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Abstract

Introduction

Wearable accelerometers are a valuable tool for monitoring sleep, sedentary behaviour,
and physical activity patterns within 24h time-use in free-living environments. While wrist-
worn accelerometers are favoured for monitoring sleep, they do not accurately distinguish
between sitting and lying positions (Narayanan et al., 2020). This study aims to determine
whether back or thigh-mounted accelerometers yield sleep metrics comparable to wrist-

worn devices using an open-source algorithm originally validated for the wrist.

Methods

Data from 20 healthy sleepers were collected using Axivity AX3 accelerometers. Participants
wore accelerometers on their right thigh, low-back, and wrist for one night of sleep in their
own bed. Sleep metrics were calculated using the van Hees algorithm through the GGIR
package in R. The primary outcomes were: Total Sleep Time (TST), Wake After Sleep Onset
(WASO), Awakenings (AWK), Sleep Efficiency (SE), Sleep Interval (SI) and Sleep Onset
Timestamp (SOT). Within-subject ANOVA with Tukey’s post hoc, Pearson correlation
coefficients, Bland-Altman plots, and Cohen’s d were used to assess the comparability of

sleep metrics between the body placements.

Results

Data analysis included all 20 participants. Mid-thigh accelerometers demonstrated a strong
linear relationship with wrist accelerometers across all metrics (r = 0.86-0.98). Bland-Altman
plots demonstrated a narrow 95% confidence interval suggesting that wrist and mid-thigh
metrics are in good agreement, except for AWK which is slightly underestimated by the

mid-thigh device. Conversely, low-back accelerometers demonstrated moderate linear
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relationship with the wrist (r = 0.63-0.98) and the Bland-Altman results showed wide limits
of agreement with significant overestimations of TST, SE, Sl and underestimations of WASO,
AWK, SOT. Cohen’s d demonstrated small differences between mid-thigh and wrist devices,

except for AWK (d= 0.42). Low-back values for WASO, SE, and AWK showed moderate

differences.

Conclusions
This analysis demonstrates that the mid-thigh accelerometer yields comparable sleep

metrics to wrist-worn devices when processed with the van Hees algorithm.
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Introduction

The emerging field of 24-hour behavioural time use epidemiology is calling for valid and
reliable measures of behavioural sleep, physical activity, and sedentary behaviour to better
understand the relationship between the 24-hour composition of behaviour and health.
Understanding the interdependence between different facets of human function is essential
in health research, as it enables us to measure their influences effectively and comprehend
how they relate to overall health (Crowley et al., 2019; Johansson et al., 2022; Perez-Pozuelo
et al., 2020). Therefore, there is a need to ensure that these measures can reliably and
accurately measure all three behaviours. Finding a common location that provides valid,
useful results for both wake and sleep phases of an individual's day is compelling as an
endeavour as it will help to simplify the research process. Additionally, it may also unlock
further insights from retrospective analysis for many studies using data that has already

been collected.

Sedentary, light, and moderate to vigorous physical behaviours are collectively considered to
encompass all waking behaviours with sleep consuming the remaining time in a 24-hour
period (Rosenberger, 2019). The time spent in each aspect of behaviour throughout the day
is mutually exclusive and perfectly collinear. In other words, you can only be performing one
of these behaviours at a time, and the sum time spent in each behaviour, will result in a total
of 24 hours (Pedisi¢, 2014). The distribution of these component behaviours has been
associated to health outcomes related to both physical and mental health (Baillot, 2022;
Brakenridge et al., 2021; Dumuid et al., 2022). Of these behaviours, sleep is encouraged to
take around one-third of the 24-hour period and is also in and of itself highly associated with

health outcomes (Cappuccio et al., 2010; Watson et al., 2015). It is vital in the recovery from
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previous waking events and in the preparation of the body and mind for subsequent waking
activities. Ineffective and/or insufficient sleep has been associated with both immediate and
long term health outcome risks including premature mortality, cardiovascular disease,
hypertension, inflammation, obesity, diabetes and impaired glucose tolerance, and
psychiatric disorders, such as anxiety and depression (Ferrie et al., 2011). Insufficient sleep
in the general population has been identified by countries around the globe and along with
the personal health risk factors go with it economic costs to personal finance, business, and

government (Hafner, 2017). Indeed, sleep is a public health issue that is worthy of

investigation.

Sleep tracking using wearable accelerometers has gained substantial attention as a non-
invasive and objective method to monitor sleep patterns and behaviours in free-living
environments. The use of accelerometers offers the advantage of capturing continuous data
over extended periods, providing insights into sleep quantity and quality, as well as its
relationships with movement behaviours across a full 24-hour period. As such the use of
wearable accelerometers over 24-hour periods and longer is increasingly popular as an
objective research approach for tracking both waking and sleep behaviours (Hills et al.,
2014; Sundararajan et al., 2021). The ways in which accelerometric data can be interpreted
by these devices is dependent on factors including body placement, sampling frequency, and

computational methods.

The most common body placement locations used for accelerometery studies include the
wrist, hip, and thigh (Evenson et al., 2022; Lettink et al., 2022). Gao et al. (2021) identified a
shift from hip to wrist worn accelerometers citing advantages of improved compliance, being

less intrusive, improved capability of assessing sleep behaviours, along with the capability of
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capturing more upper extremity movements. Nonetheless, this approach has limitations in
accurately detecting body posture (Rosenberger, 2019). A wrist mounted device has no
ability to determine whether a person is standing, sitting, or lying, a critical aspect in
understanding sleep behaviour or sedentary behaviour. The definition of sedentary
behaviour requires that the individual be waking as well as sitting or lying (Tremblay et al.,
2017). Thus, differentiating between standing, and sitting or lying is necessary for achieving
accurate measurements of different waking physical behaviours. Stewart et al. (2018) found
that a dual accelerometer system that placed devices on the mid-thigh and low back
performed well in identifying the positions and activities of standing, sitting, lying, walking,
and running. Narayanan et al. (2020) furthered this, validating its application in semi free-
living conditions. However, it was also noted that this work would need expansion in its
measurement of other components of behaviour such as sleep. As such more work needs to

be completed to validate device placements and data processing algorithms to measure

physical activity, sedentary behaviour, and sleep concurrently.

Sampling frequency in data collection is another crucial consideration that can influence the
granularity and accuracy of sleep and physical behaviour tracking outcomes. The sampling
frequency, also known as sampling rate, refers to the number of data points taken by the
accelerometer each second. A higher sampling frequency translates to more data points
captured within a given timeframe. Higher sampling rates enable a more accurate
representation of movements during both wake and sleep phases. The time a device can
record for is also dependent on the sampling frequency as higher sampling rates will reduce
battery length. A balance must therefore be decided upon where the researcher is able to

record the highest detail while still ensuring that the full duration of the recording period is
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completed. Migueles et al. (2017) suggests that using the highest frequency possible is the
recommended approach to sampling. They go on to suggest that 100Hz is preferable over
frequency multiples of 30Hz when researchers are filtering and processing the signal on
their own (e.g., open-source software). The Axivity brand AX3 is a commonly used
accelerometer in sleep and 24-hour time use research. It has a sampling frequency that can
be specified from 12.5 to 3200Hz with the default setting being 100Hz and can be used with
open-source software. AX3 devices set to record at 100Hz are reported by Axivity (Axivity
operating manual), to have a battery life of 14 days of continuous recording. As such we can

see a need to have a system of sleep metric analysis that uses the default setting for AX3

accelerometers.

To interpret the raw data collected from any accelerometric recording device a computer
algorithm is required to synthesise the enormous volume of data points. The computational
algorithms used to analyse accelerometery data play a pivotal role in translating raw data
into meaningful metrics, for example, sleep duration or minutes of moderate physical
activity. In the endeavour to create reproducible, comparable, and composite insights that
accurately reflect habits of 24-hour time use, a key component of the task is using methods
that are transparent. Proprietary software, while common, brings challenges like
transparency and consistency in algorithmic computation (Karas et al., 2019). Non-
proprietary and open-source methods offer several benefits over proprietary offerings
including transparency, the avoidance of vendor lock-in, long-term availability, and cost
efficiency. These aspects all contribute to the promotion of collaboration and reproducibility.
It is essential for research purposes that raw frequencies are collected and disclosed, and

that non-proprietary, open-source algorithms are able to be shared and applied. The
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emergence of open-source algorithms have paved the way for researchers to compare
results across samples in a transparent and innovative manner. These open-source
algorithms also have the advantage of being interchangeable with most popular brands of
accelerometery recorders like Axivity and ActiGraph. Indeed, Crowley et al. (2019) found

that these brands were interchangeable in their ability to report accelerometric data when

using the same algorithm for calculation of metrics.

This study aims to address the above intricacies by investigating the validation of mid-thigh,
and low-back mounted accelerometers against a computational algorithm primarily
designed for wrist-mounted accelerometery where the sampling frequency is set to 100Hz.
The primary objective is to assess whether either the mid-thigh or low-back placements
yield comparable and reliable sleep metrics, when compared against wrist data. By doing so,
this research seeks to contribute to the advancement of accurate and comprehensive sleep
tracking methodologies that can be integrated into 24-hour time use research and will also

allow retrospective analysis for many studies.

Methods

Participants were recruited from the general public via an advertisement and word of
mouth. The inclusion criteria were: at least 20 years of age and self-reported healthy
sleepers. For the purposes of this study, healthy sleepers were operationally defined as
individuals who did not utilise or necessitate sleep aids, thereby ensuring the absence of
substances or devices that could impede or constrain normal sleep function or physical
mobility. All participants provided written informed consent. Ethical approval was obtained

from Auckland University of Technology ethics committee (AUTEC 22/300).
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Data Collection

After providing signed informed consent, participants completed a sleep diary and wore
three Axivity AX3 accelerometers simultaneously for a single night of sleep at home in a

free-living environment.

Accelerometers

The Axivity AX3 device is a small, lightweight, and waterproof accelerometer (23 x 32.5 x 8.9
mm; 11 g) that can be affixed using medical tape, adhesive pouches, or worn on a wrist
band. AX3 devices have been previously used and
validated in research involving movement behaviour as
well as sleep (Johansson et al., 2022; Narayanan et al.,
2020; Plekhanova et al., 2020). Each Axivity AX3
accelerometer was pre-set to automatically start

recording at 7pm until 11am the next day. Sample rate

Figure 1

was set to 100 Hz with a sensitivity of £8 g.
Placement locations for AX3 devices y g

Participants placed the devices on their mid anterior thigh, lower-back offset from the spine,
and posterior wrist, following the instructions provided. All devices were worn on the right
side of the body (see Figure 1). The devices were affixed using a self-adhesive pouch (thigh,
back) labelled with location and directionality instructions, or a wrist-watch style strap.
Participants were instructed to place the devices at 6pm and remove the device after they

had gotten out of bed and completed their sleep diary the next day.

Sleep Diary & Data Processing
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On a paper-based sleep diary, participants recorded the time they attached and removed the

device, the time they got into bed, the time they tried to go to sleep, the approximate time

they woke up (final awakening time), and the time they got up.

Using OMGUI Open Movement software (version 1.0.0.30; Open Movement, Newcastle
University, UK), raw accelerometer data was downloaded and logged into ID folders for
processing. The Open-source software ‘R package’ (R Core Team, 2021) was used to process
the accelerometric data for all device placements. The software package GGIR (Generalized
Graded Intensity Model R-package) (Migueles et al., 2019) was used to synthesize the data
into sleep metrics. The van Hees et al. (2015) algorithm was chosen for this study from the
four different algorithms offered by GGIR for measuring sleep metrics. Unlike earlier
algorithms that relied on acceleration magnitude for movement/sleep detection (Cole et al.,
1992; Galland, 2012; Sadeh, 1994), the van Hees algorithm interprets sleep through body
kinematics using (arm) angles and lack of movement to identify sleep and has also been

validated against sleep tracking gold standard PSG.

The sleep diary data was used as a guider by the algorithm. As a guider, the sleep diary data
did not provide a rigid time for the sleep algorithm to use. Instead, it directed the algorithm
to the approximate start and end points of sleep measurements. The computed sleep data
was then exported to Microsoft Excel as a .csv file. The derived sleep metrics for analysis
were total sleep time (TST), wake after sleep onset (WASQ), awakenings (AWK), sleep
interval (Sl), sleep efficiency (SE). Sleep onset timestamp (SOT) was also used as a device

location comparator although it is not specifically a sleep metric.

Analysis
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Statistical analysis was performed in The jamovi project (2022) (Version 2.3.26) and
statistical significance was set at a = 0.05. First, visual inspection was undertaken to initially
assess whether further statistical investigation was worthwhile. A within-subjects analysis of
variance (ANOVA) was conducted to compare mean estimates of sleep metrics across the
three device placements (thigh, back, wrist). Post-hoc pairwise comparisons using Tukey's
test were performed to identify pairwise differences between sleep metrics. Cohen’s d was
computed to interpret the effect size of the pairwise differences in means. Pearson
correlation coefficients were calculated to assess the linear relationship between wrist-thigh
and wrist-back estimates of sleep metrics. An r value of > 0.8 was considered to be a level of
high convergent validity (Mukaka, 2012). Finally, Bland-Altman plots were generated for

wrist-thigh and wrist-back estimates of sleep metrics to assess the level of agreement

between device placements.

Results

A total of 20 individuals (40% male) aged 20-65 consented to and completed the single night
study. No further demographic data were collected as the primary objective was to compare
sleep metric data from different accelerometer placements, rather than provide

generalisable estimates of sleep metrics.
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Visual analysis of minute-by-minute within-participant sleep data (e.g., Figure 2) showed
that there were large periods of sleep alignment across all device placement sites for all
participants. Although not all wake periods aligned identically, overall, the alignment of
sleep between body locations appeared to be good for each participant. During the sleep
period, when wake events did not directly align between body locations, it was common, to
observe similar lengths of wake time either slightly before or after. Large discrepancies were
minimal but did occur. Three participants of the study recorded visually significant gaps in

the mid-thigh and/or low-back devices in comparison to the wrist. One during the sleep

period and two at the beginning of the sleep period.

wrist
. Sleep
-
§ o Wake
back
18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 02:00 04:00 05:00 D6:00 07:00 08:00 09:00 10:00 11:00
Timestamp
Figure 2

Example of visual sleep summary of each device per participant

Table 1

Descriptives for Sleep Metrics taken from the wrist, mid-thigh, and low-back body locations

Wrist Thigh Back
Sleep metric N Mean SD Range Mean SD Range Mean SD Range
TST, min 20 403.10 60.62 204.42 410.01 59.99 224.64 42557 59.26  203.82
WASO, min 20 60.57 31.53 133.86 56.87 31.59 115.92 45.80 26.46 106.32
AWK, n 20 16.95 5.72 24.00 14.55 5.73 25.00 13.50 6.13 25.00
SI, min 20 463.68 68.54 284.75 466.88 65.14 26291 47138 63.11 264.33

SE, % 20 0.87 0.06 0.22 0.88 0.06 0.21 0.90 0.05 0.20


https://doi.org/10.1101/2024.11.10.24317079
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.11.10.24317079; this version posted November 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .
Mean values of the wrist group were less than the mid-thigh group for TST, SE and SI.
Significant differences in mean value were identified in AWK for both the mid-thigh and
low-back locations compared to the wrist. Low-back sleep metric mean values varied greater

compared to the wrist. The range values for the low-back device however were generally

smaller than both the wrist and mid-thigh groups.

Within-subjects ANOVA was performed to compare the sleep metrics determined by the van
Hees wrist algorithm across the different device placements. There was a statistically
significant difference between device placements in all sleep metrics (see Table 2) except for
SOT (F(2, 38) = 3.14, p = 0.055). Tukey’s post-hoc analysis showed that most of the
statistically significant differences were observed comparing the wrist to the low-back, and
the low-back to the mid-thigh location. For the wrist-thigh comparison, only estimates of
AWK were statistically different (p = .007), whereas for the wrist-back comparison,

statistically significant differences were observed for TST, WASO, SE and AWK (p > .005).
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Table 2

Results of Repeated Measures ANOVA and Tuckey Post hoc analysis comparing sleep metrics from thigh, back and wrist device placements.

Tukey post hoc analysis

Repeated measures ANOVA table Thigh vs. Wrist Back vs. Wrist Thigh vs. Back
Mean Mean Mean
SS df MS F p —value Difference SE df t Ptukey Difference SE df t Ptukey Difference SE df t Ptukey
Sleep Metric

TST, min 5297 2 2649 106  <0.001 6.91 458 190 151  0.309 22.47 523 190 430 0.001 -15.56 5.16 19.0 3.02 0019
WASO, min 2363 2 1181 696  0.003 3.70 370 190 -1.00  0.586 -14.77 419 190 -353  0.006 -11.07 4.44 19.0 250  0.055
SE, % 001 2 001 778  0.001 0.01 001 190 117 0486 0.03 001 190 3.69  0.004 0.02 0.01 19.0 255  0.049
AWK, count 125 2 6255 790  0.001 -2.40 0.69 190 -348  0.007 3.45 115 19.0 -3.01  0.019 -1.05 0.766 19.0 137 0375
S, min 598 2 2992 339  0.044 3.20 336 190 -095 0614 7.70 318 190 242  0.064 -4.50 2.25 19.0 1997  0.140
fn?: difference, 378 2 1892 314  0.055 3.04 274 190 -111 0521 -6.15 269 190 -2.28  0.083 3.11 1.82 19.0 171 0226

Pearson correlation coefficients showed high to very high correlations between the wrist and mid-thigh placements. This strong correlation
carried through for all sleep metrics with r values ranging from 0.86 to 0.98 with p < 0.001 (as shown in Table 3). The strongest correlation was
SI, r =0.98 (p < 0.001) within the wrist-thigh comparison. WASO, SE, and AWK shared the lowest correlation value at r = 0.86 (p < 0.001) of wrist-
thigh comparisons. Only two of the sleep metrics (AWK, r =0.63 (p < 0.003); SE, r =0.78 (p < 0.001)) did not reach the determined r value and
were both found in wrist-low-back comparisons. AWK within the wrist-low-back comparison was the lowest of all the correlation values

calculated.
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Table 3

Results of Bland-Altman and Pearson Correlation analysis comparing sleep metrics obtained from mid-thigh and wrist device placements

N=20

TST, min
WASO, min
SE, %
AWK, n

SI, min

SOT difference, min

Mid-thigh compared to wrist

Bias 95% ClI Lower LoA 95% ClI Upper LoA 95% ClI Pearson correlation, r p value 95% ClI

6.91 -2.68, 16.50 -33.25 -49.91, -16.6 47.06 30.40, 63.70 0.94 p <0.001 0.86, 0.98
3.70 -11.50, 4.05 -36.17 -49.70, -22.70 28.76 15.30,42.24 0.86 p <0.001 0.68,0.94
0.86 -0.68, 2.40 -5.59 -8.27,-2.91 7.31 4.63, 9.98 0.86 p <0.001 0.68, 0.95
-240  -3.84,-0.96 -8.45 -10.96, -5.94 3.65 1.14,6.16 0.86 p <0.001 0.66, 0.94
3.20 -3.82,10.20 -26.23 -38.45, -14.00 32.64 20.42,44.90 0.98 p <0.001 0.94, 0.99
-3.04 -8.78,2.70 -27.07 -37.05, -17.10 21.00 11.02,30.97 0.97 p <0.001 0.92,0.99

Abbreviation: Cl, confidence interval
LoA, Limits of Agreement

Bland-Altman plots showed that the thigh-mounted device slightly overestimated TST, SE, and S|, and slightly underestimated WASO, AWK, and

SOT compared to the wrist-mounted device (Table 4). However, the 95% confidence intervals of the bias estimate included zero for all metrics

except AWK, suggesting that only AWK was systematically underestimated by the thigh unit (95% Cl -3.84, -0.96 awakenings per night). The

widest limits of agreement (LoA) was observed for TST (-33.3 min to 47.1 min; range 80.3 min), while the LoA for Sl was -26.2 min to 32.6 min

(range 58.9 min). Figure 3 depicts the variation in sleep metrics between the two device placements, including the presence of outliers. For TST,

there were two outliers of the LoA, whereas one outlier was observed for WASO, SE, Sl and SOT. These outliers all came from the same four
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participants across both mid-thigh and low-back comparisons to the wrist. Not surprisingly three of these four were identified in the visual
inspection as mentioned above. Scrutiny of these four showed large and/or frequent periods of awake time between intraparticipant devices.
There was, however, no consistency with how the devices were out of sync with each other on either an intra or interparticipant comparison of
the minute-by-minute visual representations of their sleep. A single explanation of cause across all four outlying participants is likely unrealistic.
However, some explanations that could posited for the various participants could be lack of protocol compliance, device detachment and
reapplication, excessive restlessness, or a (movement to a) sleeping position that did not meet the requirements and threshold for the van
Hees algorithm to register sleep. Further detailed examination of the data collected from these participants would be required to identify true

causality of the discrepancies.
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Figure 3

Mid-thigh comparison to wrist

Low-back comparison to wrist
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Bland-Altman plots showing the individual differences between the mid-thigh and wrist, and low-back and wrist locations for each of the sleep metrics.
Each participant is identified as a dot. The middle-dotted line represents the mean difference. The upper and lower dotted lines represent the 95% limits
of agreement. The shaded areas represent the confidence interval limits.
*Plot unit scales may differ
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Figure 3, continued
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Each participant is identified as a dot. The middle-dotted line represents the mean difference. The upper and lower dotted lines represent the 95% limits
of agreement. The shaded areas represent the confidence interval limits.
*Plot unit scales may differ
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Figure 3, continued
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Table 4

Results of Bland-Altman and Pearson Correlation analysis comparing sleep metrics obtained from low-back and wrist device placements

N=20 Low-back compared to wrist
Bias 95% Cl Lower LoA 95% ClI Upper LoA 95% ClI Pearson correlation, r p value 95% ClI
TST, min 22.50 11.50, 33.40 -23.30 -42.3,-4.32 68.3 49.30, 87.28 0.92 p <0.001 0.82,0.97
WASO, min -14.80 -23.53, -60 -51.50 -66.75, -36.26 22.00 6.71,37.20 0.81 p <0.001 0.56, 0.92
SE, % 3.28 1.42,5.14 -4.51 -7.74,-1.27 11.08 7.84,14.31 0.78 p <0.001 0.51,0.91
AWK, n -3.45 -5.85, -1.05 -13.49 -17.66, -9.32 6.59 2.42,10.76 0.63 p <0.003 0.26,0.84
SI, min 7.70 1.04, 14.36 -20.19 -31.77,-8.62 35.59 24.02,47.17 0.98 p <0.001 0.95, 0.99
SOT difference, min -6.15 -11.79, -0.51 -29.75 -39.55, -19.96 17.45 7.66, 27.25 0.97 p <0.001 0.92, 0.99

Abbreviation: Cl, confidence interval
LoA, Limits of Agreement

From a clinical perspective, the wide limits of agreement suggest that individual estimates from the thigh may not be suitable for identifying

individual-level changes in sleep metrics. However, the narrow 95% Cl of the bias estimate suggest that the sample mean of sleep metrics from

the thigh and wrist devices are in good agreement, except for AWK, which is slightly underestimated by the thigh unit. The precision of the bias

estimates and LoA may improve with larger sample sizes.


https://doi.org/10.1101/2024.11.10.24317079
http://creativecommons.org/licenses/by-nc-nd/4.0/

The back-mounted device significantly overestimated TST, SE, and SI, and significantly underestimated WASO, AWK, and SOT compared to the

wrist-mounted device (Table 5). The widest LoA was observed for TST (-23.3 min to 68.3 min; 91.6 min). Similarly wide LoA are observed for all

sleep metrics which suggests that the back-mounted device does not produce comparable estimates to the wrist-mounted device.

Table 5

Cohen’s d of the mid-thigh and low-back devices

Wrist Mid-thigh Low-back
mean standard deviation mean standard deviation d mean standard deviation d
TST, min 403.10 60.62 410.01 59.99 0.11 425.57 59.26 0.37
WASO, min 60.57 31.53 56.87 31.59 -0.12 45.80 26.46 -0.51
SE, % 0.87 0.06 0.88 0.06 0.14 0.90 0.05 0.56
AWK, n 16.95 5.72 14.55 5.73 -0.42 13.50 6.13 -0.58
SI, min 463.68 68.54 466.88 65.14 0.05 471.38 63.11 0.12
SOT difference, min 1357.15 47.37 1354.11 42.15 0.07 1351.00 43.06 -0.14

Cohen’s d values demonstrated small effect size in the comparison of mid-thigh to wrist devices. The exception to this was AWK (d= 0.42).

Low-back Cohen’s d values were consistently larger than those of the mid-thigh groups. WASO, SE, and AWK all showed a moderate effect size.

G*Power (Version 3.1.9.7; Faul et al., 2020) was used for the post-hoc analysis to assess the statistical power of the study, revealing that the

sample size was sufficient. The results of the F-tests, specifically ANOVA with repeated measures indicated a high likelihood of correctly
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rejecting the null hypothesis at 99% (B = 0.993). Moreover, the t-tests utilising the correlation point biserial model demonstrated a range of
93% to 100% likelihood of correctly rejecting the null hypothesis for the lowest and highest correlations observed (B = 0.929 and 3 = 1.00,

respectively).

Discussion

The present study investigated whether an open-source sleep algorithm designed for use with wrist-based accelerometers could produce
similar sleep metric estimates from accelerometric data collected from either a mid-thigh or lower-back placement. This study aimed to
contribute to the advancement of accurate and comprehensive sleep tracking methodologies that can be used for sleep focused, and/or
24-hour time use studies. The key findings of this study indicate that sleep metrics obtained from the van Hees algorithm (2015) using a mid-
thigh placement are better than those from a low-back placement and comparable to those from a wrist placement. Building on previous work,
an immediate impact of this is that this method can now be used in retrospective data analysis, offering both increased value to participants

and stakeholders of the research.
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Biases of under- and overestimation of accelerometery devices with regards to sleep
guantity and quality metrics are an acknowledged and unresolved aspect of their use in
sleep tracking. Incidences of under and overestimation vary from study to study (Johansson
et al., 2022; Tonetti et al., 2008; Toon, 2016; van Hees et al., 2015) and no standardised
device placement, algorithm, or settings setup has shown itself to emerge as the field
standard of excellence (Evenson et al., 2022). Other groups have emphasized the
development of tracking methods that utilize thigh data to advance the field (Stevens et al.,
2020). Johansson et al. (2022) have also taken steps towards the development of a thigh-
based sleep tracking algorithm. Their sleep metric results contrasted those of the present
study in that TST, SE, and SI were respectively under- rather than overestimated. These
comparisons can only be superficial however as the baseline comparison to each of these
respective studies is different. TST, SE and Sl estimates generated by the thigh (and back)
device placements of this study align more consistently with those of the van Hees et al.
(2015) study where these metrics were overestimated. Both the Johansson et al. (2022) and
van Hees et al. (2015) study used PSG as their ground truth in training their respective
algorithms. A natural progression for the continuation of inquiry for this work would be to

take this algorithm and device location into a comparison against PSG itself to identify where

further biases may lay.

This research also has the potential to reduce researcher and participant burden in
computing sleep metrics. Previous research such as Tudor-Locke (2014) involved researchers
manually identifying sleep onset, wake and total sleep times (using accelerometery from the
hip). The statistical evidence of the present study having such a close relationship to its
baseline dataset indicates that this method is sufficient in accuracy for the measurement of

sleep on a group level in free-living settings. Further, the sample frequency and sensitivity
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rate of the present study also coincide with the default sampling frequency settings of 100Hz
in AX3 devices creating further ease of use and potential applicability to previously collected
data sets (Narayanan et al., 2020; Stewart et al., 2018). This may also be effective for other
brands of accelerometery devices as Plekhanova et al. (2020) found that when analysed
identically, sleep outcomes of different devices were comparable across studies at a group
level. Participant burden can potentially be reduced in future studies by requiring fewer
accelerometers for comprehensive 24-hour time use behaviour analysis. Using a dual
accelerometer system on the mid-thigh and low-back has been shown to be an effective way
of measuring posture and movement in free-living environments (Narayanan et al., 2020;
Stewart et al., 2018). The results of this study indicate that the thigh mounted
accelerometery can also be used as a non-inferior method of sleep metric estimation thus

eliminating the need for a wrist mounted device that is unable to detect body positioning

(Rosenberger, 2019).

One of the future directions this study prompts is its potential to integrate sleep positioning
identification and duration into sleep metrics and by extension into the research within the
field of 24-hour time use. Unlike traditional methods, which can neglect data about (sleep)
posture, the results of this study suggest an ability to leverage data collected from the mid-
thigh that can not only be used in analysing sleep but can also extrapolate more robust
knowledge around the interplay of body positioning and position duration. However, for the
true positioning of body postures, the positional orientation of more than a single limb is
likely required. In this vein, the retention of a device placed on the low-back would likely

greatly improve positional identification (Narayanan et al., 2020).
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Limitations

There are some limitations that must be acknowledged with the results of this study. Firstly,
while the power of this study is strong, the sample size of this study is not on a large scale.
As well, while a free-living sleep environment does allow the participant a familiar sleep
location for data collection, it also opens the study up to variables that cannot necessarily be
controlled for between participants such as partners in the same bed causing movement,
pets, or children that could all cause changes to a participants’ body angles and movement
patterns.

Additionally, the results of this study do not comprehensively remove the need for sleep
diaries. The van Hees algorithm has been updated to function without the need for a sleep
diary guider (van Hees et al., 2018). Further analysis would need to be completed to identify
if results were still consistent without the use of the sleep diaries but is worthy of further

investigation.

Conclusions

This study shows that there is scope for mid-thigh accelerometery to be evaluated for sleep
metrics using the van Hees algorithm when wrist accelerometery is not available. The study
also highlights the need for increased availability of open-source measurement tools for
interpreting data collected using accelerometers mounted on the thigh and lower back to

assess activity over time domains that include sleep periods.
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