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• Integration of infection and wastewater models to simulate disease spread.

• Identification of factors affecting wastewater measurements.

• Illustration of ability of wastewater-based surveillance to predict outbreaks before case

reporting.

• Demonstration of unreliability of flow rate normalization in case of rainwater infiltra-

tion.

• Optimization of wastewater-based surveillance for improved public health monitoring.
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Abstract

The COVID-19 pandemic has emphasized the critical need for accurate disease modeling to

inform public health interventions. Traditional reliance on confirmed infection data is often

hindered by reporting delays and under-reporting, while widespread antigen and antibody

testing can be costly and impractical. Wastewater-based surveillance offers a promising

alternative by detecting viral concentrations from fecal shedding, potentially providing a more

accurate estimate of true infection prevalence. However, challenges remain in optimizing

sampling protocols, locations, and normalization strategies, particularly in accounting for

environmental factors like precipitation.

We present an integrative model that simulates the spread of serious infectious diseases

by linking detailed infection dynamics with wastewater processes through viral shedding

curves. Through comprehensive simulations, we examine how virus characteristics, precip-

itation events, measurement protocols, and normalization strategies affect the relationship

between infection dynamics and wastewater measurements. Our findings reveal a complex

relationship between disease prevalence and corresponding wastewater concentrations, with
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key variability sources including upstream sampling locations, continuous rainfall, and rapid

viral decay. Notably, we find that flow rate normalization can be unreliable when rainwater

infiltrates sewer systems. Despite these challenges, our study demonstrates that wastewater-

based surveillance data can serve as a leading indicator of disease prevalence, predicting

outbreak peaks before they occur. The proposed integrative model can thus be used to

optimize wastewater-based surveillance, enhancing its utility for public health monitoring.

Keywords: infectious diseases, wastewater, agent-based model, hydrodynamic model, sewer

network, shedding model

1. Introduction1

The COVID-19 pandemic has highlighted the need for effective real-time monitoring and pre-2

diction of infectious disease dynamics to support timely and informed intervention policies.3

In this context, various studies have been conducted to assess vaccine distribution strate-4

gies [6, 12] or the effectiveness of non-pharmaceutical interventions like telework suggestions,5

prohibition of private gatherings of certain sizes, or partial lock-downs [39, 7, 27, 19].6

The spread of infectious diseases is nowadays modeled using a broad range of approaches,7

including statistical and machine learning models [39, 27, 33], compartmental and meta-8

population models [10, 6, 45], and agent-based models [7, 29, 22, 15], or even hybrid ap-9

proaches [18, 4]. Among these approaches, agent-based models (ABMs) allow for the most10

detailed description of disease dynamics. ABMs simulate the spread of infectious diseases11

on an individual level, thereby facilitating the incorporation of comprehensive information12

about localization, interaction, and behavior. The models are intrinsically stochastic and13

based on discrete- or continuous-time Markov processes. While ABMs are the state-of-the-14

art in infectious disease modeling, their advancement remains an active field of research. A15

key challenge is the choice of model parameters.16

The predictive power of models for the spread of infectious diseases depends on the available17

data and the ability to incorporate them into models. The number of confirmed infections18

is the most common data source. However, confirmed infections are affected by reporting19

delays [26] and subject to under-reporting [28], limiting the reliability of the resulting mod-20

els [35]. While single antigen and antibody tests can be cheap, the use of these tests to21

study large, representative population cohorts is resource intensive. Furthermore, even the22

cohort might be subject to sampling bias [30, 17]. Wastewater-based surveillance presents23

a promising solution to these issues by capturing viral concentrations from all infected in-24

dividuals within a catchment area, including those who are asymptomatic or undetected25

by traditional testing methods. Via detection of viral RNA in sewage, outbreaks can be26

identified before clinical cases are reported. This capability was demonstrated during the27

COVID-19 pandemic, when several national wastewater-based surveillance programs were28
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established, e.g. the AMELAG project in Germany [37]. Wastewater-based surveillance is29

applicable to various diseases detectable in sewage, including poliovirus, hepatitis, norovirus,30

and influenza [23], but also to monitoring antimicrobial resistance [9]. Yet, infectious dis-31

ease monitoring based on wastewater-based surveillance data still presents several significant32

challenges: The choice of the sampling location can yield different viral concentrations due33

to the interplay of population density and sewer infrastructure. The impact of viral degrada-34

tion and variations in flow-time on measurements is not well understood. The environmental35

conditions, e.g. rain fall, can impact measurement and the effectiveness of established nor-36

malization strategies, such as flow-based adjustments, remains unclear. Despite these chal-37

lenges, integrating wastewater data with traditional infectious disease models holds promise38

for improving prediction accuracy and has been attempted in several studies [8, 32].39

The challenges of wastewater-based surveillance data can in principle be addressed using40

comprehensive computational models which provide in-depth descriptions of the spread of41

infectious diseases as well as wastewater dynamics. Yet, to the best of our knowledge, most42

published studies use relatively simple approaches. For example, Wu et al. [43] calculated a43

rough estimate of SARS-CoV-2 prevalence upstream of a wastewater treatment facility using44

the normalized viral load measured in twelve wastewater samples and assumptions about45

the sewer system flow volume, stool sizes, and average viral concentration in stool among46

infected persons. The authors concluded that prevalence in their population of interest was47

much higher than the confirmed case count, even under conservative assumptions, but noted48

that their estimate was subject to considerable uncertainty, as they did not account for the49

timeline of viral shedding or the loss of viral copies along sewer lines, among other fac-50

tors. Hart and Halden [14] used a simplified hydrodynamic model of a city sewer network51

to estimate SARS-CoV-2 detectability in wastewater under different temperature-driven de-52

cay scenarios. This study highlighted the importance of appropriately accounting for viral53

decay when analyzing wastewater data, but the authors assumed exclusively dry weather54

conditions and their consideration of the relationship between SARS-CoV-2 prevalence and55

viral load entering the sewer system was limited; accounting for variations in viral shedding56

across individuals and over time was out of the study’s scope. Peccia et al. [34] compared57

wastewater-based surveillance data to positive COVID-19 tests and hospital admissions using58

a basic distributed lag time series model and found that the former led the latter data by59

several days. This approach highlighted the potential of wastewater data to provide early60

warnings of outbreaks, but relied on the assumption that the observed wastewater measure-61

ments were unbiased. Finally, Nourbakhsh et al. [32] coupled an SEIR-type compartment62

model of SARS-CoV-2 transmission with a simple advection-dispersion-decay model of virus63

concentration dynamics in a sewer system to estimate cumulative incidence in several cities64

based on empirical wastewater measurements and reported case data. However, because of a65

limited sewer system model and the use of ordinary differential equations, the model was not66

well adapted for scenarios such as small communities or low-prevalence settings. To the best67
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of our knowledge, no existing study on wastewater-based infectious disease monitoring uses68

advance methods from the well-established field of sewage network modeling [38]. This is69

problematic as wastewater dynamics in sewage networks are highly complex and require ad-70

vanced modeling tools for the prediction of pollutant load [2]. Accordingly, advances beyond71

these existing methodological frameworks could significantly enhance our understanding of72

disease spread and lead to more effective public health interventions.73

Our work contributes to the field by integrating an agent-based model (ABM) for infection74

dynamics, a viral shedding model, and a detailed hydrodynamic model of sewage flow and75

viral load. We provide the mathematical details and a numerical implementation. Through76

simulation studies for a respiratory virus (Section 3.1), we investigate the effects of mea-77

surement protocols (Section 3.3 and Section 3.4), precipitation events (Section 3.5), viral78

decay (Section 3.6), and normalization strategies (Section 3.7) on the relationship between79

infection dynamics and wastewater measurements. This controlled setting enables an in-80

depth model-based analysis and practical recommendations for real-world wastewater-based81

surveillance. Our findings advance the development of detailed integrative models informed82

by data, enhancing the accuracy and reliability of infectious disease monitoring and predic-83

tion. Furthermore, the integrated model provides a basis for coherent data integration.84

2. Mathematical Model85

To study wastewater-based surveillance data, we combine state-of-the-art models for the86

spread of infectious diseases and wastewater dynamics (Fig. 1). The link is established using87

a viral shedding model. In this section, we outline the mathematical formulations of the88

individual models’ components and their simulation algorithms as well as their integration.89

All models are dynamic and are executed on the same time axis such that a coupling with90

comparisons of outputs is possible.91

2.1. Overview92

The proposed model consists of three modules:93

The infection dynamics model describes the time-dependent location and infection state94

of individual persons, in the following also denoted as agents. The infection state of agents95

can change due to events such as virus transmission, worsening of symptoms, or recovery. The96

likelihood of an agent infecting others is determined by its viral load, which varies throughout97

its infection course, and the length of contact.98

The shedding model describes the release of virus and viral fragments from infected in-99

dividuals into their surroundings. It is used in the infection dynamics model to determine100

the transmission probability as well as to describe the release through urine and stool. The101
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Figure 1: Model Visualization. Based on infection dynamics and the movement of agents, RNA is shed

at specific locations and time points into the sewer system. This information is propagated over time to

simulate the concentration measurements in wastewater. Among other elements, the model can account for

precipitation events, sampling protocols, viral load dynamics, and RNA degradation. The figure only depicts

a simplified neighborhood with locations of type home or hospital, while the model used for this study allows

for various types of agent movements (Section 2.2.1).

shedding curve is assumed to be dependent on the individual’s viral load, which is time-102

dependent and initially increases before declining as the host’s immune response takes effect.103

The shedding model uses the infection state of agents and their time since transmission,104

which are provided by the infection dynamics model, to determine the viral RNA entering105

the wastewater system.106

The wastewater dynamics model simulates the transport and degradation of viral RNA107

within the sewage network. Using the viral shedding input from the shedding model as well108

as the agents’ locations from the infection dynamics model, this module calculates the RNA109

concentrations at various points in the network, accounting for factors such as viral decay,110

flow rates, and the architecture of the sewer system. The output of this model is the RNA111

concentration at different sampling points, which provides a comprehensive picture of the112

data to be expected from wastewater-based surveillance.113

In the current model, the wastewater does not influence the infection dynamics; accordingly,114

the integrated model possesses a hierarchical structure. In the following, we discuss the115

individual modules in more detail.116

5



2.2. Modeling Infection Dynamics117

In this study, we use an agent-based model (ABM) implemented in the software framework118

MEmilio [24] to simulate disease states and mobility patterns at the agent level, providing a119

fine-grained view of disease dynamics. It comprises agents with different attributes.120

The properties of an agent α are defined via an m-tuple (a1, ..., am) ∈ Ω with m different121

attributes ai, i = 1, ...,m. The attributes can be static – meaning that they do not change122

over the course of the simulation – or dynamic. The static attributes are:123

• An agent’s age group A(α) ∈ {1, ..., nA}, with nA denoting the total number of age124

groups.125

• An agent’s set of locations L(α) = {lj}j∈K(α) with K(α) ⊂ {1, ..., nL} denoting the subset126

of all locations it can theoretically move to during a simulation.127

The dynamic attributes are:128

• An agent’s current location l(α) ∈ L(α).129

• An agent’s current infection state s(α) ∈ S, with S denoting a set of infection states.130

• An agent’s time since virus exposure τ (α) in hours, which is set to NaN if the agent has131

not been infected.132

The simulation of the ABM provides information about the agent’s trajectory in space and in-133

fection state. In the following, we provide additional details on the ABM, providing the basis134

for the simulation of mobility (Algorithm 1) and the full population dynamics (Algorithm 2).135

2.2.1. Mobility Model136

The ABM uses a location graph with nL locations, l1, ..., lnL
, to model mobility. Every137

location has a location type T ∈ T with T being a set of location types such as Home,138

School, Work, Recreation, Shop, Hospital, and Intensive Care Unit (ICU). There can be139

multiple locations of the same type. In addition to the type, a location also has a capacity140

specifying the maximum number of agents that can enter the location and a maximum141

number of contacts an agent can have at the location. Every agent α has a set of nα many142

locations L(α) = {lj}j∈K(α) , with K(α) ⊂ {1, ..., nL} being an index set, that are assigned to143

it. These assigned locations are the ones the agent can move between, meaning that it is144

restricted to a subgraph of the global location graph (see Supplementary Fig. B.1(b)). We145

denote the current location of an agent α at a given time point t̃, with t̃ given in hours, as146

l(α)(t̃) ∈ L(α). Movements, i.e. location transitions, are modeled by an ordered set of mobility147
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Algorithm 1: ABM Mobility.

1 Input: Agent α, time point t̃k, agent’s location l(α)(t̃k)

2 Output: Agent’s location l(α)(t̃k+1)

3 Set lnew = l(α)(t̃k)

4 Forall mobility rules mi ∈ M
5 If mi(α, t̃k) ̸= T (lnew)

6 Get location l ∈ L(α) such that T (l) = T
(i)
to

7 If capacity(l) not reached

8 lnew = l

9 return lnew

rules M = {m1, ...,mnM
} that have probabilistic components, which cause stochasticity148

between simulations. These mobility rules include daily regular behavior like going to work149

or school on weekdays, irregular behavior like occasionally attending a social event, and150

behavior related to the infection state of an agent, e.g. going to hospital when having severe151

symptoms. For Ω containing all potential states of any agent and [t̃0, t̃max] denoting the152

simulation period, a mobility rule mi : Ω× [t̃0, t̃max] → T is given by153

mi(α, t̃) =

T
(i)
to , if δ(i)(t̃, α) δ

T
(i)
from

[
T (l(α)(t̃))

]
Xi = 1

T (l(α)(t̃)), else
(1)

with T (l) ∈ T denoting the type of location l, Xi ∈ {0, 1} denoting a Bernoulli distributed154

random variable with probability pi, which has a different value for every mobility rule, and155

δ∗[·] denoting binary-valued functions defined as156

δ
T

(i)
from

[
T (l(α))

]
=

1, if T (l(α)) = T
(i)
from,

0, else.
(2)

Furthermore, T
(i)
from, T

(i)
to ∈ T are location types and δ(i)(t̃, α) are binary-valued functions157

provided in Appendix A together with pi for each mobility rule. The location l(α) of agent158

α at time point t̃, with t̃ in hours, is given by l(α)(t̃) = f(α, t̃) (see Algorithm 1), which is159

evaluated at discrete time points t̃0, ..., t̃max given a time step ∆t̃ and t̃k+1 = tk +∆t̃.160

2.2.2. Disease Progression161

An agent α has a time-dependent infection state s(α)(t) from a set of infection states S. The162

infection states used for this study are Susceptible (S), Exposed (E), Non-symptomatically163
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Infected (Ins), Symptomatically Infected (Isy), Severely Infected (Isev), Critically Infected164

(Icri), Recovered (R), and Dead (D). Infection state Ins includes infectious pre- and asymp-165

tomatic agents and infection state Isev includes agents requiring hospital treatment while166

Icri includes agents requiring ICU treatment. We call an agent infected if it has infec-167

tion state s(α)(t) ∈ {E, Ins, Isy, Isev, Icri} and formerly infected if s(α)(t) ∈ {R,D}. Tran-168

sitions between infection states are stochastic and possible either through virus transmis-169

sion (S → E) (see Section 2.2.3) or disease progression (E → I∗, I∗ → I∗∗, I∗∗ → {R,D})170

(see Supplementary Fig. B.1(a)). For a (formerly) infected agent α, the course of infection171

is defined as I(α) = {(t(α)1 , s
(α)
1 ), . . . , (t

(α)
hα

, s
(α)
hα

)} containing the time points t
(α)
1 , . . . , t

(α)
hα

at172

which the agent changes or changed its infection state and the corresponding infection states173

s
(α)
1 , ..., s

(α)
hα

. Hence, t
(α)
1 is the time point at which the agent is exposed and t

(α)
hα

the time174

point at which the agent recovers or dies, i.e. shα ∈ {R,D}. The intermediate time values175

t
(α)
2 , ..., t

(α)
hα−1 are the time points at which an agent changes to one of the infectious states of176

the agent’s individual course. The length hα of the course of infection differs between non-177

symptomatic and (severe or critical) symptomatic courses and is therefore agent-dependent.178

The stay times in infection states E, . . . , Icri are log-normally distributed and the transitions179

E → I∗, I∗ → I∗∗, I∗∗ → {R,D} between all infection states, apart from virus transmission180

(S → E), are Bernoulli distributed; see Supplementary Table C.1 for the values of all disease181

progression-related parameters used in the results section.182

2.2.3. Disease Transmission183

Infected agents can transmit the virus to susceptible agents if they are at the same location.184

For a susceptible agent in location l, the waiting time until transmission is exponentially185

distributed with rate Λl(t). Assuming that agents change their locations only at discrete186

time points, t0, ..., tmax, the number of agents at a location is constant in [tk; tk+1) and Λl(t)187

is given by188

Λl(t) =
∑
α∈l

λα(t). (3)

for t ∈ [tk; tk+1) given in days. We use the casual notation α ∈ l to iterate over the infected189

agents at location l in the interval [tk; tk+1). The agent-dependent rate λα(t) is given by the190

infectiousness curve described in Section 2.3, Eq. (8). The location-specific infection rate (3)191

builds on the assumption of homogeneous mixing within the location. If the waiting time192

until transmission is longer than the time until the susceptible agent leaves location l, no193

transmission occurs. Hence, for a fixed time step ∆t = tk+1−tk given in days, the probability194

that a susceptible agent at location l gets exposed is195
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Algorithm 2: ABM Simulation.

1 Input: Start time t0, end time tmax, time step ∆t in days, parameters as described

above

2 Initialize locations

3 Create desired number of locations for every type

4 Set capacity and maximum number of contacts

5 Initialize agents

6 Set age group

7 Assign locations and set initial location

8 Set initial infection state and sample course of infection for initially infected

9 Set t = t0
10 While t < tmax

11 Forall agents α

12 If s(α) = S

13 Calculate Λl(α)(t)

14 Draw waiting time v ∼ Exp(Λl(α)(t+ ∆t
2
))

15 If v ≤ ∆t

16 Sample course of infection I(α)

17 Else

18 continue

19 Forall mobility rules mi

20 If T (l(α)) ̸= mi(α, 24 · t) and capacity(f(α, 24 · t)) not reached
21 l(α) = f(α, 24 · t)
22 break

23 t = t+∆t

1− e−∆t
∫ tk+1
tk

Λl(t)dt. (4)

2.3. Modeling Viral Load, Infectiousness and Shedding196

The viral load of individual patients determines their infectiousness and shedding. Here, we197

model viral shedding using established models [20, 21]. The viral load for an agent α in RNA198

copies per swab on the log10 scale at a given time t in days (see Supplementary Fig. B.2, left)199

is defined as200

9



vα(t) =


vsymax

τE + τIns

· (t− tE), if t ∈ [tE, tvmax ]

vmax +−
vmax

tR/D − tvmax

· (t− tvmax), if t ∈ (tvmax , tR/D]

0, otherwise

(5)

with tE, tvmax , and tR/D denoting the times in days of virus exposure, maximal viral load, and201

recovery/death, respectively. The time points are agent specific, with tE = t
(α)
1 ≤ tvmax ≤202

tR/D = t
(α)
hα

. As the infection state trajectories are sampled at the time point of exposure,203

tR/D is readily available.204

We assume that symptomatically infected agents reach the peak viral load the moment they205

show symptoms, while agents not showing symptoms reach the peak in the middle of their206

infection period. Furthermore, we assume agents that share the same duration τE + τIns also207

share the same linear increase until tvmax . This yields for the variables tvmax and vmax:208

tvmax =

tE + τE + τIns , if Isy ∈ {s(α)1 , ..., s
(α)
hα

}
tE + 0.5 · (tR/D − tE), else

vmax =


vsymax, if Isy ∈ {s(α)1 , ..., s

(α)
hα

}
vsymax

τE + τIns

· (tvmax − tE), else

where vsymax is the peak viral load given in log10 RNA copies per swab for symptomatic209

infections (see Supplementary Table C.2 for the value of this and all other parameters relevant210

to viral shedding).211

Following the observation of Jones et al. [20], we model the shape of an agent α’s shedding212

by a sigmoid function of their viral load, i.e.,213

ζα(t) =
1

1 + exp (−(a+ b · vα(t)))
(6)

with shape parameters a, b > 0. As in [20], since there is no information about when shedding214

starts after exposure, we make the assumption that shedding is zero or close to it as long as215

the agent is still in the Exposed state. Therefore we introduce a time shift of τshift = 0.6 · τE.216

Thus, the scaled and shifted shedding curve for an agent α is given by:217

γα(t) =

κγ · ζα(t− τshift), if t ∈ [tE + τshift, tR/D]

0, otherwise
(7)
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where κγ is a scaling factor that translates ζα(t − τshift) into an RNA shedding rate. The218

RNA shedding into the sewage network is the number of RNA copies shed in total per day219

and has to be normalized by the water flushed into the wastewater system to receive a unit220

of copies per liter.221

Similarly, the corresponding unitless infectiousness curve for agent α at time point t (given222

in days) (see Supplementary Fig. B.2, right) is given by223

λα(t) =

κλ · ζα(t− τshift), if t ∈ [tE + τshift, tR/D]

0, otherwise
(8)

with κλ translating ζα(t− τshift) into a transmission rate (see Section 2.2.3).224

2.4. Modeling the Sewage System and its Hydrodynamics225

We use a comprehensive model of a wastewater network to simulate the sewage flow and226

reactive transport of dissolved chemical substances in wastewater while avoiding simplifica-227

tions and incorrect interpretations. In this model, a sewer system is represented as a directed228

acyclic graph defined by n edges E = {e1, ..., en} and m nodes N = {n1, ..., nm}. The edges229

represent sewage pipes and the nodes represent junctions as well as entry and exit points.230

Edges and nodes are characterized by several parameters, including total volume and height.231

The state of the system is the amount of water contained in the edges and nodes, its flow232

rate, and the concentrations of the relevant substances. The simulation of water inflow to233

the system is based on two phenomena: hydraulic surface runoff during precipitation events234

and water usage of industry and citizens.235

At their core, the hydrodynamic calculations are based on the Saint-Venant Equation [16].236

The equation assumes one-dimensional flows in open channels and mass and momentum237

conservation, which yields238

1

g

∂v

∂t
+

v

g

∂v

∂x
+

v

g · A
q +

∂h

∂x
+

λ

4 ·R
v|v|
2g

= 0, (9)

with flow velocity v in m
s
, time t in s, gravitational acceleration g in m

s2
, vertical position239

along the pipe x in m, cross-sectional flow area A in m2, lateral inflow corresponding to the240

precipitation of a specified time interval q in m2

s
, water levels h in m, pipe friction coefficient241

λ (unitless) and hydraulic radius R in m (i.e. A
Circumference

).242

Replacing the differential operators with differential quotients for specified time points t1 < t2
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and locations x1 < x2 yields

∂v

∂t
→ v(t2, x)− v(t1, x)

t2 − t1
, (10)

∂v

∂x
→ v(t, x2)− v(t, x1)

x2 − x1

, (11)

∂h

∂x
→ h(t, x2)− h(t, x1)

x2 − x1

, (12)

for t ∈ [t1, t2] and x ∈ [x1, x2]. By interpreting ∆x = x2 − x1 as the length of an edge of the

wastewater network, Eq. (9) after rearrangement becomes a quadratic equation of the form

av(t, x)2 + bv(t, x) + c = 0, (13)

where

a = sign(v(t1, x)) ·
λ

8R
,

b =
1

t2 − t1
+

v(t, x2)− v(t, x1)

∆x
+

q

A
and

c = −v(t1, x)

t2 − t1
+

h(t, x2)− h(t, x1)

∆x
g .

The quadratic equation has two complex solutions, where the flow velocity v is equal to the243

real part of those solutions:244

v(t, x) = RE

(
−b+

√
b2 − 4ac

2a

)
. (14)

Using this solution and the boundary conditions v(t, x1), v(t, x2), h(t, x1), and h(t, x2), as well245

as the initial condition v(t1, x), a solution of the flow velocity can be calculated for arbitrary246

time points and edges of the network system. The state of the nodes of the system define the247

boundary and initial conditions. Based on the solutions from Eq. (9) for edges connected to248

a node, the in- and outflow to the node is given for each edge. At the center of the node, the249

sum of in- and outflow equals zero (mass conservation). Based on this assumption, the flow250

rates and heights at the edge borders can be calculated.251

While ∆x can be defined based on the length of an edge, ∆t = t2−t1 has to be chosen carefully.252

A too large value of ∆t will yield inaccurate numerical solutions, while a too small value will253

yield unnecessarily high computation times. A complex solution of Eq. (13) with an imaginary254

component larger than zero indicates the transition to an oscillatory state. To ensure a255

meaningful numerical solution, ∆t is chosen to be smaller than the corresponding oscillation256

period. Further considerations like the maximum total change of volume provide an equation257

to set ∆t for each iteration of the numerical solution scheme, such that stable solutions of258
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v are ensured even for extreme hydraulic scenarios (see [41]). By combining Eq. (13) with259

other known physical principles, e.g. energy loss along a pipe (using the Prandtl-Colebrook260

equation) and energy loss due to inelastic collisions in manhole structures (according to the261

Borda-Carnot equation), the simulation precision is further refined.262

Based on the calculated flow velocities and other time-varying edge state variables, the sub-263

stance concentration per location and time point can be calculated. Viral loads generated264

by agents of the ABM enter the sewer system as concentrations in the respective amount of265

domestic wastewater generated for every time step of the model simulation, at the location266

the agent currently occupies. Viral fragments are then transported through the system ac-267

cording to the pre-calculated flow rates, potentially taking chemical reactions in the form of268

viral decay into account. The outputs of the hydraulic simulation are time- and location-269

dependent concentration curves. The time step for the viral load calculation is chosen prior270

to the calculations and a suitable value depends on the specifics of the viral decay dynamics,271

where faster changing dynamics suggest choosing a smaller time step.272

After defining the wastewater network, its connected surfaces and corresponding runoffs,273

as well as substance characteristics, the simulation proceeds in two steps (see Supplemen-274

tary Fig. B.3). First, the flow velocities and volumes are calculated with a numerical solver.275

Secondly, the viral load over time is simulated.276

For the numerical simulation, we use the urban water management modeling and simulation277

environment ++SYSTEMS, developed by the company tandler.com GmbH. Utilizing the278

mathematical principles described above, ++SYSTEMS with its backend and calculation279

kernel DYNA forms a fully dynamic, geospatial modeling and management software for waste-280

and rainwater (individually or combined) sewer systems. Details on the implementation are281

available in [41].282

3. Results283

3.1. Demonstrator Setup284

To address open questions and challenges related to the interpretation of wastewater-baser285

surveillance data, we performed a simulation study, which allows us to evaluate counterfac-286

tual scenarios without missing data or data uncertainty. To this end, we developed a syn-287

thetic, yet realistic model of a city neighborhood and corresponding sewer system (Fig. 2);288

we then traced infectious disease outbreaks in this controlled setting using our sequence of289

three modules, from the MEmilio-based infection dynamics model to the shedding model to290

the ++SYSTEMS-based wastewater dynamics model. The synthetic neighborhood used in291

our study contains residential, recreational, university, mixed shopping and business, and292

mixed residential and industry surface areas. It is populated by at least 838 agents, whose293
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Figure 2: Demonstrator Neighborhood. The synthetic neighborhood on which we base our simulation

study constitutes areas of different types. Flow rates and substance concentrations are simulated for 16

different measurement stations.

simulated movements, both on weekdays and weekends, remain completely inside the model.294

The model’s synthetic sewer system was designed such that realistic sewer conditions are295

maintained during all simulation scenarios: No sanitary sewer overflow occurs, all pipes are296

at a maximum of 90% of their hydraulic capacity, and gravity flow is realized throughout the297

whole system.298

Following the official reporting standards for COVID-19 cases in Germany, we considered299

nA = 6 age groups ranging from small children to seniors. Households – i.e. groups of agents300

that share their assigned Home location – were created for each residential area based on its301

total number of agents. We considered 1- to 5-person households. Every household had at302

least one member of the adult age groups A ∈ {3, 4, 5, 6} (age groups 1 and 2 correspond to303

early childhood or adolescence). The household distribution was motivated by the German304

micro census 2019 [40]. Non-Home locations also had to be assigned to the agents. A location305

of a given type was assigned to an agent from an equal distribution of all locations of that306

type. Every agent was assigned a location of type Shop, Recreation, Hospital, and ICU, while307

a School location was only assigned to agents in age group 2 and a Work location only to308

agents in age groups 3 and 4. Finally, the initial infection states were allotted to agents309

by independent and identical sampling from the initial infection state distribution (0.2% E,310

0.5% Ins, 0.29% Isy, and 0.01% Isev), i.e. on average, 1% of the modeled agents were initially311

infected.312
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The integrated model contains various parameters describing characteristics of the virus,313

which allows for the modeling of a broad spectrum of communicable respiratory or, in particu-314

lar, COVID-19-like diseases. We implemented the simulation using wild-type COVID-19-like315

parameters based on [25], [22], and [21]. The ++SYSTEMS files defining the exact shape316

of the sewage system, area characteristics, etc. are provided as supplementary material for317

each experiment and in the subsequent sections we only mention settings that differ between318

the experiments. An overview of the ABM parameters as well as the experiment-specific319

parameters is provided in Appendix C.320

Since most cluster systems are based on Linux, we facilitate the modules using Ubuntu.321

++SYSTEMS is a Windows program, hence, we created a headless virtual machine, which322

can be started and navigated through via a command line interface. One ABM simulation323

takes about 3.8 minutes on one core; one ++SYSTEMS simulation takes about 3-4 minutes324

on 8 cores.325

3.2. Non-trivial relation of prevalence in catchment area and measurement concentrations326

For a first assessment of the process dynamics, we considered the total number of upstream327

agents, the number of upstream infected agents, and the upstream RNA influx for a single328

measurement station for an outbreak scenario (Fig. 3). The model simulation reveals that329

the number of agents in a particular catchment area changes over the course of a day and330

from weekdays to weekends, primarily due to the agents’ participation at work, school, or331

recreational events. This mobility results in substantial changes to the upstream RNA influx.332

The measured virus levels are additionally influenced by the sewage volume, which itself333

depends on the total number of agents in the catchment area. Since agents return home from334

school, etc. at slightly different time points, the virus levels can show large deviations from335

an average value for only a few simulation minutes. Overall, the model highlights the impact336

of mobility on wastewater-based surveillance results.337

3.3. Characteristics of catchment area influence dynamics338

Establishing a monitoring system for wastewater is time- and energy-consuming. Legal per-339

mits for measurements and access to the locations have to be organized, the sampling stations340

have to be set up, and the samples have to be collected and transported to laboratories for341

further analysis on a regular basis. Hence, it is not surprising that even established monitor-342

ing networks have limited sampling locations and time schedules, often reporting 1-3 values343

per week and neighborhood or city. This renders the optimal placement of sampling locations344

and the selection of appropriate sampling strategies critical. Here, we investigated the impact345

of the choice of sampling location using our fine-grained integrated model, as a corresponding346

real-world study would be infeasible.347
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Figure 3: Exemplary (processed) Simulation Output. Output for viral measurements in a scenario

without precipitation or viral decay at measurement station 3.

We considered 16 possible sampling location in the synthetic neighborhood. These sampling348

locations correspond to catchment areas with a broad spectrum of different properties: First,349

the corresponding catchment areas of a sampling station differ with respect to the area type,350

i.e. primarily include residential areas (stations 1, 2, 3, 4, 9, 10), recreational areas (station 6),351

shopping/business areas (station 11), or mixed areas. Second, the catchment areas differ with352

respect to their sizes. Further upstream locations (e.g. station 1) summarize the dynamics353

of a smaller area than downstream locations (e.g. station 16). In this neighborhood, sewer354

flow times to the furthest downstream stations are at most around 80 minutes.355

To assess the information content of the wastewater-based surveillance data, we conducted356

a comprehensive simulation study. A total of 250 simulations of the proposed integrated357

model were used to account for the inherent stochasticity of infection processes; see Supple-358

mentary Fig. B.4 for a visualization of the prevalence over time. Assessment of the simulation359

results (Fig. 4) shows that sampling locations downstream of residential areas (e.g. station 1)360

produce reproducible daily and weekly trends in the measured virus levels. In contrast, sam-361

pling locations downstream of regions containing recreational areas (e.g. station 6 & 11) show362

more variability between simulations. Sampling stations near the endpoint of the network,363

which have large catchment areas (e.g. station 16) and would in practice fall closer to a364

wastewater treatment plant, yield smoother curves with no or less extreme daily and weekly365

trends.366

To evaluate how representative the viral load in the wastewater is at the different sampling367

locations, we computed the temporal cross-correlations between the RNA copies per liter in368

wastewater samples and (i) the true overall prevalence (Fig. 5(a), top) and (ii) the true viral369

shedding into the wastewater (Fig. 5(a), bottom). We found the highest cross-correlation370
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Figure 4: Variability of Measurements for Sampling Locations. Comparison of virus levels in wastew-

ater at different sampling locations. Shown are the mean (solid line) and 95% confidence intervals (shaded

area) of the 250 simulation results per location.

values are reached for the stations with larger catchment areas, in particular stations 7, 8,371

12, 14, and 16. The correlation coefficient is as high as 0.56 for the true prevalence and372

0.90 for the amount of virus shed. These corelation coefficients are surprisingly high given373

the variability between the (stochastic) simulation runs (Fig. 5(b)). Indeed, if the initial374

infections were not distributed randomly, the pattern would be more pronounced and large375

catchment areas would be even more beneficial (results not shown).376

The integrated model also shows that the temporal cross-correlation is generally higher when377

a negative time lag is applied to the (true) prevalence data. Since a high virus concentration378

in the wastewater indicates that the level of infectiousness across the population is also high379

and that a wave of new infections will therefore likely soon follow, the virus level at sampling380

stations with large catchment areas was most predictive for the prevalence 10 to 40 hours381

later. This time lag likely depends on the incubation time of the virus and its replication rate382

in the human body. As the reported prevalence is delayed compared to the true one, the time383

shift observed in practice will be even larger (Fig. 5(c)). Overall, our results suggest that384

in the absence of complicating factors such as viral decay – the impact of which would be385

limited in this particular sewer due to the relatively short travel times – choosing a wastewater386

sampling location far enough downstream to be unaffected by daily and weekly trends may387

help predict increases in prevalence before they occur.388
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Figure 5: Cross-Correlations Between Wastewater-based Surveillance Data and Prevalence. (a)

Trajectory of the wastewater viral load in RNA copies per liter for sampling location 16 compared to the

total true prevalence shifted with lags -36, 0, and 36 hours (top), or to the summed shedding rates across

all prevalent infections (bottom), for one simulation. (b) Pearson cross-correlations between RNA copies per

liter in wastewater measured at the 16 different locations and the total true prevalence (top) or the summed

shedding rates (bottom), averaged over 250 simulations. The time lag describes the shift in prevalence or

shedding rates. The maximum cross-correlations are marked with black arrows. The upper bar plot indicates

how many simulations were used to calculate the correlations for each sampling location; simulations in which

no virus was ever measured at a particular location were removed. (c) Schematic illustrating the temporal

relationship between the different outcomes.
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Station 16Station 1

Figure 6: Sampling Protocols. RNA concentration in wastewater with 24-hour compound sampling or

daily grab sampling (at 10:00 am each day) compared to the reference scenario (grab sampling every three

minutes). Shown are the mean (solid lines) and 95% confidence intervals (shaded areas or error bars) of the

250 simulation results for stations 1 and 16 along with the distribution of the absolute error between the

linearly interpolated average results for 24-hour compound or daily grab sampling and the average results

for the reference scenario.

3.4. Temporal sampling design has minimal impact on wastewater monitoring results if sam-389

ples are taken downstream390

The sampling design differs between wastewater monitoring studies. The most common391

setups are one grab sample collected per day of interest (usually during the morning flush)392

or a 24-hour compound sample based on a collection of one sample per hour [23]. To assess393

the impact of these sampling strategies and their benefits and disadvantages, we simulated394

both strategies using the same setup as in the previous section (in which we assumed the395

use of discrete grab samples every three minutes). The analysis of the simulation results396

indicates that in the case of a clear daily trend, the choice of sampling protocol can influence397

the results and e.g. lead to systematically biased estimates of the general dynamics (Fig. 6).398

Stations further downstream are less influenced by daily and weekly agent movement patterns399

(see Section 3.3) and different sampling protocols yield comparable results, i.e. a maximal400

cross-correlation of 0.56 between measured viral load and time-lagged prevalence.401

3.5. Rain influx impacts reliability of wastewater monitoring results in a nonlinear manner402

Rain influences the amount of fluid in the wastewater system, the fluid velocity, and the403

concentration of particles in the overall wastewater. Yet, many currently available models404

simply disregard rain events and the associated dataset. This approach results in a loss of405

information, and – as it is unclear how long-lasting the effects of rain might be – might406

still not be particularly reliable. To provide a fine-grained analysis of the impact of rain407
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Figure 7: Influence of Precipitation. Comparison of different rain scenarios (no precipitation, moderate

gentle rain showers, and moderate rain showers) at sampling location 16 visualizing (a) the precipitation, (b)

the RNA concentration in wastewater in copies per liter, and (c) the flow rates in liter per second.

on wastewater measurements, we simulated three scenarios: No precipitation (which was408

also used for the previous results), moderate gentle rain, and moderate rain showers. Here,409

we followed the rain intensity definitions from Germany’s National Meteorological Service410

(DWD) [42]: “moderate gentle rain” means between 0.1 mm and 0.5 mm in 60 min and411

“moderate rain” means between 2.5 mm and 10.0 mm in 60 min.412

In order to run simulations with a two-week duration with realistic time-dependent rain inten-413

sities, a suitable two-week period from a synthetic rain series [3] generated by the Bavarian414

Environment Agency (LfU) was used. The intensities were adapted such that the above-415

mentioned rain definition criteria were met. As a result, the two rain scenarios only differ in416

their intensities; the temporal profile of rain peaks is the same for both scenarios, ensuring417

comparability.418

Due to effects like evaporation, the filling of water basins (e.g. uptake by the ground), and419

permeable and non-permeable surface fractions, only a small proportion of rainfall ends up in420

the hydraulic system and a minimum amount of precipitation is necessary to have an effect at421

all. This net hydraulic surface runoff increases the water volume and hence, can increase the422
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flow rates and reduce the concentration of RNA in wastewater significantly (Fig. 7). RNA423

copies per liter close to zero correspond to a proportion close to 1 of rainwater in the sewage.424

If the flow rates increase by several orders of magnitude for a short amount of time (as is, e.g.425

the case in the moderate gentle rain scenario presented here), the sewage containing large426

fractions of rainwater is flushed out of the system very quickly, yielding a state comparable427

to the non-precipitation state afterwards. The moderate gentle rain scenario showcases that428

there is a minimum amount of precipitation necessary to have an effect on the flow rates429

and virus concentrations. The moderate rain scenario highlights how precipitation influences430

measurements if the rainwater inflow to the sewage is larger than zero for several neighboring431

time steps.432

The analysis of the influence of precipitation events on measurements showcases the impor-433

tance of normalizing observations to compare measurements of precipitation and dry weather434

time points. For more details on normalization strategies, see the results presented in Sec-435

tion 3.7.436

3.6. Virus Characteristics437

The interplay of virus and host immune response determine virus shedding and transmission438

and, hence, the prevalence and influx of virus particles into the wastewater system. Yet, the439

virus particles are not necessarily stable but can decay. For SARS-CoV-2, estimates of the440

the 90% reduction times in wastewater at ambient temperatures range between 5.5 and 28.8441

days [5, 13, 1]. As the sewer of the synthetic neighborhood has a relatively short maximum442

flow time, we have been able to reasonably neglect viral decay so far. We now assume that443

our virus of interest has much faster virus reduction times than SARS-CoV-2, in order to444

study the impact of rapid decay processes on wastewater monitoring results and their relation445

to prevalence. To this end, we compare three different temporal models for the decay rate v446

of [RNA] (in copies per liter) in wastewater:447

• no decay: v = 0 copies
l·s448

• linear decay: v = k1, where k1 =

−0.1 copies
l·s , for [RNA] > 0

0 copies
l·s , for [RNA] ≤ 0

449

• exponential decay: v = k2 · [RNA], where k2 = −1 · 10−3 1
s
(corresponding to a half-life450

of about 690 seconds or about 0.2 hours)451

The no decay scenario assumes that viral particles remain intact and serves as a baseline for452

understanding the upper bound and comparing it to more realistic models. The linear decay453

scenario is motivated by a potential interaction between a virus and a certain enzyme or454
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Figure 8: Viral Decay Dynamics. (a) Illustration of the effects of linear decay (left) vs. exponential decay

(right) with 3 example parameter settings each on a starting virus concentration of 700 copies per liter. (b)

The virus concentration measured at station 1 (top) and station 16 (bottom) over time without rain and

with no decay (left), linear decay with k1 = −0.1 copies
l·s (center), and exponential decay with k2 = −1 · 10−3 1

s

(right).

environmental condition in the wastewater that degrades the virus at constant rate (e.g. be-455

cause its abundance is limited). The exponential decay scenario captures the most commonly456

observed decay dynamics, translating to a constant decay probability per unit time.457

We analyzed the simulation results for the three decay scenarios, without precipitation, at458

two sampling locations: 1 and 16 (Fig. 8). At the upstream station 1, the measured viral459

loads are proportionally slightly lower for the linear decay setting and considerably lower460

for the exponential decay setting compared to the no decay setting, since for the relevant461

concentrations, exponential decay with a half-life of 690 seconds is considerably faster than462

linear decay of -0.1 copies per liter per second. However, the general shape of the viral463

load trajectory at station 1 over time is unaffected by the decay setting: For all three decay464

scenarios, there are periodic dips in the virus level on weekdays and a defined peak around the465

fourth day. At the downstream station 16, not only are the measured viral loads lower for the466

linear and especially the exponential decay settings, but the shape of the viral load trajectory467

over time is also affected, with defined peaks during weekday daytime periods. When the viral468

decay is non-negligible, virus copies shed from the upstream residential areas tend to decay469
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before they reach the furthest downstream station, so station 16 primarily measures the copies470

shed from the nearest areas: a university and a shopping/business region, which are only471

inhabited during working hours. This phenomenon indicates that the interaction between472

viral load and viral decay can be complex and that a detailed sewer model is necessary to473

adequately describe its impact on the reliability of wastewater viral loads as an indicator of474

disease prevalence.475

3.7. Virus Normalization476

Wastewater systems can have – as outlined above – variable flow rates depending on factors477

like precipitation and water usage. Hence, wastewater samples have to be normalized to478

ensure accurate and reliable data interpretation. The two most commonly used normalization479

strategies are based on either flow rates or additional indicators like the concentration of480

Pepper Mild Mottle Virus (PMMoV). PMMoV is a plant virus commonly found in human481

feces at relatively stable concentrations and hence, serves as a good indicator for the amount482

of human waste in the sample. Here, we use the model to assess which normalization strategy483

yields corrected viral load values closest to the those one would measure if there was no484

precipitation event.485

The normalization is calculated using one of the following two strategies:486

• normalization with flow rates: [RNA]normalized =
Q

mean(Qdry)
· [RNA]487

• normalization with PMMoV: [RNA]normalized =
mean([PMMoV]dry)

[PMMoV]
· [RNA]488

where Q is the current flow rate, mean(Qdry) the mean flow rate on dry days, [PMMoV] the489

current PMMoV concentration, and mean([PMMoV]dry) the mean concentration of PMMoV490

on dry days [31]. Rainwater infiltration into a sewer system dilutes PMMoV while increasing491

flow rates, so correcting wastewater measurements using the ratio between the expected and492

measured PMMoV concentration or between the measured and expected flow rate can help493

reduce unwanted variability in wastewater-based data.494

We followed exactly these procedures using simulated data. To simulate measurements of495

PMMoV we assumed a constant PMMoV shedding per agent throughout the simulations496

and that PMMoV is never subject to viral decay. A small number of observations (between497

0.15% and 0.28% per scenario), for which the measured PMMoV concentration was zero498

copies per liter, were removed. As seen in Fig. 9(b), flow rate normalization (right column)499

is not effective for correcting wastewater measurements in our model for the effects of either500

moderate gentle or moderate rain. In both the moderate gentle and moderate rain scenarios,501

infiltration of rainwater into the model sewer system causes greater proportional increases to502

the flow rates than decreases to the virus concentrations, so normalization with flow rates503
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leads to notable over-corrections. In contrast, normalization with PMMoV (center column)504

appears highly effective. Rainwater infiltration affects PMMoV and the virus of interest505

similarly, so the PMMoV-normalized measurements, while noisier, generally match the no-506

rain reference scenario in terms of both shape and scale. Specifically, applying PMMoV507

normalization reduces the median (across all simulations and time points) of the absolute508

error between the virus concentration at station 16 for the moderate rain, no decay scenario509

and the no rain, no decay reference scenario from about 113 to about 8 copies per liter510

(see Fig. 9(d) and Supplementary Table C.5). Since our PMMoV normalization approach511

corrects only for rainfall and not for viral decay, PMMoV normalization only marginally512

improves the median absolute error compared to the reference scenario for the moderate513

rain, exponential decay and the moderate rain, linear decay scenarios. However, PMMoV514

appears even less effective when the viral decay is linear rather than exponential. This515

is likely because in the linear decay scenario, unlike the exponential decay scenario, viral516

concentrations can and do degrade to zero, which renders normalization useless for certain517

observations.518

Rain reduces the cross-correlations between overall prevalence in the catchment area and519

the measured RNA copies per liter in wastewater samples over time (see Fig. 10). For520

the scenarios with rain but without viral decay, applying PMMoV normalization to the521

wastewater measurements restores the cross-correlation coefficients to very close to their522

levels in the reference scenario. For the scenarios with both rain and viral decay, PMMoV523

normalization partially restores the general trends in viral load measurements over time, and524

therefore has a more limited but non-negligible impact on cross-correlations.525

4. Discussion526

In this study, we presented a first integrative model for the fine-grained description of infec-527

tious disease dynamics and wastewater surveillance. The model couples a stochastic model528

of individual mobility, infection transmission, and disease progression with a highly detailed529

hydrodynamic model of viral RNA transport through wastewater networks. Using this model530

for the description of a synthetic neighborhood and corresponding sewer system, we were able531

to investigate the influence of sampling protocols, precipitation events, virus characteristics,532

and normalization strategies on the relationship between infection dynamics and resulting533

wastewater measurements. We found that locations for sampling stations should be chosen534

carefully, so that they lie downstream of a sufficient number of agents and diverse location535

types; that precipitation and viral decay can have unexpected, nonlinear impacts on wastew-536

ater viral load that require detailed integrative modeling approaches to be understood; and537

that flow rate normalization should only be implemented with caution as it can lead to large538

over-corrections if there has recently been precipitation. Overall, our study suggests that if539
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Figure 9: Normalization Strategies Applied to Simulations. (a) The virus concentration at station

16 in the no-rain, no-decay reference scenario. (b) The virus concentration at station 16 in the moderate

gentle rain (top) or moderate rain (bottom) scenarios, as measured (left), after normalization with PMMoV

(center), and after normalization with flow rates (right). (c) Comparison of the “ideal” normalization factor

that would transform the moderate rain results to the no-rain reference results, versus the actual flow-rate-

based normalization factor, for one example simulation. (d) The distribution over all simulations and time

points of the absolute error between the moderate rain results with no, exponential, or linear decay dynamics

and the no-rain, no-decay reference scenario.
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Figure 10: Cross-Correlations Between Wastewater Samples and Prevalence by Scenario. Pearson

cross-correlations between RNA copies per liter in wastewater and prevalence over time for five downstream

stations, averaged over 250 simulations, for the no-rain, no-decay reference scenario (top left), various decay

and rain scenarios without normalization (left column), and the same decay and rain scenarios with PMMoV

normalization (right column).
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appropriate sampling, normalization, and analysis techniques are used, then wastewater may540

serve as a leading indicator of disease prevalence.541

Sampling station characteristics – including the size of the upstream population, the times of542

day during which the upstream areas are generally populated, and the distribution of sewer543

travel times to the station – can both qualitatively and quantitatively affect wastewater mea-544

surement dynamics. To produce the highest correlations with prevalence, our study indicates545

that sampling stations should be placed far enough downstream to receive wastewater from546

a representative sample of the population of interest as well as from a mix of homes, places547

of work and study, and recreational areas. If infections are distributed throughout the catch-548

ment area, then 24-hour compound sampling can help alleviate some of the disadvantages of549

upstream sampling location placement, but if infections are localized, downstream placement550

becomes more crucial, as a sampling station too far upstream may miss the outbreak entirely.551

However, these considerations must be balanced against others: our study showed how the552

effects of viral decay become more pronounced the further downstream a sampling station553

is, and in real-world scenarios, inflow of industrial wastewater may also be a concern. Thus,554

while we generally argue for mid- or downstream sampling locations, a detailed modeling555

approach like ours is needed to choose the optimal sampling location for a particular region556

of interest.557

Our study also illustrates how precipitation and viral decay, separately or together, can558

have complex and nonlinear impacts on the measured viral load in wastewater, which need559

to be accounted for when using wastewater data as a public health indicator. Due to the560

interactions between evaporation, water retention, and other factors, the influence of rainfall561

on sewer flow rates and viral concentrations within different pipes can be difficult to predict;562

for example, our model shows how a continuous drizzle can potentially lead to discrete563

drops in wastewater measurements. Although using sensors to measure sewer flow rates at564

a sampling station and then adjusting wastewater measurement accordingly is possible, this565

approach performed sub-optimally in our study and often led to dramatic over-corrections.566

We find that normalization with a human fecal indicator such as PMMoV may be preferable567

in sewer systems that have recently been infiltrated by rainwater. This finding is in contrast568

to the conclusions of Rainey et al. [36], who recommended normalization with flow rates569

to account for variations in the size of a sewershed’s service population. As Rainey et al.570

did not consider the effects of precipitation, future work should explore how best to account571

for both precipitation and population size when normalizing wastewater measurements for572

comparisons both over time and across sampling locations.573

Like precipitation, viral decay in our study led to both qualitative and quantitative changes574

in the viral load trajectory measured at a particular station over time. Our decay scenarios575

were intentionally exaggerated – we considered exponential decay with a 90% reduction time576

of about 0.6 hours, whereas the actual 90% reduction time of SARS-CoV-2 in wastewater is577
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temperature-dependent but usually estimated to be upwards of five days – but this extreme578

case illustrates how the signal from surface areas far from the sampling location can be579

lost if viral decay is not appropriately accounted for. In our study, we found that even580

in the presence of rapid viral decay, PMMoV normalization could restore non-negligible581

correlations between prevalence and wastewater measurements, but it could only slightly582

reduce the absolute error relative to a no-rain, no-decay reference scenario. Since PMMoV is583

very stable in wastewater, normalization with PMMoV alone cannot account for the effects of584

viral decay on wastewater measurements. Instead, an appropriate viral decay model should585

be chosen based on the characteristics of the virus of interest and the sewer system, including586

temperature [14] and biofilms [44] – both of which are likely to be affected in turn by the587

amount of precipitation in the pipes. Due to its level of detail, our study provides new588

insights into the interactions between rain, viral decay, and wastewater measurements and589

underscores the importance of appropriate normalization and analysis of wastewater data.590

Overall, our study indicates that despite potential confounding factors, if appropriate sam-591

pling, normalization, and analysis techniques are utilized, then wastewater-based surveillance592

data can provide insights into trends in disease prevalence and possibly predict outbreak peaks593

1 to 2 days before they occur. Viral load measurements in wastewater depend not only on594

the total number of people shedding, but also on the viral load – and, by extension, the infec-595

tiousness – of each prevalent infection. High viral loads in wastewater indicate high infection596

potential across the catchment area, meaning that new infections are likely to occur soon;597

thus, in our model, the peak in viral load measurements at the furthest downstream station598

tended to occur about 30 hours before the corresponding peak in overall prevalence. Previous599

studies, such as the one by Peccia et al. [34], have found that epidemiological measures such600

as positive test counts and hospital admissions tend to lag several days behind wastewater601

measurements, and our study suggests that this may not be entirely due to reporting delays.602

Thus, our results support Peccia et al.’s conclusion that wastewater-based surveillance data603

can help guide public health officials in deciding when to implement or ease infection control604

measures.605

4.1. Limitations and Future Work606

One limitation of our model is that we assumed each agent’s water usage to be distributed607

uniformly across the day. In reality, an individual would only produce wastewater – and, if608

infected, shed into the sewer system – at certain time points, e.g. while using the bathroom at609

home after waking up in the morning. We expect that realistic patterns of water usage over610

time would likely create additional daily trends in wastewater measurements and highlight611

the advantages of 24-hour compound sampling over grab samples, but future work on this612

model should incorporate the circadian rhythm of water consumption and shedding behavior613

to confirm this.614
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We also leave for future work a sensitivity analysis of how relaxing the assumptions under-615

lying our shedding model might affect our results. Reinfections, vaccinations, and cross-talk616

between co-circulating pathogens were out of the scope of this initial model, and we therefore617

did not consider, for example, how the effects of vaccinations on viral shedding [11] could618

complicate the relationship between disease dynamics and wastewater measurements. Due619

to data limitations, we assumed that viral shedding in urine and feces was proportional to620

respiratory shedding and that the peak viral load value was the same for all symptomatic621

infections, although realistic variations in this value across individuals might decrease the622

cross-correlations between prevalence and wastewater measurements when the number of623

infections is small.624

Finally, the methods we have so far only applied in the context of an synthetic neighborhood625

should, in the future, be adapted to real-world scenarios. This will require, for example,626

introducing an appropriate noise model to account for the effects of wastewater measurement627

uncertainty and detection limits. Thus, our model’s potential ability to map real-world628

wastewater measurements back to underlying prevalence remains to be tested.629

4.2. Conclusions630

Our study illustrates the value of sophisticated models of infection and wastewater dynamics631

and highlights the potential of wastewater-based surveillance data to reflect trends in preva-632

lence without being influenced by sampling bias, reporting delays, or under-ascertainment.633

While applications to real-world data remain for future work, our simulation study provided634

key insights into the advantages of downstream sampling location placement, 24-hour com-635

pound sampling, models for the effects of viral decay, and PMMoV normalization.636
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ner, Melanie Stecher, Xiao Xiang Zhu, Achim Basermann, and Michael Meyer-Hermann.784

Assessment of effective mitigation and prediction of the spread of SARS-CoV-2 in Ger-785

many using demographic information and spatial resolution. Mathematical Biosciences,786

page 108648, 2021.787

[26] Daniel B. Larremore, Bryan Wilder, Evan Lester, Soraya Shehata, James M. Burke,788

James A. Hay, Milind Tambe, Michael J. Mina, and Roy Parker. Test sensitivity is789

secondary to frequency and turnaround time for COVID-19 screening. Science Advances,790

7(1):eabd5393, 2021.791

[27] Ardashel Latsuzbaia, Malte Herold, Jean-Paul Bertemes, and Joël Mossong. Evolving792
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