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Summary11

Hypertension poses a significant global health challenge, and its management is often complicated by the12

complexity of treatment strategies involving multiple drug combinations and the need to consider multiple13

outcomes. Traditional treatment effect estimation (TEE) methods struggle to address this complexity, as14

they typically focus on binary treatments and binary outcomes. To overcome these limitations, we intro-15

duce METO, a novel framework designed for TEE in the context of multiple drug combinations and multiple16

outcomes. METO employs a multi-treatment encoding mechanism to handle multiple drug combinations17

and their sequences effectively, and differentiates between effectiveness and safety outcomes by explicitly18

learning the outcome type when predicting the treatment outcomes. Furthermore, to address confounding19

bias in outcome prediction, we employ an inverse probability weighting method tailored for multiple treat-20

ments, assigning each patient a balance weight derived from their propensity score against different drug21

combinations. Our comprehensive evaluation using a real-world patient dataset demonstrates that METO22

outperforms existing TEE methods, with an average improvement of 5.0% in area under the precision-23

recall curve and 6.4% in influence function-based precision of estimating heterogeneous effects. A case24

study demonstrates that our method successfully identifies personalized optimal antihypertensive dual25

regimens, achieving maximal efficacy and minimal drug-related safety risks. This showcases its potential26

for improving treatment strategies and outcomes in hypertension management.27
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Introduction31

Hypertension is a major global health issue, responsible for around 7 million deaths and 57 million dis-32

abilities annually1. However, optimal blood pressure control remains elusive for roughly 70% of patients,33

primarily due to inadequate implementation of combination therapies2. The challenge lies in selecting34

effective antihypertensive treatment strategies3, including the choice between starting with monotherapy35

and gradually adding another drug (stepped-care) or beginning with a drug combination4,5.36

This introduces a pivotal medical question: “How can we determine the most effective antihyperten-37

sive drug combinations (treatments) to improve hypertension-related conditions (outcomes)?” Tackling38

this question requires an exploration into the complex landscape of treatment options, encompassing a39

variety of drug combinations and sequences. Moreover, the imperative for a thorough evaluation of treat-40

ments underscores the inherent tension between effectiveness and safety outcomes in hypertension6,41

illuminating the dual, often opposing, dimensions of outcome assessment7.42
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Treatment effect estimation (TEE), which identifies the causal effects of treatments on the patient43

outcomes, can be leveraged to address the above complex question of optimizing antihypertensive drug44

combinations. However, existing TEE approaches, designed predominantly for binary treatments and45

binary outcomes8–10, struggle with multiple treatments and multiple outcomes. Some approaches11–14
46

extend existing models for multiple treatments by directly increasing treatment arms, thus facing efficiency47

and generalizability challenges15. Others improve adaptability using unified treatment embeddings for48

multiple treatments15,16. Nevertheless, significant challenges remain in applying these methods to TEE49

with multiple treatments and multiple outcomes, particularly for antihypertensive drug combinations.50

First, existing methods13,16 typically treat all treatments uniformly, without utilizing the nuanced details51

of each. This lack of granular differentiation limits their practicality, especially in the studied scenarios52

where the combination and sequential administration of drugs are crucial. Second, while some stud-53

ies17–19 have explored TEE in the context of multiple outcomes, they are mainly designed for randomized54

controlled trials without adjustment for confounding bias, and more importantly, fail to differentiate between55

outcome types (i.e., therapeutic effectiveness versus adverse effects). In addition, different outcomes can56

have different relationships with the covariates and treatments. Failing to consider such various rela-57

tionships may lead to confounding bias and inaccurate treatment effects estimation. Finally, there is a58

noticeable gap in the literature regarding the comprehensive treatment effect assessment tool that facili-59

tates clinical decision-making.60

To address these challenges, we propose a novel framework, called METO, to estimate the treatment61

effects of MultiplE drug combinations on mulTiple Outcomes for identifying optimal antihypertensive drug62

combinations (see Fig. 1). First, we address the complexities of multiple drug combinations through the63

proposed multi-treatment modeling. This mechanism processes the detailed information of drug com-64

binations and administration sequences independently, before synthesizing these elements via a deep65

fusion layer. Second, we leverage the specific outcome type information as additional guidance to differ-66

entiate between effectiveness and safety outcomes, enhancing the accuracy of outcome prediction. In67

addition, to address confounding bias in outcome prediction, we employ an inverse probability weight-68

ing method tailored for multiple treatments, assigning each patient a balance weight derived from their69

propensity score against different drug combinations. Our comprehensive evaluation shows that METO70

outperforms existing treatment effect estimation methods and successfully identifies personalized optimal71

drug combinations with beneficial effects and reduced safety risks.72

Our contributions are summarized as follows:73

• Problem. We address the challenge of TEE in hypertension management, focusing on multiple drug74

combinations and their impact on both effectiveness and safety outcomes.75

• Method. We propose METO, a novel method that incorporates multi-treatment encoding and explicit76

outcome-type learning to handle complex drug combinations and differentiate between effectiveness77

and safety outcomes.78

• Experiments. We validate METO’s superior performance against existing TEE methods using a large-79

scale real-world dataset and demonstrate its practical efficacy through a case study on personalized80

drug combination recommendation.81

Results82

Overall Framework83

We develop an end-to-end treatment effect estimation framework that can be utilized for recommend-84

ing optimal drug combinations for patients with hypertension. As shown in Fig. 1, the patient medical85

records are extracted from an observational database and then processed into drug combination cohorts86

for comparing treatment effectiveness. The treatment effects are estimated with the proposed METO,87

which is designed specifically for the scenario of multiple treatments and multiple outcomes. Finally, op-88

timal drug combinations are suggested by assessing the treatment effects across both effectiveness and89

safety outcomes.90
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Dataset91

We collect data on approximately 130 million patients from the MarketScan Commercial Claims and En-92

counters (CCAE)1 database, covering the period from 2012 to 2021. This dataset contains individual-level,93

de-identified healthcare claims information from employers, health plans, and hospitals. We extract more94

than 19 million patients who are diagnosed with hypertension (Appendix Table A1). Within this patient95

cohort, we identify more than 11 million patients who have at least one risk factor (i.e., subclinical organ96

damage, diabetes, renal, or associated cardiovascular disease)20 and initiated first-line antihypertensive97

drugs. Each patient record consists of demographics (e.g., age and sex), co-morbidities (via ICD-9/1098

diagnosis codes) as well as co-prescribed medications (using national drug codes [NDC]). For uniformity,99

ICD-9/10 codes were consolidated into a standardized coding schema using the clinical classifications100

software (CCS)2. Figure 2 displays the dataset’s statistics including the distribution of overall population,101

age, gender, and outcome across different drug combinations, respectively. Figure 3 illustrates the de-102

tailed study design for each treatment cohort, including treatment definitions, computation of confounding103

variables, and outcomes. The flowchart of the user cohort selection is provided in Appendix Fig. A1.104

Treatments. Following hypertension management guidelines3, we categorized first-line antihypertensive105

agents into thiazide diuretics (TZDs), ACE inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and106

calcium channel blockers (CCBs). We identified five distinct first-line drug combination regimens, each107

comprising two different classes: (1) TZDs and ACEIs; (2) TZDs and ARBs; (3) TZDs and CCBs; (4)108

ACEIs and CCBs; (5) ARBs and CCBs. We note that ACEIs and ARBs are not combined in clinical109

practice. These combinations also varied by assignment order: initial combination (less than 30 days110

between first and second drug initiations) and stepped-care (between 30 and 180 days). We identified111

a total of 15 unique drug combinations, considering both the specific combinations and their order of112

assignment. Detailed definitions of these drugs are provided in Appendix Table A2.113

Outcomes. Six important outcomes are computed during the follow-up period after the treatment initial-114

ization, including three primary effectiveness outcomes (stroke, acute myocardial infarction [MI], heart fail-115

ure [HF]) and three safety outcomes (acute kidney failure [AKF], gout, venous thromboembolism [VTE]).116

These outcomes are chosen based on their significance in hypertension management guidelines3 and117

insights from recent large-scale studies in hypertension6. Outcome occurrences are identified using di-118

agnosis codes, with detailed definitions available in Appendix Table A3.119

Confounders. A comprehensive list of potential confounders is compiled, including demographics (age120

and gender), 282 unique co-morbidities (based on diagnosis codes), and 1,378 unique co-prescribed121

medications. These confounders, relevant to both treatment assignment and outcomes, are assessed122

during the baseline period before treatment initiation.123

Baselines and Setup124

In the experiments, we compare our method with state-of-the-art baselines, which can be classified into125

three main categories:126

• Basic meta-learners: (1) S-learner is a meta-learner21 that builds a binary outcome prediction model127

for all treatment groups; (2) T-learner is also a meta-learner21 that builds multiple outcome prediction128

models for each treatment group separately.129

• TEE methods for binary treatments and binary outcomes: (1) TARNet8 predicts the potential outcomes130

based on balanced representations between treated and controlled groups; (2) DragonNet9 jointly131

predicts treatment and outcomes based on the shared representations via a three-head neural network.132

• TEE methods for multiple treatments and binary (multiple) outcomes: (1) PerfectMatch11 augments133

samples within a batch with their propensity-matched nearest neighbors. The framework can be natu-134

rally extended to multiple treatments by matching with the nearest neighbors from each treatment group;135

(2) TECE-VAE16 incorporates latent variables and causal structure through a variational autoencoder,136

1https://www.merative.com/real-world-evidence
2https://hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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and models multiple treatments with a task embedding; (3) MEMENTO13 is a direct extension of TAR-137

Net8 to multiple treatments by increasing the number of model branches to the number of treatments;138

(4) LR-learner22 adopts a neural network to learn embeddings for individuals and treatments, which139

are then transformed by a linear operator to predict outcomes based on the dot product of these em-140

beddings; (5) TransTEE15 embeds multiple treatments and covariates into a shared hidden space via a141

Transformer to improve the model’s flexibility and robustness; (6) NCoRE12 models the cross-treatment142

interactions by encoding each treatment arm separately and then applying a merge layer to connect all143

the treatment arms.144

Note that we implement the S-learner and T-learner with a logistic regression (LR)-based estimator. TAR-145

Net8 and DragonNet9 are representative works in TEE but initially designed for binary treatment scenar-146

ios. We extend these two methods to multiple treatment scenarios as done in11. For baselines originally147

developed for binary outcomes, we have facilitated their application to multiple outcome contexts by tran-148

sitioning from a binary classification head to one capable of multi-label classification.149

Evaluation Metrics We evaluate the performance of factual outcome prediction by measuring the area150

under the Precision-Recall curve (AUPR), focusing on the precision-recall trade-off due to the potential151

imbalance between positive and negative outcome labels. As the ground truth treatment effects are not152

observed (i.e., any patient is ever only assigned to one of the treatments in practice), we can not di-153

rectly compute the traditional metric precision in estimating heterogeneous effects (PEHE)23. Instead, we154

adopt a recent proxy metric for counterfactual evaluation, called influence function-based precision of esti-155

mating heterogeneous effects (IF-PEHE)24, which measures the mean squared error between estimated156

treatment effects and approximated true treatment effects (see detailed computation of IF-PEHE [IP] in157

Appendix C.2). The original metric is designed for binary treatments and binary outcomes, we extend it158

to multiple treatments and multiple outcomes (MM-IP) as below:159
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where U is the total number of patients, ⌧u
k

denotes the treatment effect for patient u on outcome k.160

Implementation Details The dataset is randomly split into training, validation, and test sets with percent-161

ages of 80%, 10%, and 10% respectively. The number of training epochs is 10 and the learning rate162

is 5e-5. The backbone model architecture is a 12-layer Transformer, with 768 hidden units, 12 attention163

heads, and 3072 for the intermediate size. The parameter � in multi-treatment modeling is set to 0.6. The164

parameter ⌘ in outcome type-informed prediction is set to 1 for the training and 0 for the inference. The165

parameter �, which adjusts the influence of treatment prediction, is set to 1. All results are reported on the166

test sets over 20 initializations of the model. More implementation details including the parameter tuning,167

training setup, and additional configurations are mentioned in Appendix C.3.168

Overall Performance Comparison169

Results in Table 1 present a comparative evaluation of our proposed METO’s performance against base-170

lines in factual outcome prediction and TEE on the real-world hypertension dataset. Notably, METO171

achieves superior performance over the best baseline, registering an average improvement of 5.0% in172

AUPR and 6.4% in MM-IP.173

The basic meta-learners, namely the S-learner and T-learner, exhibit diminished performance in com-174

parison to advanced deep learning-based TEE approaches. This discrepancy is attributed to their inability175

to adequately process high-dimensional, heterogeneous patient data and to forge precise patient repre-176

sentations for accurate effect estimation. While deep learning-based methods for binary treatment and177

outcome scenarios, such as TARNet, show marginal enhancements over meta-learners, they fall short in178

addressing the intricacies of multiple treatments and outcomes.179

Methods designed for multiple treatments, like PerfectMatch and MEMENTO, offer advancements over180

binary treatment and outcome frameworks. However, their rigid model architectures limit their adaptability181

4
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and generalizability across diverse treatment interactions, rendering their performance inferior to more182

flexible approaches like TECE-VAE, LR-learner, and TransTEE, which are tailored for complex treatment183

and outcome mappings.184

The exceptional efficacy of METO is attributed to two main strategies: Firstly, the incorporation of a185

multi-treatment encoding module for the explicit encoding of multiple treatments, including the specifics186

of drug combinations and their administration sequencing. This approach is finely tuned to address187

the real-world complexities encountered with antihypertensive drugs and their combinatory uses. Sec-188

ondly, METO distinctively models varying types of outcomes—distinguishing therapeutic effectiveness189

from safety outcomes through the proposed outcome type-informed prediction. By acknowledging the190

inherent differences in their practical implications and the variability in their distribution across the popula-191

tion, our method adeptly navigates the dual objectives of optimizing disease progression while mitigating192

safety risks.193

Population Outcome Comparison194

We hypothesize that the drug combination recommended by our model based on the estimated treatment195

effects can effectively prevent the patients from developing severe disease outcomes. To demonstrate196

this, we compare the prevalence of different disease outcomes against two patient treatment groups:197

1) model-recommended treatment and 2) actual treatment (different from the model’s recommendation).198

Specifically, we first obtain a group of patients whose actual treatment is different from the model’s rec-199

ommendation. Then we derive a comparison group by involving the most similar patients whose actual200

treatment matches the model recommendation. We use the baseline patient representations to calculate201

the similarity via Euclidean distance. Finally, we compute and compare the prevalence of each disease202

outcome in Fig. 4. We observe that, for a given outcome, the prevalence rate in patients who receive203

treatments that are different from our recommendation is higher than the average rate baseline, while the204

prevalence rate of patients who receive the same treatments as our recommendation is lower than the205

baseline. This illustrates that our model recommends effective treatment strategies (reflecting on lower206

prevalence rate on all outcomes), and provides potential clinical insights for doctors to decide the optimal207

drug combinations for patients with hypertension.208

Ablation Study209

To demonstrate the significance of individual components within our model, we conducted a compre-210

hensive ablation study. We explore the performance impact of various model configurations, including211

(1) w/o MT, where the multi-treatment (MT) encoding module is substituted with a generic embedding212

layer; (2) w/o TC-A, which replaces the treatment-covariate co-attention (TC-CoA) with an average pool-213

ing approach; (3) w/o MT and TC-A, which removes both the MT encoding and TC-CoA to understand214

the combined effect of these two components; (4) w/o OT, omitting the informative outcome types (OT) in215

multi-outcome prediction; (5) w/o OC-A, while replaces the outcome-distinctive covariate attention (OC-A)216

with an average pooling layer. (6) w/o OT and OC-A removes both the OT information and TC-CoA.217

The results in Fig. 5 present model superiority across various configurations. Notably, the w/o MT218

and TC-A variant exhibits the most significant performance drop, underscoring the critical role of multi-219

treatment encoding and treatment-covariate co-attention in effectively capturing the nuanced relationships220

between treatments and covariates. Similarly, the w/o OT and OC-A configuration shows a marked de-221

crease in performance, highlighting the value of incorporating outcome types and the outcome-distinctive222

covariate attention mechanism for enhanced prediction accuracy.223

Further comparisons with nuanced model variants reveal the significance of each individual compo-224

nent to model performance. For example, w/o TC-A, w/o OC-A, which employ average pooling instead of225

the specialized attention mechanisms, reveal that our proposed attention-based approach is more adept226

at modeling the intricate interplay among covariates, treatments, and outcomes. This finding affirms the227

attention mechanism’s capability to refine TEE by accurately encoding complex relationships within the228

data. This ablation study not only confirms the integral role of each proposed component in bolstering229

model performance but also emphasizes the architecture’s holistic design in addressing the challenges230
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of TEE with multiple treatments and multiple outcomes. Additional ablation study on propensity score231

weighting is provided in Appendix Table A7.232

Case Study233

Treatment Recommendation. Identifying optimal antihypertension drug combinations is inherently com-234

plex due to the multiple available treatments, various drug combinations, multiple patient outcomes, and235

patient heterogeneity. Our model addresses this complexity by providing a comprehensive clinical out-236

come assessment tool that evaluates the effects of various drug combinations on both therapeutic effec-237

tiveness and safety outcomes. Through a detailed case study depicted in Fig. 6, we demonstrate the238

practical application of our model in guiding antihypertensive treatment decisions. Within this framework,239

a patient’s medical record is analyzed to estimate the effects of all potential drug combinations. These240

estimates are then prioritized according to their effectiveness, with a simultaneous assessment of associ-241

ated safety risks, providing a comprehensive overview for clinical review. In the illustrated case, the model242

identified the combination of TZDs and ACEIs initiated simultaneously as the strategy offering the most243

significant therapeutic benefit and minimum safety concerns. This finding exemplifies the model’s ability to244

recommend treatment plans that optimize for both efficacy and safety, presenting a valuable assessment245

and decision-support tool for clinicians.246

Attention Visualization. For investigating the effect of outcome-distinctive covariate attention, we visu-247

alize the attention weights on the patient pre-treatment covariates using a heatmap in Fig. 7. It presents248

the top 20 covariates ranked by the learned attention weights of a patient who was prescribed ACEIs249

and CCBs as initial combination therapy and subsequently developed HF and VTE during their disease250

progression. This heatmap visualization elucidates the distinct and shared covariate relevancies across251

the two outcome categories, highlighting how certain conditions such as “respiratory failure; insufficiency;252

arrest” and “pulmonary heart disease” have high relevance for both HF and VTE. Conversely, specific253

conditions like “coagulation and hemorrhagic disorders” show a pronounced association primarily with254

VTE, reflecting the model’s nuanced understanding of different mechanisms of effectiveness and safety255

outcomes. This analysis confirms the capability of the proposed attention networks to dynamically con-256

centrate on both unique and shared information pertinent to patient outcomes. By effectively capturing257

and modeling the intricate relationships between various covariates and outcomes, attention mechanisms258

play a crucial role in enhancing the model’s predictive accuracy in TEE, thereby supporting personalized259

treatment strategies.260

Discussion261

In this paper, we studied the problem of treatment effect estimation in the complex context of hypertension262

management, characterized by multiple drug combinations and multiple outcomes. We proposed METO,263

an innovative methodology designed to address these complexities. METO employs multi-treatment en-264

coding to unravel the intricacies of various drug combinations and leverages outcome type information to265

better differentiate between effectiveness and safety outcomes. Validated by extensive experiments on a266

real-world dataset, METO demonstrates superior performance compared to traditional TEE methods. By267

offering a more comprehensive treatment effect assessment for antihypertensive drugs, METO makes a268

substantial contribution to improving patient care in the field of hypertension management.269

TEE under Multiple Treatments. Traditional TEE research is largely anchored in binary treatment and270

binary outcome scenarios8–10,25–28, posing challenges when extending to accommodate the complexity271

of real-world healthcare scenarios involving multiple treatments and multiple outcomes. Though some272

studies11–13 have been proposed to specifically address the challenges of multiple treatments, they often273

face computational inefficiencies and less flexibility. For instance, MEMENTO13, which is a direct exten-274

sion of a traditional TEE method (TARNet8), assigns covariates from different treatment groups to different275

branches in their model. This approach can be less flexible with varying numbers of treatments. Meth-276

ods15,16,22 that encode multiple treatments into a hidden embedding space offer some improvements in277

modeling flexibility. TECE-VAE16, for instance, incorporates latent variables and causal structure through278

6
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a variational autoencoder (VAE), and models multiple treatments with a task embedding. However, all279

these methods still fall short of fully capturing the complexities of multiple treatments in real applications,280

where the treatment can be a drug combination with different administration sequences, thus leading to281

an insufficient understanding of treatments and suboptimal model performance.282

TEE under Multiple Outcomes. Recent approaches17–19,22,29 have attempted to address TEE under283

multiple outcome scenarios. For example, Kennedy et al.17 propose to translate the treatment effects of284

multiple outcomes to a common scale and then estimate these scaled effects with non-parametric statis-285

tical methods. Argaw et al.19 examine the heterogeneous treatment effects and identify patient subpop-286

ulations under multiple outcomes. However, most methods are designed and evaluated on randomized287

controlled trial data (e.g., A/B testing) without the consideration of confounding bias (i.e., non-randomized288

treatment assignment) that widely exists in observational patient data. More importantly, a crucial aspect289

in our context is the differentiation between types of outcomes: therapeutic effectiveness versus safety290

endpoints. The omission of this distinction in current methodologies can lead to inaccuracies in outcome291

prediction and failure to identify optimal treatment strategies that consider both aspects.292

Covariate Balancing Assessment. In observational studies, it is crucial to ensure that the treatment293

groups are comparable with respect to baseline characteristics. We achieve this through propensity294

weighting, which reduces potential confounding by re-weighting each individual based on the propensity295

score. We compare the covariate balancing of the unweighted (original) and weighted data with absolute296

standard mean difference (ASMD). The ASMD is a widely used metric in propensity score analysis, quan-297

tifying the difference in means (or proportions) of a covariate between treatment groups, standardized298

by the pooled standard deviation. An ASMD of 0.1 or less is generally considered to indicate adequate299

balance. We follow existing work30 to calculate the ASMD of a target treatment against the remaining300

treatments. Figure 8 presents the ASMD of drug combination cohort “TZDs + ACEIs” for a variety of301

covariates, including demographic factors (e.g., age), clinical diagnoses (e.g., thyroid disorders, diabetes302

mellitus with complications), and medications (e.g., furosemide, metformin). In the unweighted original303

data, several covariates exhibit ASMDs greater than the 0.1 threshold, indicating a significant imbalance.304

After re-weighting the population, the ASMDs for most covariates are reduced and fall below the 0.1305

threshold, demonstrating improved balance. This enhanced balance demonstrates that the confound-306

ing bias is mitigated, ensuring the accuracy of estimated treatment effects. A comprehensive covariate307

balancing plot for all covariates is provided in Appendix Fig. A2.308

Results on Semi-Synthetic Data. Since ground truth treatment effects are unavailable in observational309

data (i.e., only one of the potential outcomes can be observed), direct evaluation of model performance310

for estimation accuracy is not possible. To address this limitation, we conducted experiments on semi-311

synthetic data with simulated true treatment effects. Specifically, treatment assignments and outcomes312

were simulated based on real patient covariates (details provided in Appendix D.1). Comparative results313

are presented in Appendix Table A5, showing that the proposed model achieves the highest performance314

across all baselines on the semi-synthetic data.315

Potential trade-offs among outcomes. In our paper, we consider multiple disease outcomes and iden-316

tify the optimal drug combination as one that achieves both maximum effectiveness and minimal safety317

risks. However, there are potential trade-offs among outcomes, particularly in cases where the treat-318

ment option with maximum effectiveness may not align with minimal safety risks. To mitigate this, it is319

essential to incorporate clinicians’ expert knowledge. In real-world clinical settings, clinicians can help320

determine the relative importance of different outcomes based on their practical experience and model321

estimated treatment effects. By integrating clinical insights with model outputs, we can carefully assess322

and prioritize outcomes, ultimately combining them into a single, composite endpoint that balances both323

effectiveness and safety considerations. This approach allows for the identification of the optimal treat-324

ment option based on its estimated effects on the combined outcome, ensuring that the selected treatment325

best aligns with the patient’s overall needs and preferences.326
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Limitations of the Study We acknowledge that our paper has limitations. First, from a data perspec-327

tive, the use of observational data presents challenges, primarily due to the absence of ground truths for328

treatment effects. This lack of true benchmarks makes it difficult to directly evaluate the model’s accuracy329

in estimating treatment effects. To address this limitation, we proposed the use of a proxy metric, MM-330

IP, to approximate estimation error and supplemented our analysis with experiments on a semi-synthetic331

dataset that includes simulated ground truths. Second, from methodology perspective, in estimating treat-332

ment effects across multiple outcomes and identifying the optimal treatments, potential conflicts among333

outcomes may arise. We anticipate that, in real clinical settings, incorporating clinicians’ expertise as prior334

knowledge could help guide the process, minimizing conflicts and enabling convergence toward a reliable335

recommendation.336
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Preliminaries362

Observational Patient Data. The observational patient data is denoted as {x, c,a,y}. Here, x =363

{x1, . . . , xT } represents the patient’s medical history over T timestamps, capturing the details of each364

medical visit. The variable c stands for static demographic information, including age (categorical) and365

gender (binary). Each medical visit, xt, contains a series of medications and diagnosis codes. Specifically,366

medications are represented as m1, . . . ,m|M| 2 M, where |M| is the total number of unique medication367

codes in the dataset. Similarly, diagnosis codes are denoted as d1, . . . , d|D| 2 D, with |D| representing the368

total number of unique diagnosis codes.369

Multiple Treatments. This work studies multiple treatment scenarios for antihypertensive drug combi-370

nations. Each drug combination is represented as ao
i,j

, where (ai, aj , o) denotes individual drugs ai, aj371

from the antihypertensive medication set A, and o 2 O of the treatment assignment order. This order372

includes initial combination therapy (simultaneous administration of ai and aj) and stepped-care protocols373

(sequential administration of ai followed by aj , or vice versa). Let P denote the total number of unique374

drug combinations.375

Multiple Outcomes. The investigation extends to multiple outcomes, y = y1, . . . , yK , where each out-376

come yk, binary in nature, relates to a specific aspect of hypertension disease progression. Here, K377

denotes the total number of distinct outcomes. Each outcome yk is also associated with a type label378

gk, categorizing it as either an effectiveness outcome or a safety outcome. This classification provides a379

comprehensive view of the treatment’s impact, enabling the assessment of treatment effects from different380

perspectives.381

Treatment Effect Estimation. We extend the Neyman-Rubin potential outcome framework31 to accom-382

modate multiple treatments and multiple outcomes. Given patient pre-treatment covariates x, c and dis-383

tinct treatment combinations ao

i,j
and as

q,r with i, j, q, r 2 A and o, s 2 O, the conditional average treatment384

effect (CATE) for the k-th outcome is defined as E[yk(ao

i,j
) � yk(as

q,r)|x, c]. This expression considers385

yk(ao

i,j
) and yk(as

q,r) as the potential outcomes under treatment combinations ao

i,j
or as

q,r, respectively.386

In observational data, outcomes for the non-received treatments remain unobserved, posing the funda-387

mental causal inference challenge, distinct from traditional supervised learning. To ensure identifiability388

of treatment effects from observational data, we adhere to three standard assumptions: consistency,389

positivity, and ignorability32, as elaborated in Appendix A. Under these premises, the treatment effect is390

estimated as E[yk|ao

i,j
,x, c]� E[yk|as

q,r,x, c].391

Patient Data Encoding392

The patient data is originally denoted by high-dimensional medical codes with temporal information. To393

convert such raw patient data into informative patient representations, we propose patient data encoding,394

which consists of a visit embedding layer and a time-aware Transformer encoder. Below, we integrate395

mathematical formulations to elucidate the operations within these components.396

Visit Embedding Layer. The visit embedding layer focuses on the patient’s covariates in medical history,397

denoted as x = {x1, . . . , xT }. Each element xt (where t 2 1, . . . , T ) represents the details of a patient’s398

visit at a specific timestamp. The embedding layer maps these discrete visit records into a continuous399

vector space, resulting in an embedded representation e(xt) for each visit. Formally, the embedding of400

the t-th visit is given by:401

e(xt) = VisitEmbeddingLayer(xt), 8t 2 1, . . . , T (2)

Time-aware Transformer Encoder. To enhance the patient representation, time information is also en-402

coded and integrated with the visit embeddings. Specifically, the time interval (vt) between the t-th visit403

and the initiation of treatment is encoded into a time embedding e(vt), parallel to the visit embeddings as:404

e(vt) = TimeEmbeddingLayer(vt), 8t 2 1, . . . , T (3)

This addition allows the model to account for temporal dynamics explicitly, which are essential in health-405

care applications. The combined input to the Transformer encoder33 (see details of Transformer layers in406
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Appendix B.1) consists of both visit and time embeddings. Let h0 denote the initial hidden representation407

as below:408

h0 = [e(x1) + e(v1), . . . , e(xT ) + e(vT ), e(c)] (4)

The Transformer processes this enriched input through L layers:409

hl = TransformerEncoderLayer(hl�1), l 2 1, . . . , L (5)

The final output hL is a comprehensive representation of the patient, effectively capturing both the tempo-410

ral aspects of the medical history and static demographic information. This encoded information (denoted411

as h for simplicity) is then utilized in subsequent multi-treatment modeling and multi-outcome prediction.412

Multi-Treatment Modeling413

This module is designed to address the complexities of multi-treatment modeling, specifically for drug414

combinations in hypertension management. First, the module encodes multiple drug combinations into415

latent embeddings. Then, it models the relationships between covariates and treatments to extract416

treatment-related information. The predicted treatment probability is further utilized as balancing weights417

to adjust for confounding bias.418

Multi-Treatment Encoding. The initial phase of this module focuses on encoding the drug combinations419

into an embedding space. Given a drug combination ao

i,j
, which includes two individual drugs (ai and aj)420

and their assignment order o, we approach the encoding process in a two-fold manner to capture both the421

drug-specific information and its sequential information.422

Firstly, each drug in the combination, ai and aj , is encoded separately through a drug embedding layer,423

which transforms the discrete drug identifiers into continuous vector representations. The embeddings for424

ai and aj are obtained as:425

e(ai) = DrugEmbeddingLayer(ai),
e(aj) = DrugEmbeddingLayer(aj)

(6)

The assignment order o, which indicates whether the drugs are administered simultaneously or sequen-426

tially, is also encoded. The order encoding captures the temporal aspect of the treatment administration.427

This is represented as:428

e(o) = OrderEmbeddingLayer(o) (7)

Secondly, to achieve a deep fusion of individual drugs and assignment order for a comprehensive429

treatment representation, we propose a treatment fusion layer:430

s(ao

i,j) = TreatmentFusion(e(ai), e(aj), e(o)) (8)

Specifically, this component first concatenates the drug embeddings with the order embedding and then431

projects this concatenated vector to a latent space through a fully connected layer (FC) for dimensionality432

alignment and feature extraction:433

e(ao

i,j) = FC([e(ai), e(aj), e(o)]) (9)

In addition, a self-attention mechanism (multi-head attention mechanism33) is applied to weigh and inte-434

grate the information from the drug and order embeddings adaptively:435

s(ao

i,j) = SelfAttention(e(ao

i,j)) (10)

Treatment-Covariate Co-Attention. This component plays a critical role in modeling the interactions436

between specific treatments and patient covariates. By considering treatment representation s(ao

i,j
) as437

“queries” and patient hidden representations h (last hidden state of transformer encoder) as both “keys”438

and “values”, we employ a co-attention mechanism34 that dynamically adjusts the focus on relevant co-439

variates for each treatment option:440

ha = Softmax
⇣
s(ao

i,j)h/
p
dk
⌘
h (11)
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where dk is the dimensionality of the key embeddings. This co-attention mechanism allows the model to441

dynamically focus on different aspects of the patient’s representation in relation to each treatment.442

Treatment Prediction. The pooled patient representation hpool (i.e., taking the first [CLS] token from h) is443

processed through a fully-connected layer with a sigmoid activation function � as the last layer to predict444

the probability of receiving each treatment âo

i,j as follows:445

âo

i,j = �(FC(hpool)) (12)

The treatment prediction task is formulated as a multi-class classification problem, where each class446

corresponds to a specific treatment combination. The treatment prediction loss function is defined as:447

Ltreat = �

X

i,j2A,o2O

ao

i,j log(â
o

i,j) (13)

where ao
i,j

is the ground truth treatment assignment. By minimizing Ltreat, the model is optimized to predict448

the probability of receiving each treatment combination.449

Propensity Score Weighting. The predicted probability of receiving treatment, also known as the450

propensity score35, is further leveraged to reduce the bias from confounding factors. Specifically, the451

balancing weights can be derived from the propensity scores and then used to estimate the potential452

outcomes. The inverse probability of treatment weighting (IPTW)36 is employed and extended to multiple453

treatment settings37 as follows,454

w =
W (ao

i,j
)

âo

i,j

(14)

where W (ao

i,j
) is the marginal probability of treatment ao

i,j
that is included to stabilize the weights38. Then455

the weight is used in the multi-outcome prediction to re-weight the patient and adjust for confounding bias.456

Multi-Outcome Prediction457

This module focuses on predicting multiple disease outcomes in a nuanced and comprehensive manner.458

This module first encodes the distinctive relationships among different outcomes and patient covariates459

and then predicts the outcomes, weighted based on the balancing propensity scores.460

Outcome-Distinctive Covariate Attention. This component addresses the distinctive impact that patient461

covariates have on different disease outcomes. It computes an outcome-distinctive covariate attention462

score ↵ 2 RK⇥N (where K is the number of outcomes, and N is the length of patient sequence) as463

follows:464

↵ =softmax(W2 tanh(W1h̃
T
))

h̃ =MLP([ha,h])
(15)

where, W1 2 Rdo⇥dh and W2 2 RK⇥do are trainable weight matrices, ↵k,n (each element of ↵) indicates the465

contribution of the n-th covariate to the k-th outcome. Leveraging ↵, the mechanism produces outcome-466

distinctive patient representations as ho = ↵h, thereby refining the predictions for each distinct outcome.467

Re-weighted Multi-outcome Prediction with Type Information. We recognize the critical role of out-468

come type (i.e., distinguishing between effectiveness and safety) in accurately predicting patient re-469

sponses to treatment. These types embody the dual (opposing) aspects of patient outcomes, each critical470

to understanding the full scope of treatment impacts. To harness this crucial insight, we propose first to471

predict each outcome type, ĝk, utilizing this prediction to enhance the subsequent outcome prediction, ŷk.472

In a teacher-forcing-like approach, during the training, the model predominantly uses the actual outcome473

types gk as supplementary context for enhancing outcome predictions, while in testing, it relies on its474

predictive capabilities for ĝk. Formally, we have475

ĝk = �(fg(ho)), ŷk = �(f⌘(ho, gk, ĝk)) (16)

Here, fg denotes the function to predict outcome type. f⌘ is the function to predict the outcome itself,476

where ⌘ 2 [0, 1] represents a tunable probability parameter designed to modulate the dependency on true477

versus predicted outcome types.478
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To address the potential issue of positive-negative imbalance encountered in outcome prediction (i.e.,479

where the incidence rate of certain disease outcomes may be notably low), we employ the Asymmetric480

Loss (ASL)39. ASL is adept at handling such imbalances by calculating separate losses for positive and481

negative samples, denoted as L+ and L�, respectively. The formulation is as follows:482

Loutcome =

⇢
L+ = w(1� ŷ)�+ log(ŷ)
L� = wŷc�� log(1� ŷc)

(17)

where ŷc = max(ŷ�c, 0) represents the adjusted outcome probability for negative examples, incorporating483

a margin c for hard thresholding. The hyperparameters ��, �+ are set such that ��  �+, enabling ASL484

to appropriately down-weight and apply hard thresholds to easy negative samples, thereby mitigating485

the imbalances. The balancing weight, w (from Eq. 14), is introduced to adjust the importance of each486

sample in the loss function based on the treatment assignment probability, which helps to mitigate the487

bias introduced by the non-random treatment assignment.488

Optimization and Treatment Effect Estimation. The overall loss function integrates the outcome pre-489

diction loss Loutcome with the treatment prediction loss Ltreat as:490

L = Loutcome + �Ltreat (18)

where � is a weighting factor that balances the importance of the outcome prediction loss and the treat-491

ment prediction loss. This combined loss function ensures that the model is trained to accurately predict492

both patient outcomes and treatment assignments, reflecting the complex relations of treatments and their493

effects.494

The estimated treatment effect under a pair of treatments ao

i,j
and as

q,r is defined as the differential495

between the potential outcomes:496

ŷk(a
o

i,j)� ŷk(a
s

q,r), 8k 2 1, . . . ,K (19)

This estimation is essential for elucidating the comparative impact of different treatments, thereby equip-497

ping healthcare professionals with the insights needed to make informed treatment selections.498

Treatment Recommendation499

This module demonstrates the application of the proposed METO in a healthcare problem for antihy-500

pertensive drug combination recommendation. Utilizing the estimated treatment effects across diverse501

drug combinations facilitates the identification of an optimal treatment strategy with maximum therapeutic502

efficacy and minimum drug safety concerns.503

Specifically, the trained model, f✓⇤ , with ✓⇤ representing the optimized parameters, is employed to si-504

multaneously evaluate effectiveness and safety outcomes for each potential treatment regimen concerning505

a new patient as:506

ŷk(a
o

i,j) = f✓⇤(x, c,a
o

i,j), 8k 2 1, . . . ,K (20)

The model evaluates each antihypertensive drug combination ao

i,j
by predicting effectiveness outcomes,507

ŷeffect(a
o
i,j
), and safety outcomes, ŷsafe(a

o
i,j
). The therapeutic effectiveness improvement over a baseline,508

denoted as ⌧̂effect(a
o
i,j
) = ŷeffect(a

o
i,j
)� ŷbase, guides the ranking of treatments. The optimal treatment, a⇤

opt,509

is then identified as the one offering maximal effectiveness improvement while ensuring minimal safety510

risk:511

a⇤

opt = argmin
i,j2A,o2O

ŷsafe(a
o

i,j) s.t. max
i,j2A,o2O

⌧̂effect(a
o

i,j) (21)

This streamlined approach empowers healthcare professionals to tailor treatment plans precisely, balanc-512

ing efficacy with safety, to meet individual patient needs effectively.513
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Main tables and corresponding titles and legends651

Table 1: Performance comparison for factual outcome prediction (AUPR) and treatment effect estimation
(MM-IP: IF-PEHE for multiple treatments and multiple outcomes). The results are averaged over 20
random runs. Full results with standard deviations for all methods are provided in Appendix Table A6

.

Method Stroke MI HF AKF Gout VTE

AUPR " MM-IP # AUPR " MM-IP # AUPR " MM-IP # AUPR " MM-IP # AUPR " MM-IP # AUPR " MM-IP #

S-learner 0.551 0.284 0.188 0.355 0.329 0.378 0.218 0.370 0.339 0.325 0.274 0.356
T-learner 0.544 0.297 0.181 0.360 0.325 0.386 0.212 0.377 0.331 0.332 0.267 0.363

TARNet 0.569 0.271 0.196 0.351 0.342 0.357 0.233 0.359 0.349 0.318 0.288 0.355
DragonNet 0.574 0.262 0.198 0.344 0.351 0.338 0.251 0.342 0.356 0.303 0.294 0.332

PerfectMatch 0.591 0.239 0.202 0.361 0.388 0.312 0.274 0.331 0.378 0.289 0.312 0.317
MEMENTO 0.584 0.244 0.208 0.354 0.382 0.317 0.270 0.338 0.372 0.294 0.310 0.322
TECE-VAE 0.605 0.230 0.211 0.355 0.397 0.302 0.290 0.325 0.381 0.283 0.319 0.309
LR-learner 0.609 0.225 0.206 0.364 0.392 0.308 0.296 0.321 0.385 0.280 0.326 0.315
TransTEE 0.617 0.221 0.235 0.321 0.409 0.284 0.303 0.311 0.403 0.261 0.338 0.276
NCoRE 0.577 0.249 0.207 0.361 0.388 0.313 0.275 0.334 0.370 0.297 0.311 0.326

METO 0.656 0.185 0.329 0.225 0.442 0.236 0.364 0.238 0.453 0.204 0.363 0.201
(std) 0.011 0.003 0.009 0.005 0.013 0.004 0.014 0.007 0.007 0.006 0.008 0.003
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Figure 1: Workflow overview of the proposed METO. Patient records are extracted from medical claims
data and processed to train the model, which learns to estimate the treatment effects of multiple drug
combinations. The lower panel shows the model’s output, where the estimated effects on both effective-
ness and safety outcomes assist clinicians in making informed treatment decisions for hypertension.
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(a) (b)

(c) (d)

Figure 2: Statistics of hypertension patient cohorts across 15 unique drug combinations. (a) Patient
population distribution across different drug combinations. (b) Gender distribution across different drug
combinations. (c) Age distribution across different drug combinations. (d) Outcome distribution across
different drug combinations. TZDs: thiazide diuretics. ACEIs: ACE inhibitors. ARBs: angiotensin receptor
blockers. CCBs: calcium channel blockers. + and ! denote the initial combination and stepped-care,
respectively (e.g., “ACEIs + CCBs” represents the initial combination of ACEIs and CCBs, while “ACEIs
! CCBs” represents first ACEIs, then CCBs sequentially). MI: acute myocardial infarction. HF: heart
failure. AFK: acute kidney failure. VTE: venous thromboembolism
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patient' record
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Figure 3: Illustratioin of the treatment cohort definitions. The treatment consists of two drugs as a combi-
nation. The outcomes are computed in the follow-up period. The pre-treatment covariates obtained from
the baseline period are regarded as confounders for adjustment.
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Figure 4: Comparison of disease outcomes for different treatment approaches among the patient popu-
lation. The percentage of patients experiencing specific outcomes across three categories: all patients
(dashed line with diamond markers), actual treatments administered (red bars), and model-recommended
treatments (blue bars). The error bars on each column indicate the standard errors of the data points.

Figure 5: Ablation study for different variants of METO. The error bars on each column indicate the
standard errors of the data points.
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Figure 6: Illustration of how the proposed METO can be used to assist clinicians decide the personalized
optimal drug combination with beneficial effects and reduced safety risks.

Figure 7: Visualization of covariates with largest outcome-distinctive covariate attention (↵k) of one patient
with two outcomes: HF and VTE.
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Figure 8: Performance of covariate balancing of TZDs and ACEIs. The absolute standard mean difference
(ASMD) values of the top 20 well-balanced covariates before and after weighting are presented. The
vertical dotted red line at 0.10 represents the threshold for balance, with points closer to zero indicating
better balance.
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Figure 9: A detailed illustration of METO. (1) Patient data encoding: raw patient data is transformed into
enriched patient representations. (2) Multi-treatment modeling: drug combinations and administration
sequences are encoded, and the probability of receiving each treatment is predicted as balancing scores.
(3) Multi-outcome prediction: multiple outcomes are predicted by integrating the patient representations
with the treatment representations, re-weighted by the balancing scores. (4) Treatment recommendation:
optimal drug combinations are identified based on the estimated treatment effects.
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