
 

Systematics investigation of key drivers of lung 
adenocarcinoma: A focus on genes, pathways, and 
miRNAs 
Maryam Navaei1, Fatemeh Karami2, Aria Jahanimoghadam3, Sara Zareei4, Babak Khorsand5* 

1 Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran 
2 Protein Research Center, Shahid Beheshti University, Tehran, Iran 
3 Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany 
4 Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran 
5 Department of Neurology, University of California, Irvine, CA, USA 

Abstract 

Introduction 
Lung cancer remain a leading cause of cancer-related death, largely due to its asymptomatic 
progression in early stages and the development of drug resistance. Non-small cell lung cancer 
(NSCLC) accounts for 80% of all lung cancer cases, with lung adenocarcinoma (LUAD) being 
the most prevalent subtype. Despite advancements in treatment, the 5-year survival rate for 
LUAD remains low. Therefore, exploring gene networks may reveal novel therapeutic targets 
and pave the way for improved  
Method 
A comprehensive literature review was conducted across various databases containing multi-
level genomic information. From this, a robust list of LUAD-related genes was curated. These 
genes were used to construct a weighted network based on KEGG pathway similarity. The 
network was subjected to clustering, hub gene detection, and gene ontology analysis. In parallel, 
a protein-protein interaction (PPI) network was constructed around these genes, which was 
further enriched with miRNA data to develop a gene-miRNA regulatory network. 
Results  
Following our analysis, 48 genes were identified as crucial to LUAD. Many of these genes, 
along with their corresponding miRNAs, were found to be either upregulated or downregulated 
in LUAD tissues. The hub genes and miRNAs identified are believed to play key roles in the 
initiation and progression of LUAD. Our network analysis highlighted PIK3CA, BRAF, EGFR, 
ERBB2, FGFR3, MTOR, and TP53, along with KRAS, MET, and FGFR2, as potential 
biomarkers. Additionally, miR-17-5p and miR-27a-3p, which are notably implicated in LUAD, 
emerged as novel biomarker candidates. 
Conclusion 
In conclusion, we employed a combination of bioinformatics techniques and database mining to 
derive a refined list of genes and miRNAs with high potential for further research in LUAD. We 
also identified core pathways that play a critical role in LUAD pathogenesis, providing a 
foundation for future studies aimed at developing more targeted therapeutic approaches. 
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Introduction:  

Lung cancer is one of the Leading causes of death worldwide, often referred to as “silent killer” 

due to its asymptomatic nature in the early stages and the development of drug resistance in 

advanced stages [1, 2]. These factors make it difficult to detect and treat, contributing to the 

rising mortality rate. Lung cancer is classified into two main types, Small Cell Lung Cancer 

(SCLC), which accounts for  15% of  cases, and Non-Small Cell Lung Cancer (NSCLC), making 

up the remaining 85% [2]. Among the subtypes of lung cancer, lung adenocarcinoma (LUAD) is 

the most common, affecting both smokers and non-smokers alike[3]. Key risk factors for lung 

cancer include exposure to radioactive gases, tobacco smoke (both first-hand and second-hand),  

and air pollution [2]. Within NSCLC category, LUAD is the most prevalent subtype, 

representing over 40% of these cases [4, 5].  

Despite advancements in in treatment options, including immunotherapy and minimally invasive 

surgical techniques, the prognosis for LUAD remains poor. The 5-year overall survival rate 

stands at only about 17.4, with an average survival of just 15%. While therapies such as 

chemotherapy and chemoradiation have led to some improvements, the increase in survival rates 

over the past few decades has been minimal [4, 6-8].  

Analyzing gene networks can provide crucial insights into the mechanisms underlying cancer, 

aiding in the development of more effective diagnostic tools and therapies [9, 10]. Currently, a 

combination of treatments -including surgical resection, radiotherapy, chemotherapy, genetic 

testing, immunotherapy, and targeted therapy- are used to treat lung cancer, showing varying 

degrees of effectiveness. However, significant challenges remain,  such as tumor drug resistance, 

difficulties in early-stages diagnosis, variability in individual treatment responses, and genetic 

heterogeneity [11, 12]. Identifying key hub genes and designing therapies that target them could 

offer a promising approach to better manage tumors. Understanding the function of these genes 

could have a significant impact on overcoming drug resistance and inhibiting tumor growth and 

survival [13-15]. 
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In the present study, we mined multiple databases to compile a comprehensive list of genes 

involved in various aspects of LUAD pathogenesis. The use of diverse databases strengthens the 

statistical power, resulting in a refined, robust set of genes that accurately represent LUAD. We 

have introduced a novel approach to constructing gene networks, where connections (edges) are 

based on shared biological processes or KEGG terms, rather than traditional physical 

interactions. 

 As illustrated in Fig. 1 this method enables the identification of functional gene modules, 

offering deeper insight into the underlying biological mechanisms. Additionally, it helps to 

pinpoint critical pathways that might be overlooked in networks built solely on physical 

interactions, potentially uncovering novel therapeutic targets and biomarkers.  

 

 

 

Fig. 1. The flowchart illustrates methodology, starting from compilation of LUAD-associated 

genes to the identification of  molecular mechanisms and potential biomarkers.  
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Methodology 

Compiling a Robust Gene List for LUAD 

The collected genes were sourced from eight databases: dbGaP [16], TCGA [17], Disgenet [18], 

OpenTarget [19], UniProt [20], CancerHotspot [21], and ClViC [22]. LUAD-related genes were 

extracted from each database  to form a ranked list. Genes appearing in at least 3 databases, or 

top- ranked genes from a single dataset,  were included even if they were not present in the 

minimum 3 datasets. Specific selection criteria for each database were as follows: 

• dbGaP: Genes occurring more than seven times.  

• TCGA: scores were normalized between 0 and 1, and genes with scores above 0.3 were 

chosen.  

• Disgenet: genes linked to more than 1500 diseases or with a gene-disease association 

score (GDA) greater than 0.3 were filtered, with genes scoring above 0.4 selected.  

• OpenTargets: 5 factors were considered: ClinVar, global score, cancer biomarker, 

ClinVar somatic, and Cancer Gene Census, with a score threshold of 0.05. The top 20% 

of genes were selectd 

• UniProt, CancerHotspot, and CIViC: As no specific score were available, full gene lists 

were used to calculate the frequency.  

This approach ensures a comprehensive gene list, capturing gens with different biological 

relevance across the databases.  

KEGG Term Assignment for Genes Using Enrichr  

Enrichr [23] was used to perform enrichment analysis, determining biological significance for 

our final list of 48 genes. The gene list was used as an input into the Enrichr web server to obtain 

the relevant KEGG terms. The resulting KEGG terms were split for each gene, forming a data 

frame linking genes to their corresponding KEEG pathways. 
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Calculating Edge Weights  

An edge was created between gene pairs if they shared a KEGG term. The edge weights 

represent the strength of gene pair’s relationship, based on shared biological process, and are 

referred to as  "KEGG-based network" hereafter. 

Network Construction Based on Common KEGG Terms  

Using the “igraph” package in R version 4.4.1, we built networks where edges represented 

shared KEEG terms. This novel network construction method focuses on shared  functional 

roles, offering deeper understanding of gene interactions within the LUAD context. 

Clustering Using MCODE Plugin in Cytoscape  

Once the network was built, it was imported into Cytoscape version 3.10.,  a bioinformatics tool 

for network visualization and analysis. The MCODE plugin was used to identify highly 

interconnected modules (clusters) within the network, using default parameters (node score 

cutoff: 0.2,  K-Core: 2).  

Gene Ontology (GO) Analysis 

Gene Ontology  and pathway enrichment analysis were performed to investigate the main 

functions and pathways in each cluster. Using gProfiler tool within Cytoscape, we indentified 

relevant GO terms, providing insight into how each cluster contributes to LUAD pathogenesis.  

Network Construction Based on Physical Interactions  

To complement the KEEG-based network, we built a protein-protein interaction network (PPIN) 

using the STRING database (https://string-db.org/). Interactions were filtered using a minimum 

interaction score of 0.7, ensuring high-confidence interactions between genes.  
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miRNA-Gene Regulatory Network Construction  

A regulatory network around the PPIN was constructed using CyTargetLinker plugin in

Cytoscape [24]. miRTarBase [25] was used as the source of miRNA-gene interactions. We

identified the top 10 hub miRNA by ranking them based on their connectivity within the

network. 

Results 

A total of 48 LUAD-related genes were obtained from multiple databases, details of which can

be found in Table S.1, including the frequency of each gene across the eight databases. Using

KEGG terms derived from Enrichr and our defined methodology for establishing edges between

genes, 29 of these genes shared at least one KEGG term. These 29 genes were used to construct

the KEGG-based gene network. 

To identify hub genes, 12 different centrality algorithms were applied within Cytoscape: CC,

DMNC, MNC, Degree, EPC, Bottleneck, Eccentricity, Closeness, Radiality, Betweenness, Stress

and Clustering Coefficient. For each algorithm, 10 hub genes were identified (Fig. 2, Table. 1).

The most frequently recurring genes across these algorithms were PIK3CA, BRAF, EFGR,

ERBB2, FGFR3, KRAS, MET, MTOR, TP53 and FGFR2, with PIK3CA being identified as a

hub gene in 10 out of 12 algorithms. The network analysis also resulted in two distinct clusters:

Cluster 1 with 22 nodes and 193 edges, and Cluster 2 with 3 nodes and 3 edges (Fig  3). 

 

 

in 

e 

he 

an 

ng 

en 

ct 

C, 

ss 

).  

R, 

s a 

rs: 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 10, 2024. ; https://doi.org/10.1101/2024.11.09.24317046doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.09.24317046


 

Fig. 2.  Frequency of hub genes identified across 12 different centrality algorithms 

Table 1. Frequency of hub genes among 12 different hub detection algorithms. 

Gene Frequency Gene Frequency Gene Frequency 

PIK3CA 10 NRG1 3 KEAP1 1 

BRAF 9 NTRK3 3 MAP3K1 1 

EGFR 9 PLA2G4E 3 NF1 1 

ERBB2 9 RB1 3 RAD51B 1 

FGFR3 9 RYR2 3 STK11 1 

KRAS 9 ALK 2 TERT 1 

MET 9 CDKN2A 2 TP63 1 

MTOR 9 SMARCA4 2 

TP53 7 ACVR1B 1 
FGFR2 5 APC 1 

ATM 4 KDR 1 

 

 

Fig. 3.  Two clusters identified from the KEGG-based network. Redder edges indicate stronger 

pathway dependencies between gene pairs. 
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Gene Ontology (GO) Analysis of KEGG-Based Clusters 

The two clusters were subjected to GO analysis to further investigate the roles of specific genes 

in LUAD pathogenesis. Cluster 1 genes were  significantly enriched in multiple biological 

process (BP), molecular function (MF), cellular component (CC)  terms,  as well as Reactome 

pathways (table. S.2, Fig. 4). Cluster 2 (Fig. 5) was associated with a single GO term, BP. 

 For Cluster 1, the most significantly enriched biological process terms included: protein 

phosphorylation (GO:0006468; P=3.93E-17), phosphorylation (GO:0016310; P=8.04E-16), 

regulation of cell population proliferation (GO:0042127; P=1.49E-13), programmed cell death 

(GO:0012501; P=2.75E-12), cell population proliferation (GO:0008283; P=3.34E-12), regulation 

of signal transduction (GO:0009966; P=3.54E-12), protein modification process (GO:0036211; 

P=4.07E-12), and cell death (GO:0008219; P=2.85E-12). 

The most notably enriched molecular function terms were: transferase activity, transferring 

phosphorus-containing groups (GO:0016772; P=5.10E-13), protein kinase activity 

(GO:0004672; P=1.15E-12), kinase activity (GO:0016301; P=1.29E-12), phosphotransferase 

activity, alcohol group as acceptor (GO:0016773; P=1.07E-11), transmembrane receptor protein 

tyrosine kinase activity (GO:0004714; P=1.09E-10), protein tyrosine kinase activity 

(GO:0004713; P=6.54E-10), transmembrane receptor protein kinase activity (GO:0019199; 

P=7.39E-10), and purine ribonucleoside triphosphate binding (GO:0035639; P=7.71E-9). 

For cellular components, significant terms were: receptor complex (GO:0043235; P=9.09E-5), 

PML body (GO:0016605; P=6.44E-4), cytosol (GO:0005829; P=4.06E-3), protein-containing 

complex (GO:0032991; P=8.62E-3), ruffle membrane (GO:0032587; P=2.36E-2), cell junction 

(GO:0030054; P=2.83E-2), catalytic complex (GO:1902494; P=3.56E-2), and nucleoplasm 

(GO:0005654; P=3.98E-2). 
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Top Reactome pathways included: diseases of signal transduction by growth factor receptors and

second messengers (REAC:R-HSA-5663202; P=1.33E-9), disease (REAC:R-HSA-1643685;

P=1.41E-7), RAF/MAP kinase cascade (REAC:R-HSA-5673001; P=1.90E-4), MAPK1/MAPK3

signaling (REAC:R-HSA-5684996; P=2.15E-4), regulation of TP53 degradation (REAC:R-

HSA-6804757; P=2.33E-4), regulation of TP53 expression and degradation (REAC:R-HSA-

6806003; P=2.61E-4), PI3K/AKT signaling in cancer (REAC:R-HSA-2219528; P=3.01E-4), and

MAPK family signaling cascades (REAC:R-HSA-5683057; P=5.35E-4) (Fig. 6). 

The most significantly enriched GO term for Cluster 2 was calcium-mediated signaling using

intracellular calcium source (GO:0035584; P=1.58E-8). 
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Fig. 4- GO analysis results for genes in Cluster 1. (A) biological pathways, (B) cellular

components, (C) molecular functions, and (D) Reactome pathways. 

  

 

Fig. 5- GO Analysis results for Cluster 2 genes. 
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Fig. 6. The results of GO analysis on cluster 1, illustrating the significance of various biological 

processes (BP), molecular functions (MF), and cellular components (CC). The heatmap uses 

colors ranging from blue to dark red to indicate different levels of significance (-log10(p value)), 

while the bar graph shows the counts for each category which is 22. 

Protein-Protein Interaction Network (PPIN) and miRNA-Gene Regulatory Network 

The PPIN constructed around our gene list consisted of 46 nodes and 109 edges, with two non-

coding genes (LINC01511 and PHF5GP) excluded.  Base on the PPIN, miRNAs were identified, 

with the top 10 being miR-335-5p, miR-16-5p, miR-125b-5p, miR-21-5p, miR-17-5p, miR-27a-

3p, miR-124-3p, miR-26b-5p, miR-155-5p, and miR-125a-5p (Table. 2) 

Table 2. Literature review of top 10 miRNAs. 

miRNA Degree Regulation Role as Function in LUAD 
Known as 
biomarker in 
LUAD 
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Discussion  

The diagnosis and treatment of lung adenocarcinoma (LUAD) continue to face significant 

challenges, as evidenced by the increasing incidence of cases each year. Effective treatment 

strategies require a deeper understanding of LUAD pathogenesis and identification of reliable 

biomarkers. This study utilized multiple databases to identify key genes implicated in LUAD and 

shed light on the molecular mechanisms driving the disease.  

Our analysis revealed PIK3CA as the most connected gene in the network, supported by its 

established correlation with poor survival in NSCLC patients. PIK3CA mutations occurs in 1.5% 

to 7.7% of LUAD cases and are involved in the PI3K/AKT1/MTOR pathway, often co-occurring 

with mutations in EGFR, KRAS, and BRAF [46-48].  

Similarly, BRAF is another significant genes involved in kinase fusions and MAPK signaling,   

contributing to oncogenesis [49]. BRAF mutations, present in 3-5% of NSCLC cases, frequently 

co-occur  with other mutation, TP53, KRAS, EGFR, NF1, STK11 and MET [50], and it has been 

identified as a biomarker for LUAD [46, 51]. 

miR-335-5p 10 upregulated 
oncomiR, tumor 
suppressor depending the 
target 

 cell proliferation, metastasis [26, 27] Yes [28] 

miR-16-5p 8 
downregulation, 
upregulated 

tumor suppressor 
activating oncogenic pathways, 
diactivating tumor growth inhibiting 
pathways [29, 30] 

Yes [30] 

miR-125b-5p 8 downregulated tumor suppressor cell proliferation, metastasis [31] Yes [32]  

miR-21-5p 7 upregulated oncomiR cell proliferation, metastasis [33, 34] Yes [33] 

miR-17-5p 7 upregulated 
onocomiR, tumor 
suppressor (in some 
context) 

 cell proliferation,  metastasis [35, 36] 
Not mentioned 
precisely 

miR-27a-3p 7 upregulated oncomiR 
tumor development, metastasis, EMT, 
resistance to chemotherapy [37] 

Not mentioned 
precisely 

miR-124-3p 6 downregulated tumor suppressor 
metastasis, cellular metabolism, 
autophagy, and cell cycle regulation 
[38] 

Yes [39] 

miR-26b-5p 6 downregulated tumor suppressor cell proliferation, apoptosis [40] Yes [41] 

miR-155-5p 6 upregulated oncomiR 
cancer cell survival, progression, 
EMT [42] 

Yes [43] 

miR-125a-5p 6 downregulated tumor suppressor 
proliferation, invasion, apoptosis [44, 
45] 

Yes [32] 
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EGFR, a receptor tyrosine kinase which is also known as ERBB1 and HER1, plays a role in 

growth factor signaling by promoting cell proliferation and inhibiting apoptosis [52]. EGFR is 

mutated in a substantial proportion of LUAD cases, with frequencies varying between 

populations. For instance, the mutation rate can reach up to 60%, in Asian populations.  For 

example, a study conducted in China identified an EGFR mutation rate of 49.3% among 

adenocarcinoma patients, while another study reported a rate of 51.4% in a larger group of 

patients with advanced lung cancer [53, 54]. However, this value is generally lower (10-20%) in 

European and North American groups. EGFR mutations often co-exist with other genetic 

alterations like TP53, CDKN2A/B, BRCA2 and PTEN [55].  

ERBB2 (HER2), another receptor tyrosine kinase, functions similarly to EGFR and is involved 

in PI3K/AKT, MAPK/ERK, JAK/STAT, and SRC/YAP pathways  [56]. ERBB2 mutations, 

present in 1.5% to 2.6% of LUAD cases [57], often co-occur with mutations in TP53 [58], 

KRAS [59], PIK3CA [60] and FOXA1 [58], influencing tumor progression and treatment 

response.  

In addition, FGFR3 mutations, although less frequent (around 1.3% of LUAD cases) [61],  play a 

crucial role in regulating tumor growth and survival [31] by interacting with ley pathways, 

including JAK/STAT, MAPK and PI3K/AKT. Other genetic alterations like KRAS, PI3K, 

EGFR are often associated with FGFR3 mutations [61].  

KRAS mutations, present in approximately 30% of LUAD cases, are particularly noteworthy due 

to their  impact on various cellular pathways [62]. KRAS mutations persistently activate the  

RAS signaling pathway, promoting tumorigenesis, while also engaging the PI3K pathway, which 

foster cell survival, growth, and therapy resistance [63]. Recent studies also implicate the 

GTF3C6 and FAK pathway in the progression of KRAS-driven LUAD, associating them with 

enhanced cell migration and invasion. Additionally, KRAS mutations alter cholesterol efflux, 

which may further contribute to tumor growth [63]. These mutations also influence the tumor 

microenvironment and immune responses, potentially impacting the success of immunotherapies 

[64]. 

The prevalence of MET overexpression in NSCLCs varies significantly, with reported rates 

between 15% and 70%. Both MET mutations and amplifications act as key oncogenic drivers 
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and therapeutic biomarkers in LUAD [65]. The MET signaling pathway is activated when 

hepatocyte growth factor (HGF) binds to the MET receptor, initiating downstream signaling 

cascades that promote cell proliferation, survival, and motility, all of which are crucial for tumor 

growth and metastasis [66, 67]. In Fak, MET activation enhances cell growth, survival, and 

movement by stimulating the RAS, RAC, PI3K, ERK, and CAS-CRK pathways. Additionally, 

MET signaling facilitates invasion, enabling cells to break down or reorganize the surrounding 

matrix and move across tissue barriers, often utilizing urokinase-type plasminogen activator 

(uPA), plasminogen activator inhibitor-1 (PAI-1), and matrix metalloproteases (MMPs) [66]. 

Moreover, alterations in MET are linked to resistance against EGFR tyrosine kinase inhibitors, 

highlighting the necessity for combination therapies that target both pathways [68]. 

While the exact prevalence of aberrant mTOR expression in lung cancers is unclear, 

phosphorylated mTOR has been detected in over 70% of 110 tested NSCLC samples [69]. The 

mTOR pathway plays a critical role in LUAD, particularly through the PI3K/AKT/mTOR 

pathway, which stimulates cell proliferation, survival, and metabolism [70]. This pathway is 

often activated by mutations in upstream regulators such as KRAS. Additionally, mTOR 

regulates autophagy in LUAD, suppressing it to promote tumor growth, while inhibiting mTOR 

can enhance autophagy and improve responses to chemotherapy [71]. mTOR signaling also 

affects the immune response within the tumor microenvironment, influencing tumor progression 

and immunotherapy outcomes [70].  

The TP53 gene serves as a crucial tumor suppressor that regulates various cellular pathways 

significantly impacted in LUAD, with mutations found in about 25-50% of NSCLC patients 

[72]. These mutations interfere with cell cycle regulation, especially at the G1/S checkpoint, 

resulting in unchecked cell proliferation and tumor progression [73, 74]. Additionally, TP53 is 

critical for triggering apoptosis in response to DNA damage. Mutations in this gene hinder this 

process, leading to resistance against therapies [74, 75]. TP53 is also involved in the DNA 

damage response and is associated with the activation of the PI3K/AKT/mTOR pathway, which 

supports cell survival and growth [73]. Moreover, TP53 mutations can modify the tumor 

microenvironment and influence immune responses, potentially improving the efficacy of 

immunotherapies, while also disrupting other signaling pathways such as E2F and Notch, which 

further exacerbate the aggressive nature of LUAD [73, 76]. 
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FGFR2 mutations occur in about 4-5% of patients with NSCLC, including those with LUAD 

[77]. The fibroblast growth factor receptor 2 (FGFR2) signaling pathway plays a vital role in the 

development and progression of LUAD by facilitating cell proliferation and migration, especially 

in high-grade tumors [78].  Activation of this pathway triggers the PI3K/AKT and MAPK 

cascades, enhancing cell survival, proliferation, and invasion. It also engages the c-Jun-YAP1 

axis, regulating key genes involved in cell growth and survival [78]. Additionally, FGFR2 

alterations frequently coincide with changes in the PI3K pathway in LUAD, suggesting that 

combination therapies targeting both pathways could be an effective strategy for treating 

FGFR2-positive LUAD [61]. 

Additional biomarkers identified for LUAD include mutations in PIK3CA [79], BRAF, EGFR, 

ERBB2[80] and FGFR3 [81], MTOR, and TP53, highlighting the diverse molecular landscape of 

the disease.  

After analyzing the gene-miRNA regulatory network, miR-335-5p, miR-16-5p, miR-125b-5p, 

miR-21-5p, miR-17-5p, miR-27a-3p, miR-124-3p, miR-26b-5p, miR-155-5p, miR-125a-5p 

emerged as the top 10 miRNAs based on their degree of connectivity within the network.  

miR-335-5p exhibits dual roles, acting as both an oncogenic and tumor suppressor, depending on 

its target. In several cancers, like prostate cancer, it suppresses cell proliferation, whereas in 

LUAD, it can promote metastasis. one of its oncogenic roles is enhancing migration by targeting 

copine-1 (CPNE1), an NF-κB signaling suppressor, through binding to the 3′UTR [26]. 

Additionally, miR-335-5p downregulates CCNB2,  a G2/M phase cyclin that is highly expressed 

in LUAD by targeting its 3'-UTR [27]. 

miR-16-5p plays a complicated role in LUAD, with both upregulation and downregulation 

reported in studies. While circulating miR-16-5p can be upregulated in LUAD and show high 

sensitivity and specificity for lung cancer prediction in plasma [29], it also has been mentioned to 

function as tumor suppressor in radioresistant lung cancer cells by regulating key signaling 

pathways and associating with apoptosis [82]. Exosomal miR–16-5p overexpression reduces PD-

L1 expression, which otherwise contributes to tumor growth [30]. Future studies are needed to 

clarify these contradictory roles in LUAD.  
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miR-125b-5p is downregulated in LUAD, contributing to tumor proliferation and migration.  It 

has been shown to inhibit cell proliferation and induce apoptosis, emphasizing its tumor-

suppressive function [31]. 

miR-21-5p is upregulated in LUAD, promoting metastasis. It negatively regulates genes like 

CREBRF, HGF, LIFR, PIK3R1 and XKR6, with PIK3R1being its primary target [33]. It also 

inhibits  the PTEN gene and reduces the expression of apoptosis-related genes such as caspase-9, 

BAD, and P53 [34]. 

miR-17-5p is overexpressed in LUAD and is involved in tumor growth and metastasis. It 

negatively co-expresses with PLSCR4 (phospholipid scramblase 4) , a protein involved in 

immuno-activation, tumorigenesis, apoptosis [35]. Moreover, miR-17-5p has negative 

correlation with HCP5 and HOXA7 [83]. While primarily oncogenic, some studies suggest that 

miR-17-5p may act as a tumor suppressive role in early-stage cancers. Further research is 

necessary to understand its context-dependent functions [36]. 

miR-27a-3p is elevated in NSCLC tissues but reduced in pulmonary macrophages and peripheral 

blood [84]. Although miR-27a-3p has been identified in multiple cancer types, the precise 

mechanisms and signaling pathways in which it influences tumor development, invasion, and 

metastasis are still not well understood [37]. Recent studies highlight miR-27a-3p has significant 

role in processes such as epithelial-mesenchymal transition(EMT), immune responses, and 

chemotherapy resistance. It modulates critical pathways, including Ras/MAPK/ERK pathway, 

AKT pathway, and TGF-β pathway, affecting oncogenic  proteins like c-myc, PI3K, and 

SMAD2/4. Furthermore, miR-27a-3p activates the Wnt/β-catenin pathway, further promoting 

cancer cell proliferation and survival [37]. 

miR-124-3p is significantly downregulated in NSCLC compared to healthy individuals [38]. 

This miRNA inhibits metastasis by blocking the PI3K/AKT pathway and targeting the 

disintegrin and metalloproteinase 15 (ADAM15), preventing cancer cell invasion [39]. It also 

regulates cell migration by through ZEB1 suppression and regulates proliferation by targeting 

oncogenic pathways involving CD164 and Cadherin-2 (CDH2) [38]. Low levels of miR-124-3p 

have been associated with gefitinib resistance in NSCLC patients, while increasing its expression 

can reverse this resistance by inhibiting SNAI2 and STAT3 [38]. Moreover, miR-124-3p 
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influences cellular metabolism, autophagy, and cell cycle regulation, further emphasizing its 

function as a tumor suppressor in LUAD [38]. 

miR-26b-5p is downregulated in LUAD tissues, and its increased expression is associated with 

enhanced radiosensitivity and apoptosis in LUAD cell lines like A549 cells [41]. It has been 

documented that silencing DUXAP8 expression leads to decreased cell proliferation and 

increased apoptosis in LUAD by targeting miR-26b-5p, which functions as a cancer promoter 

[40]. Furthermore, ATF2 has been introduced as a target of miR-26b-5p; when ATF2 is 

overexpressed, it reduces radiosensitivity, indicates it as a potential biomarker for discriminating 

cancer cell from normal cells [41]. This miRNA is crucial in various biological processes, such 

as hypoxia and inflammation, and it enhances cancer cell survival by inhibiting the von Hippel–

Lindau (VHL) tumor suppressor protein [42]. 

miR-155-5p aids in cancer progression by facilitating EMT and plays a role in the regulation of 

glucose metabolism and immune responses [42]. It is a key regulator of multiple cancers 

pathways  that contribute to tumor growth and survival [42]. 

miR-125a-5p functions as a tumor suppressor in LUAD cells leads to a decrease in cell viability, 

proliferation , and invasion, while enhancing apoptosis [44, 45]. It was reported that miR-125a-

5p binds to the 3′-UTR of STAT3, resulting in lower STAT3 expression, which is associated 

with cancer development [44]. Furthermore, miR-125a-5p specifically targets NEDD9, a protein 

linked to invasive characteristics, and its overexpression diminishes the invasive potential of the 

A549 and H1299 lung cancer cell lines [45]. 

Among these miRNAs, all except miR-17-5p, miR-27-5p have been identified as LUAD 

biomarkers.  While both miR-17-5p and miR-27a-3p play significant roles in LUAD 

pathogenesis, the term "biomarker" has not been explicitly applied to them in the context of 

LUAD. This distinction suggests that further research may be required to clarify their potential 

use as diagnostic or prognostic markers in LUAD.  

Conclusion 

In this study, we obtained 48 genes from eight different databases and further refined them to 

highlight key hub genes, top miRNAs and most significant molecular mechanisms involved in 
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LUAD pathogenesis. The analysis revealed that several of these genes exhibited mutations 

compared to normal lung tissue, with corresponding miRNAs displaying either upregulation or 

downregulation in specific cases. We propose that these hub genes and miRNAs are crucial in 

the initiation and progression of LUAD tumors.  

Through a novel approach combining network biology methods and database mining, we found 

core genes, pathways, and miRNAs linked to LUAD. While several miRNAs were already 

known as biomarkers, we suggest miR-17-5p and miR-27a-3p as novel biomarkers for LUAD, 

meriting further experimental investigations.  

Overall, our findings offer a concise but impactful subset of molecular drivers in LUAD. The 

gene prioritizations techniques used in this study streamline the selection of important genes and 

miRNAs, providing a focused set for future in vivo and in vitro studies, ultimately saving time 

and resources in experimental validation. 
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