data. By doing so, 

this research seeks to contribute to the advancement of accurate and comprehensive sleep 

tracking methodologies that can be integrated into 24-hour �me use research and will also 

allow retrospec�ve analysis for many studies. 

Methods 

Par�cipants were recruited from the general public via an adver�sement and word of 

mouth. The inclusion criteria were: at least 20 years of age and self-reported healthy 

sleepers. For the purposes of this study, healthy sleepers were opera�onally defined as 

individuals who did not u�lise or necessitate sleep aids, thereby ensuring the absence of 

substances or devices that could impede or constrain normal sleep func�on or physical 

mobility. All par�cipants provided writen informed consent. Ethical approval was obtained 

from Auckland University of Technology ethics commitee (AUTEC 22/300). 
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Data Collec�on 

A�er providing signed informed consent, par�cipants completed a sleep diary and wore 

three Axivity AX3 accelerometers simultaneously for a single night of sleep at home in a 

free-living environment. 

Accelerometers 

The Axivity AX3 device is a small, lightweight, and waterproof accelerometer (23 x 32.5 x 8.9 

mm; 11 g) that can be affixed using medical tape, adhesive pouches, or worn on a wrist 

band. AX3 devices have been previously used and 

validated in research involving movement behaviour as 

well as sleep (Johansson et al., 2022; Narayanan et al., 

2020; Plekhanova et al., 2020). Each Axivity AX3 

accelerometer was pre-set to automa�cally start 

recording at 7pm un�l 11am the next day. Sample rate 

was set to 100 Hz with a sensi�vity of ±8 g.  

Par�cipants placed the devices on their mid anterior thigh, lower-back offset from the spine, 

and posterior wrist, following the instruc�ons provided. All devices were worn on the right 

side of the body (see Figure 1). The devices were affixed using a self-adhesive pouch (thigh, 

back) labelled with loca�on and direc�onality instruc�ons, or a wrist-watch style strap. 

Par�cipants were instructed to place the devices at 6pm and remove the device a�er they 

had goten out of bed and completed their sleep diary the next day. 

Sleep Diary & Data Processing 

 

Figure 1  
Placement loca�ons for AX3 devices 
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On a paper-based sleep diary, par�cipants recorded the �me they atached and removed the 

device, the �me they got into bed, the �me they tried to go to sleep, the approximate �me 

they woke up (final awakening �me), and the �me they got up.  

Using OMGUI Open Movement so�ware (version 1.0.0.30; Open Movement, Newcastle 

University, UK), raw accelerometer data was downloaded and logged into ID folders for 

processing. The Open-source so�ware ‘R package’ (R Core Team, 2021) was used to process 

the accelerometric data for all device placements. The so�ware package GGIR (Generalized 

Graded Intensity Model R-package) (Migueles et al., 2019) was used to synthesize the data 

into sleep metrics. The van Hees et al. (2015) algorithm was chosen for this study from the 

four different algorithms offered by GGIR for measuring sleep metrics. Unlike earlier 

algorithms that relied on accelera�on magnitude for movement/sleep detec�on (Cole et al., 

1992; Galland, 2012; Sadeh, 1994), the van Hees algorithm interprets sleep through body 

kinema�cs using (arm) angles and lack of movement to iden�fy sleep and has also been 

validated against sleep tracking gold standard PSG. 

The sleep diary data was used as a guider by the algorithm. As a guider, the sleep diary data 

did not provide a rigid �me for the sleep algorithm to use. Instead, it directed the algorithm 

to the approximate start and end points of sleep measurements. The computed sleep data 

was then exported to Microso� Excel as a .csv file. The derived sleep metrics for analysis 

were total sleep �me (TST), wake a�er sleep onset (WASO), awakenings (AWK), sleep 

interval (SI), sleep efficiency (SE). Sleep onset �mestamp (SOT) was also used as a device 

loca�on comparator although it is not specifically a sleep metric. 

Analysis 
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Sta�s�cal analysis was performed in The jamovi project (2022) (Version 2.3.26) and 

sta�s�cal significance was set at α = 0.05. First, visual inspec�on was undertaken to ini�ally 

assess whether further sta�s�cal inves�ga�on was worthwhile. A within-subjects analysis of 

variance (ANOVA) was conducted to compare mean es�mates of sleep metrics across the 

three device placements (thigh, back, wrist). Post-hoc pairwise comparisons using Tukey's 

test were performed to iden�fy pairwise differences between sleep metrics. Cohen’s d was 

computed to interpret the effect size of the pairwise differences in means. Pearson 

correla�on coefficients were calculated to assess the linear rela�onship between wrist-thigh 

and wrist-back es�mates of sleep metrics. An r value of ≥ 0.8 was considered to be a level of 

high convergent validity (Mukaka, 2012). Finally, Bland-Altman plots were generated for 

wrist-thigh and wrist-back es�mates of sleep metrics to assess the level of agreement 

between device placements. 

Results 

A total of 20 individuals (40% male) aged 20-65 consented to and completed the single night 

study. No further demographic data were collected as the primary objec�ve was to compare 

sleep metric data from different accelerometer placements, rather than provide 

generalisable es�mates of sleep metrics.  
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Visual analysis of minute-by-minute within-participant sleep data (e.g., Figure 2) showed 

that there were large periods of sleep alignment across all device placement sites for all 

participants. Although not all wake periods aligned identically, overall, the alignment of 

sleep between body locations appeared to be good for each participant. During the sleep 

period, when wake events did not directly align between body locations, it was common, to 

observe similar lengths of wake time either slightly before or after. Large discrepancies were 

minimal but did occur. Three participants of the study recorded visually significant gaps in 

the mid-thigh and/or low-back devices in comparison to the wrist. One during the sleep 

period and two at the beginning of the sleep period.   

 

Table 1 

Descriptives for Sleep Metrics taken from the wrist, mid-thigh, and low-back body locations 

 
 Wrist    Thigh    Back   

Sleep metric N Mean SD Range  Mean SD Range  Mean SD Range 

TST, min 20 403.10 60.62 204.42  410.01 59.99 224.64  425.57 59.26 203.82 

WASO, min 20 60.57 31.53 133.86  56.87 31.59 115.92  45.80 26.46 106.32 

AWK, n 20 16.95 5.72 24.00  14.55 5.73 25.00  13.50 6.13 25.00 

SI, min 20 463.68 68.54 284.75  466.88 65.14 262.91  471.38 63.11 264.33 

SE, % 20 0.87 0.06 0.22  0.88 0.06 0.21  0.90 0.05 0.20 

 

Figure 2 
Example of visual sleep summary of each device per par�cipant 
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Mean values of the wrist group were less than the mid-thigh group for TST, SE and SI. 

Significant differences in mean value were iden�fied in AWK for both the mid-thigh and 

low-back loca�ons compared to the wrist. Low-back sleep metric mean values varied greater 

compared to the wrist. The range values for the low-back device however were generally 

smaller than both the wrist and mid-thigh groups. 

Within-subjects ANOVA was performed to compare the sleep metrics determined by the van 

Hees wrist algorithm across the different device placements. There was a sta�s�cally 

significant difference between device placements in all sleep metrics (see Table 2) except for 

SOT (F(2, 38) = 3.14, p = 0.055). Tukey’s post-hoc analysis showed that most of the 

sta�s�cally significant differences were observed comparing the wrist to the low-back, and 

the low-back to the mid-thigh loca�on. For the wrist-thigh comparison, only es�mates of 

AWK were sta�s�cally different (p = .007), whereas for the wrist-back comparison, 

sta�s�cally significant differences were observed for TST, WASO, SE and AWK (p > .005). 
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Table 2  

Results of Repeated Measures ANOVA and Tuckey Post hoc analysis comparing sleep metrics from thigh, back and wrist device placements. 

Repeated measures ANOVA table 

Tukey post hoc analysis 
Thigh vs. Wrist Back vs. Wrist Thigh vs. Back 

 SS df MS F p – value Mean 
Difference SE df t ptukey 

Mean 
Difference SE df t ptukey 

Mean 
Difference SE df t ptukey 

Sleep Metric                 
TST, min 5297 2 2649 10.6 < 0.001 6.91 4.58 19.0 1.51 0.309 22.47 5.23 19.0 4.30 0.001 -15.56 5.16 19.0 -3.02 0.019 
WASO, min 2363 2 1181 6.96 0.003 -3.70 3.70 19.0 -1.00 0.586 -14.77 4.19 19.0 -3.53 0.006 -11.07 4.44 19.0 -2.50 0.055 
SE, % 0.01 2 0.01 7.78 0.001 0.01 0.01 19.0 1.17 0.486 0.03 0.01 19.0 3.69 0.004 -0.02 0.01 19.0 -2.55 0.049 
AWK, count 125 2 62.55 7.90 0.001 -2.40 0.69 19.0 -3.48 0.007 -3.45 1.15 19.0 -3.01 0.019 -1.05 0.766 19.0 -1.37 0.375 
SI, min 598 2 299.2 3.39 0.044 3.20 3.36 19.0 -0.95 0.614 7.70 3.18 19.0 2.42 0.064 -4.50 2.25 19.0 -1.997 0.140 
SOT difference, 
min 378 2 189.2 3.14 0.055 -3.04 2.74 19.0 -1.11 0.521 -6.15 2.69 19.0 -2.28 0.083 3.11 1.82 19.0 1.71 0.226 

 

Pearson correla�on coefficients showed high to very high correla�ons between the wrist and mid-thigh placements. This strong correla�on 

carried through for all sleep metrics with r values ranging from 0.86 to 0.98 with p < 0.001 (as shown in Table 3). The strongest correla�on was 

SI, r =0.98 (p < 0.001) within the wrist-thigh comparison. WASO, SE, and AWK shared the lowest correla�on value at r = 0.86 (p < 0.001) of wrist-

thigh comparisons. Only two of the sleep metrics (AWK, r =0.63 (p < 0.003); SE, r =0.78 (p < 0.001)) did not reach the determined r value and 

were both found in wrist-low-back comparisons. AWK within the wrist-low-back comparison was the lowest of all the correla�on values 

calculated. 
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Bland-Altman plots showed that the thigh-mounted device slightly overes�mated TST, SE, and SI, and slightly underes�mated WASO, AWK, and 

SOT compared to the wrist-mounted device (Table 4). However, the 95% confidence intervals of the bias es�mate included zero for all metrics 

except AWK, sugges�ng that only AWK was systema�cally underes�mated by the thigh unit (95% CI -3.84, -0.96 awakenings per night). The 

widest limits of agreement (LoA) was observed for TST (-33.3 min to 47.1 min; range 80.3 min), while the LoA for SI was -26.2 min to 32.6 min 

(range 58.9 min). Figure 3 depicts the varia�on in sleep metrics between the two device placements, including the presence of outliers. For TST, 

there were two outliers of the LoA, whereas one outlier was observed for WASO, SE, SI and SOT. These outliers all came from the same four 

Table 3 

Results of Bland-Altman and Pearson Correla�on analysis comparing sleep metrics obtained from mid-thigh and wrist device placements 

N=20 Mid-thigh compared to wrist 
 Bias 95% CI Lower LoA 95% CI Upper LoA 95% CI Pearson correla�on, r p value 95% CI 

TST, min 6.91 -2.68, 16.50 -33.25 -49.91, -16.6 47.06 30.40, 63.70 0.94 p < 0.001 0.86, 0.98 
WASO, min 3.70 -11.50, 4.05 -36.17 -49.70, -22.70 28.76 15.30, 42.24 0.86 p < 0.001 0.68, 0.94 
SE, % 0.86 -0.68, 2.40 -5.59 -8.27, -2.91 7.31 4.63, 9.98 0.86 p < 0.001 0.68, 0.95 
AWK, n -2.40 -3.84, -0.96 -8.45 -10.96, -5.94 3.65 1.14, 6.16 0.86 p < 0.001 0.66, 0.94 
SI, min 3.20 -3.82, 10.20 -26.23 -38.45, -14.00 32.64 20.42, 44.90 0.98 p < 0.001 0.94, 0.99 
SOT difference, min -3.04 -8.78, 2.70 -27.07 -37.05, -17.10 21.00 11.02, 30.97 0.97 p < 0.001 0.92, 0.99 
Abbrevia�on: CI, confidence interval 
LoA, Limits of Agreement 
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par�cipants across both mid-thigh and low-back comparisons to the wrist. Not surprisingly three of these four were iden�fied in the visual 

inspec�on as men�oned above. Scru�ny of these four showed large and/or frequent periods of awake �me between intrapar�cipant devices. 

There was, however, no consistency with how the devices were out of sync with each other on either an intra or interpar�cipant comparison of 

the minute-by-minute visual representa�ons of their sleep. A single explana�on of cause across all four outlying par�cipants is likely unrealis�c. 

However, some explana�ons that could posited for the various par�cipants could be lack of protocol compliance, device detachment and 

reapplica�on, excessive restlessness, or a (movement to a) sleeping posi�on that did not meet the requirements and threshold for the van 

Hees algorithm to register sleep. Further detailed examina�on of the data collected from these par�cipants would be required to iden�fy true 

causality of the discrepancies.  
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From a clinical perspec�ve, the wide limits of agreement suggest that individual es�mates from the thigh may not be suitable for iden�fying 

individual-level changes in sleep metrics. However, the narrow 95% CI of the bias es�mate suggest that the sample mean of sleep metrics from  

the thigh and wrist devices are in good agreement, except for AWK, which is slightly underes�mated by the thigh unit. The precision of the bias 

es�mates and LoA may improve with larger sample sizes. 

Table 4  

Results of Bland-Altman and Pearson Correla�on analysis comparing sleep metrics obtained from low-back and wrist device placements 

N=20 Low-back compared to wrist 
 Bias 95% CI Lower LoA 95% CI Upper LoA 95% CI Pearson correla�on, r p value 95% CI 

TST, min 22.50 11.50, 33.40 -23.30 -42.3, -4.32 68.3 49.30, 87.28 0.92 p < 0.001 0.82, 0.97 
WASO, min -14.80 -23.53, -60 -51.50 -66.75, -36.26 22.00 6.71, 37.20 0.81 p < 0.001 0.56, 0.92 
SE, % 3.28 1.42, 5.14 -4.51 -7.74, -1.27  11.08 7.84, 14.31 0.78 p < 0.001 0.51, 0.91 
AWK, n -3.45 -5.85, -1.05 -13.49 -17.66, -9.32 6.59 2.42, 10.76 0.63 p < 0.003 0.26, 0.84 
SI, min 7.70 1.04, 14.36 -20.19 -31.77, -8.62 35.59 24.02, 47.17 0.98 p < 0.001 0.95, 0.99 
SOT difference, min -6.15 -11.79, -0.51 -29.75 -39.55, -19.96 17.45 7.66, 27.25 0.97 p < 0.001 0.92, 0.99 
Abbrevia�on: CI, confidence interval 
LoA, Limits of Agreement 
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The back-mounted device significantly overes�mated TST, SE, and SI, and significantly underes�mated WASO, AWK, and SOT compared to the 

wrist-mounted device (Table 5). The widest LoA was observed for TST (-23.3 min to 68.3 min; 91.6 min). Similarly wide LoA are observed for all 

sleep metrics which suggests that the back-mounted device does not produce comparable es�mates to the wrist-mounted device. 

 

 

 

 

 

 

Cohen’s d values demonstrated small effect size in the comparison of mid-thigh to wrist devices. The exception to this was AWK (d= 0.42). 

Low-back Cohen’s d values were consistently larger than those of the mid-thigh groups. WASO, SE, and AWK all showed a moderate effect size.  

G*Power (Version 3.1.9.7; Faul et al., 2020) was used for the post-hoc analysis to assess the sta�s�cal power of the study, revealing that the 

sample size was sufficient. The results of the F-tests, specifically ANOVA with repeated measures indicated a high likelihood of correctly 

Table 5 

Cohen’s d of the mid-thigh and low-back devices  

 Wrist Mid-thigh Low-back 
 mean standard devia�on mean standard devia�on d mean standard devia�on d 
TST, min 403.10 60.62 410.01 59.99 0.11 425.57 59.26 0.37 
WASO, min 60.57 31.53 56.87 31.59 -0.12 45.80 26.46 -0.51 
SE, % 0.87 0.06 0.88 0.06 0.14 0.90 0.05 0.56 
AWK, n 16.95 5.72 14.55 5.73 -0.42 13.50 6.13 -0.58 
SI, min 463.68 68.54 466.88 65.14 0.05 471.38 63.11 0.12 
SOT difference, min 1357.15 47.37 1354.11 42.15 0.07 1351.00 43.06 -0.14 
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rejec�ng the null hypothesis at 99% (β = 0.993). Moreover, the t-tests u�lising the correla�on point biserial model demonstrated a range of 

93% to 100% likelihood of correctly rejec�ng the null hypothesis for the lowest and highest correla�ons observed (β = 0.929 and β = 1.00, 

respec�vely).  

Discussion 

The present study inves�gated whether an open-source sleep algorithm designed for use with wrist-based accelerometers could produce 

similar sleep metric es�mates from accelerometric data collected from either a mid-thigh or lower-back placement. This study aimed to 

contribute to the advancement of accurate and comprehensive sleep tracking methodologies that can be used for sleep focused, and/or 

24-hour �me use studies. The key findings of this study indicate that sleep metrics obtained from the van Hees algorithm (2015) using a mid-

thigh placement are beter than those from a low-back placement and comparable to those from a wrist placement. Building on previous work, 

an immediate impact of this is that this method can now be used in retrospec�ve data analysis, offering both increased value to par�cipants 

and stakeholders of the research. 
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Biases of under- and overes�ma�on of accelerometery devices with regards to sleep 

quan�ty and quality metrics are an acknowledged and unresolved aspect of their use in 

sleep tracking. Incidences of under and overes�ma�on vary from study to study (Johansson 

et al., 2022; Tone� et al., 2008; Toon, 2016; van Hees et al., 2015) and no standardised 

device placement, algorithm, or se�ngs setup has shown itself to emerge as the field 

standard of excellence (Evenson et al., 2022). Other groups have emphasized the 

development of tracking methods that u�lize thigh data to advance the field (Stevens et al., 

2020). Johansson et al. (2022) have also taken steps towards the development of a thigh-

based sleep tracking algorithm. Their sleep metric results contrasted those of the present 

study in that TST, SE, and SI were respec�vely under- rather than overes�mated. These 

comparisons can only be superficial however as the baseline comparison to each of these 

respec�ve studies is different. TST, SE and SI es�mates generated by the thigh (and back) 

device placements of this study align more consistently with those of the van Hees et al. 

(2015) study where these metrics were overes�mated. Both the Johansson et al. (2022) and 

van Hees et al. (2015) study used PSG as their ground truth in training their respec�ve 

algorithms. A natural progression for the con�nua�on of inquiry for this work would be to 

take this algorithm and device loca�on into a comparison against PSG itself to iden�fy where 

further biases may lay. 

This research also has the poten�al to reduce researcher and par�cipant burden in 

compu�ng sleep metrics. Previous research such as Tudor-Locke (2014) involved researchers 

manually iden�fying sleep onset, wake and total sleep �mes (using accelerometery from the 

hip). The sta�s�cal evidence of the present study having such a close rela�onship to its 

baseline dataset indicates that this method is sufficient in accuracy for the measurement of 

sleep on a group level in free-living se�ngs. Further, the sample frequency and sensi�vity 
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rate of the present study also coincide with the default sampling frequency se�ngs of 100Hz 

in AX3 devices crea�ng further ease of use and poten�al applicability to previously collected 

data sets (Narayanan et al., 2020; Stewart et al., 2018). This may also be effec�ve for other 

brands of accelerometery devices as Plekhanova et al. (2020) found that when analysed 

iden�cally, sleep outcomes of different devices were comparable across studies at a group 

level. Par�cipant burden can poten�ally be reduced in future studies by requiring fewer 

accelerometers for comprehensive 24-hour �me use behaviour analysis. Using a dual 

accelerometer system on the mid-thigh and low-back has been shown to be an effec�ve way 

of measuring posture and movement in free-living environments (Narayanan et al., 2020; 

Stewart et al., 2018). The results of this study indicate that the thigh mounted 

accelerometery can also be used as a non-inferior method of sleep metric es�ma�on thus 

elimina�ng the need for a wrist mounted device that is unable to detect body posi�oning 

(Rosenberger, 2019).  

One of the future direc�ons this study prompts is its poten�al to integrate sleep posi�oning 

iden�fica�on and dura�on into sleep metrics and by extension into the research within the 

field of 24-hour �me use. Unlike tradi�onal methods, which can neglect data about (sleep) 

posture, the results of this study suggest an ability to leverage data collected from the mid-

thigh that can not only be used in analysing sleep but can also extrapolate more robust 

knowledge around the interplay of body posi�oning and posi�on dura�on. However, for the 

true posi�oning of body postures, the posi�onal orienta�on of more than a single limb is 

likely required. In this vein, the reten�on of a device placed on the low-back would likely 

greatly improve posi�onal iden�fica�on (Narayanan et al., 2020).  
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Limita�ons 

There are some limita�ons that must be acknowledged with the results of this study. Firstly, 

while the power of this study is strong, the sample size of this study is not on a large scale. 

As well, while a free-living sleep environment does allow the par�cipant a familiar sleep 

loca�on for data collec�on, it also opens the study up to variables that cannot necessarily be 

controlled for between par�cipants such as partners in the same bed causing movement, 

pets, or children that could all cause changes to a par�cipants’ body angles and movement 

paterns.  

Addi�onally, the results of this study do not comprehensively remove the need for sleep 

diaries. The van Hees algorithm has been updated to func�on without the need for a sleep 

diary guider (van Hees et al., 2018). Further analysis would need to be completed to iden�fy 

if results were s�ll consistent without the use of the sleep diaries but is worthy of further 

inves�ga�on.  

Conclusions 

This study shows that there is scope for mid-thigh accelerometery to be evaluated for sleep 

metrics using the van Hees algorithm when wrist accelerometery is not available. The study 

also highlights the need for increased availability of open-source measurement tools for 

interpre�ng data collected using accelerometers mounted on the thigh and lower back to 

assess ac�vity over �me domains that include sleep periods. 
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