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Abstract
Background

Pathologic assessment of the established biomarkers using standard hematoxylin & eosin
(H&E) and immunohistochemical (IHC) stained whole slide images (WSIs) is central in
routine breast cancer diagnostics and contributes prognostic and predictive information that
guides clinical decision-making. However, other than only aggregated protein-expression
values from IHC WSIs, a spatial combination of histo-morphological information from IHC
and H&E WSIs can potentially improve prognosis prediction in breast cancer patients. In this
study, we aim to develop a deep learning-based risk-stratification method for breast cancer
using routine H&E and IHC-stained histopathology WSIs from resected tumours.

Methods

This is a retrospective study including WSIs from surgical resected specimens from 945
patients from the South General Hospital in Stockholm. One H&E and four IHC (ER, PR,
HER2, and Ki-67) stained sections were included from each patient, retrieved from the same
tumour block. The IHC WSIs with the H&E WSI were registered, and corresponding images
patches (tiles) were extracted for each image modality. Features from the registered tiles were
extracted using two existing and publicly available histopathology foundation models (UNI
and CONCH). Using the extracted features together with time-to-event data, we optimised an
attention-based multiple instance learning (MIL) model using the Cox loss (negative partial
log-likelihood loss) and recurrence-free survival (RFS) as the survival endpoint.

Results

Using cross-validation we observed a prognostic performance with a C-index of 0.65
(95%CI: 0.56 - 0.72) for the risk score prediction using only H&E WSIs and UNI as the
tile-level feature extractor. Combinations of H&E with one or more IHC modalities were
subsequently evaluated, with the highest performance observed in the model combining the
H&E and PR WSI data and the model combining all the stains, obtaining a C-index of 0.72
(95% CI: 0.65 - 0.79) and 0.72 (95% CI: 0.64 - 0.79) respectively.

Conclusion

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Multiple stain modalities are used in routine breast cancer pathology, but has not been
considered together for prognostic modelling. The results in this study suggests that models
combining morphological features extracted by histopathology foundation models across
multiple stain modalities can improve prognostic risk-stratification performance compared to
single-modality models.

Introduction

Breast cancer histopathology specimens are routinely assessed using several staining,
including general morphological features using the Hematoxylin and Eosin (H&E) stain, and
specific biomarkers using Immunohistochemical (IHC) staining. Histological grading is a
prognostic factor that is determined by assessing H&E slides, whereas assessment of
biomarkers such as Estrogen receptor (ER), Progesterone receptor (PR), Human epidermal
growth receptor-2 (HER2) and Ki-67 is performed using the respective IHC (ER, PR, HER2,
and Ki-67) stained slides in the routine diagnostic workflow [1-4].

In recent years, the digitisation of routine pathology has enabled the development of deep
learning-based models for high-resolution whole-slide images (WSIs). Various applications
include biomarker prediction, gene expression prediction, and treatment response prediction
among others that show the potential of such models to assist pathologists in diagnostics and
clinical decision-making [5—11]. There have been studies reporting histology-based prognosis
prediction from WSI that include patient risk-stratification, risk-of-recurrence prediction, and
treatment response prediction [10,12—14]. The prognostic risk score prediction task involves
the modelling of time-to-event from diagnosis to the observed outcome [15]. Recently,
multi-modal prediction models reported the combination of different modalities such as
histology, gene expression and clinical covariates [12,16—19]. They have shown to improve
the risk score prediction performance over a single data modality.

In routine diagnostics, H&E has been one of the standard and most widely used stains for
more than a century [20]. Given the high-resolution of histo-morphological information
present in H&E WSIs, most of the histology-based modelling of prognostic risk score
prediction included only H&E WSIs [14,21,22]. However, routine IHC stains also include
prognostic information that could be utilised for modelling the patient risk-stratification. The
IHC-based prognostic markers are assessed by the aggregated protein expression in IHC
WSIs and used as the binary status for clinical decision-making [23]. The local and spatial
presence of protein expression along with the information present in the counterstain in IHC,
when combined with local histo-morphological information from other stain modalities can
potentially incorporate more prognostic information that can further improve the prognosis
prediction in breast cancer patients. Previously, multi-stain modelling of WSIs has been
reported for colorectal cancer recurrence prediction models and shown to have improved the
prediction performance with respect to single-stain WSI modalities [24]. To the best of our
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knowledge, we have not observed any studies reporting the multi-stain risk score prediction
for breast cancer patients.

In this study, we aim to develop and validate the deep learning-based multi-stain modelling
for risk score prediction in breast cancer patients using H&E and routine IHC WSIs. We
include H&E WSIs with ER, PR, HER2 and Ki-67 WSIs for the joint model that has the
potential to combine the spatial histo-morphological information between different stains
which can further improve the prognostic performance in breast cancer patients.

Methods

Datasets

In this retrospective observational study, we used the S6S-BC-4 [25] cohort that includes
invasive breast cancer patients from the South General Hospital (Sodersjukhuset) in
Stockholm, Sweden, diagnosed between 2012-2018. One H&E and four IHC stained WSIs
from the same resected tumour block were used for each patient. The clinical variables for the
patients were derived from the National Breast Cancer Registry (NKBC) in Sweden. Patients
with missing clinical variables were excluded from the study. In total 945 patients were
included in the study (Figure 1a).

In this study, the 5-fold cross-validation was performed using patient-level (WSI-level)
stratified splits based on clinicopathological variables: Age, ER status, PR status, HER-2
status, Lymph node status and Tumour Size. The training set was further split into CV-train
and CV-tune sets for model optimisation.
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Figure 1: CONSORT diagram. a Inclusion and exclusion criterias for the S6S-BC4 cohort
used in the study. We included the Hematoxylin & Eosin (H&E) whole-slide images (WSIs)
from the patients with all four immunohistochemistry (IHC) WSIs from the same tumour
block. Further, we excluded patients with missing recurrence-free survival (RFS) outcomes. b
5-fold stratified cross-validation (cv) splits were used to optimise the risk score prediction
models.

WSI preprocessing

The detailed preprocessing steps for H&E WSIs are described in [10]. Firstly, it included the
tissue masking step to remove the background from the WSI. Then, we tiled the WSI into
tiles of size 1196x1196 pixels at 40x and downscale it by a factor of two to retrieve tiles of
size 598x598 pixels at 20x resolution (0.45 microns per pixel). Next, the tiles with the
variance of the Laplacian filter < 500 units were considered blurry and excluded from the
further analyses. Lastly, we applied the colour normalisation method as described by [26] but
with a slight variation to enable the WSI-level colour correction, as described in [10].

WSI registration

Then, we performed the registration of each IHC WSI modality with the corresponding H&E
WSI using the non-rigid registration method as described in [27]. After preprocessing the
H&E WSIs, we retrieved the coordinates of each H&E tile and transformed the centroid of
the H&E tiles with the registered IHC modality as the landmarks. Further, we retrieved the
centroid coordinates on the registered IHC WSI and extracted tiles of size 1196x1196 pixels
at 40x resolution (as shown in Figure 2a).

Modelling strategy

We extracted features from the tiles using two publicly available foundation models: UNI
[28] and CONCH [29] (Figure 2b). UNI is a foundation model trained using a self-supervised
learning method called DINOv2 [30] on 100k H&E WSIs across multiple tissue types [28].
We used the image encoder from CONCH, which is a vision-language foundation model
trained across 1.1 million pathology image-caption pairs [29]. UNI is based on a ViT-L
architecture that takes images of size 224x224 pixels and extracts feature vectors of
dimension 1024, whereas the image encoder in CONCH is based on a ViT-B architecture that
takes input images of size 448x448 pixels and extracts feature vectors of dimension 512. We
applied the RandomCrop transform from the torchvision package [31] to transform the tile
size to desired input sizes for UNI and CONCH models respectively.

After retrieving the frozen tile-level feature vectors for corresponding tiles from each stain
modality, we first concatenated the feature vectors (Figure 2b). Then, we optimise an
attention-based Multiple Instance Learning (ABMIL) model using the concatenated feature
vectors, inspired from the implementation of the model CLAM [32] without the
instance-level classifier. It aggregates the tile-level feature vectors to a slide-level feature
vector and then the network head includes the regression layer that takes slide-level features
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as input and outputs a continuous slide-level risk score for each patient. The ABMIL model
was optimised using the negative partial log-likelihood loss of the Cox Proportional Hazards
model (i.e. Cox loss) with Recurrence-Free Survival (RFS) as the survival endpoint [33]. The
RFS was defined as the recurrence (i.e. local or distant metastasis, detection of contralateral
tumours) or death as the event outcome. Patients were followed from the initial time of
diagnosis to the date of recurrence/death, emigration, or the last registration date, whichever
occurred first. We created WSI bags with tile-level feature vectors and created batches of 24
bags for each step per epoch. We used Adam [34] as the optimiser with a momentum of 0.9.
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Figure 2: Overview of the study design. a First, the non-rigid registration method was
applied to each THC WSI with the corresponding H&E WSI. Tile centroid coordinates were
transformed from the H&E WSI to the registered IHC. Then, using the corresponding tile
centroids, tiles of the same size as the H&E tiles from the IHC WSI (598 x 598 pixels at 20x
magnification) were created. b Next, feature vectors from each tile using the foundation
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models i.e. UNI and CONCH were extracted. Further, we concatenated the feature vectors
from corresponding tiles from each stain modality and then optimised the tile-to-slide
aggregation model (ABMIL) with concatenated features with Cox loss to provide the
patient-level risk score.

Statistical analyses

We retrieved the patient-level risk score for each CV test set from the optimised ABMIL
models. Then, we aggregated the risk scores from all the CV test sets for the evaluation of
predictive performance using the concordance index (C-index) as the performance metric.

Results

Firstly, we evaluated the 5-fold CV risk-stratification performance with each individual stain
modality (Figure 3a). We observed the C-index for risk score prediction using only the H&E
WSI to be 0.65 (95%CI: 0.54 - 0.74) and 0.64 (95%CI: 0.56 - 0.72) with UNI and CONCH
as the feature extractor, respectively. The C-index for risk score prediction with only PR
WSIs was observed to be relatively higher than the prediction using other individual IHC
stains (C-index: 0.62 (95% CI: 0.57 - 0.74)) using UNI as the feature extractor. We observed
the point estimates for C-index to be higher for three out of five individual stain modalities
using UNI in comparison to CONCH.

Next, we used UNI as the tile-level feature extractor for all stain modalities. Then, we
concatenated the frozen tile-level features from each stain modality to optimise the ABMIL
model for risk score prediction using 5-fold CV. Initially, we observed the risk score
prediction performance by concatenation of tile-level feature vectors from each stain
modality to H&E, and then concatenation of tile-level features from all five stain modalities
(Figure 3b). We observed a similar C-index between the concatenation of H&E with PR
tile-level feature vectors (H&E + PR) and H&E with all the IHC tile-level feature vectors (C:
0.72).
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Figure 3: Risk score prediction performance with individual and multi-stain whole-slide
image modelling approaches. a Concordance-index (C-index) for the risk score prediction
using individual stain WSIs. For each stain modality, we used UNI and CONCH as tile-level
feature extractors and optimised a ABMIL model for risk score prediction and reported the
aggregated 5-fold cross-validation C-index. The error bar shows the lower and upper limits of
the bootstrapped 95% confidence interval. b Risk score prediction using concatenated
features from multiple stain WSIs. The frozen UNI tile-level feature vectors from the H&E
stain were concatenated with tiles from each THC stain modality. The last bar includes the
concatenation of tile-level feature vectors from all five stain modalities.

Then, we compared prognostic risk score prediction performance using a model that only
included clinical variables (Age, Tumour Size, Lymph Node status and histological grade).
The patients with missing clinical covariates were excluded from the model (N=803). We
observed a C-index of 0.67 (95% CI: 0.58 - 0.76) based on the Cox Proportional Hazard (PH)
model fitted with clinical variables only using 5-fold CV (Figure 4). The multi-modal models
were re-optimsed on the cohort subset (N=803) to enable direct comparison with clinical only
model. Finally, we evaluated a model where we concatenated the clinical variables to the
slide-level feature vectors from H&E + PR and All stains model, while optimising the
ABMIL model. We observed marginal improvement in the risk score prediction performance
by adding clinical variables to the H&E + PR model (C-index: 0.72 (95% CI: 0.63 - 0.79)),
however did not observe improvement in All stains model 0.70 (95%CI: 0.60 - 0.78) (Figure
4).
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Figure 4: Risk score prediction performance using clinical variables and concatenation of
clinical variables with slide-level features from two multi-modal models (H&E + PR and All
stains). All the models were optimised on the cohort subset (N=803), where the patients with
missing clinical variables were excluded. In the clinical-only model, cox proportional hazard
(PH) model was fitted on the well-established clinical variables (Age, Lymph node status,
Tumour size, Histological grade) using 5-fold cross-validation (cv). The multi-modal models
were re-optimised using 5-fold cv on the cohort subset for the direct comparison with the
clinical-only model.

Lastly, we explored the assignment of tile-level attention weights from the ABMIL model to
evaluate the extent to which the attention was placed on the same spatial regions of the tissue
across the different modalities. We included individual stains (H&E-only and PR-only) and
the concatenation of stains (H&E + PR) models for the analyses. Initially, wwe observed the
pairwise Pearson correlation of the attention weights from tiles for each WSI in the three
models (Figure 5a). The median slide-level correlation between attention weights for the
H&E-only and PR-only models, and for the PR-only and H&E + PR models, were found to
be close to zero. We observed a higher median correlation between attention weights for each
WSI in the H&E-only and H&E + PR models (r = 0.32). Further, we observed the pairwise
intersection of regions in high-attention tiles by considering the top 10%, 20% and 30% of
the attention weights. Similarly, we observed a higher median intersection percentage
between H&E-only and H&E+PR model in the top 10%, 20% and 30% of the attention
weights (Figure 5b,c,d).
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Figure 5: Evaluating the similarities in the assignment of attention weights to spatial regions
across different prognostic models. Distribution analyses of tile-level attention weights for
each whole-slide image (WSI) in three different models (H&E-only, PR-only and H&E+PR)
was performed. a Distribution of pairwise Pearson correlation coefficient between tile-level
attention weights for each WSI. b,¢,d Distribution of intersection of percentages between top
10%, 20%, 30% tile-level attention weights for each WSI respectively.

Discussion

In this study, we developed deep learning-based multi-stain model to predict prognostic risk
score for breast cancer patients. We used the routine IHC WSIs, 1.e. ER, PR, HER2 and
Ki-67, along with H&E WSIs for the joint modelling for risk score prediction. H&E and THC
WSIs were obtained from the same tumour block. Further, we performed WSI registration
between H&E and each IHC WSI to include more local combinations of histo-morphological
information between different modalities.

We observed better risk score prediction performance using H&E-only compared to other
individual stain modalities with both UNI and CONCH (C-index: 0.65 (95%CI: 0.57 - 0.74)
and C-index: 0.64 (95%CI: 0.56 - 0.72)). Since H&E stained tissue is expected to capture a
broader set of morphological information, compared to IHC, these results are not surprising.
However, UNI had been pre-trained using only H&E WSIs, therefore extracting prognostic
features from the THC WSIs was not optimal but it still showed similar prognostic
performance to CONCH that had been pre-trained using differently stained pathology images.
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The addition of different stain modalities further improved the risk score prediction
performance. The combination of H&E and PR WSIs provided similar prognostic
performance (c-index: 0.72 (95% CI: 0.67 - 0.80)) in comparison to the combination of all
stain modalities (c-index: 0.72 (95% CI: 0.66 - 0.81)) (Figure 3b).

Further, addition of the clinical variables to the slide-level features in the multi-modal models
improved the predictive performance for the H&E + PR model but not for the All stain model
(Figure 4). However, we observed better performance with multi-modal models when
compared to the clinical-only model. It shows the combination of multi-stain modelling with
known clinical variables can potentially improve the risk-stratification performance. The
improvement by the addition of clinical variables in the H&E+PR model is quite apparent but
the improvement was not observed in the all stain model when compared to the all stain
model without the clinical variables. However, around 15% of the patients were excluded due
to missingness in clinical variables which further decreased the statistical power with respect
to survival outcome in this study.

Lastly, we explored the attention weights from the ABMIL model for individual and two
stain models (H&E+PR). The spatial morphological features from the H&E WSI seem to
contribute higher than the PR WSI, given the higher median correlation between the tile-level
attention weights from the H&E-only and H&E+PR models in comparison to the PR-only
and H&E+PR models (Figure 5a). It is further confirmed by observing similar patterns for the
intersection percentages in the top 10, 20 and 30% percentage of the attention weights
(Figure 5b,c,d). High-attention spatial regions from the H&E-only and PR-only models seem
to be very different with median correlation close to zero, suggesting potentially independent
prognostic information in these modalities with respect to the spatial localisation indicated by
the attention weights. This further motivates exploration of more spatial interaction models
between different stain modalities to improve prognosis prediction in future.

Previously, Song et al. [19] reported the 5-fold cv risk score prediction performance against
the state of the art methods in multiple cancer types on the TCGA cohort. They used
disease-specific survival as the survival endpoint to optimise the models. Focusing on breast
cancer risk score prediction performance in TCGA-BRCA, the point estimates for
H&E-based prognostic performance were observed to be similar (C-index: 0.67 and 0.65 for
our model). When observing the multimodal prognostic performance estimates, we observed
that the multi-stain modelling-based estimates were observed to be similar to the reported
multimodal prototyping method (C-index: 0.75 and 0.72 for our model). However, both
studies need external validation and given the differences in the cohorts and survival
endpoints, a direct comparison is hard to establish.

The patient risk score prediction using routinely-stained WSI provides an advantage over
existing molecular profiling-based methods by reducing the lead-times, cost and tissue
damage among other factors [35]. However, one of the key limitations of this study is the
absence of external validation sets to test the reproducibility and reliability of the models.
The study also faces power issues with the number of events in the cohort leading to large
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spread in uncertainty estimates. Another limitation of this study is the relatively low median
follow-up time (6.25 years) which increases the number of censored events in the cohort.

The future work includes the validation of models in larger independent external validation
sets with longer follow-up time to establish the robustness and reliability of the multi-stain
models that are established in this study. Further, we would like to explore more MIL-based
methods that include interaction of feature vectors from different stain modalities. Some
ideas like the Kronecker product of feature vectors other than the concatenation of feature
vectors especially for two stain models can be utilised. Other MIL-based methods like
TransMIL [36] involve more interaction between feature vectors than the ABMIL and can
potentially capture more local and spatial interaction between morphological features from
different stain modalities. Further,

To conclude, this study demonstrated that the addition of routinely assessed IHC WSIs to the
standard H&E WSIs improved the risk-stratification performance in breast cancer patients.
The local and spatial combination of histo-morphological features from H&E and IHC stains
derived using publicly available foundation models like UNI and CONCH further improves
the prognosis prediction in breast cancer patients especially over single-stain models. The
multi-stain model shows promise to improve the prognosis prediction and can potentially
further improve the risk-stratification of breast cancer patients.
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