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Abstract 50 

Calculating optimal polygenic risk scores (PRS) across diverse ancestries, 51 
particularly in admixed populations, is necessary to enable equitable genetic 52 
research and clinical translation. However, the relatively low representation of 53 
admixed populations in both discovery and fine-tuning individual-level datasets limits 54 
PRS development for admixed populations. Under the assumption that the most 55 
informative PRS weight for a homogeneous sample, which can be approximated by a 56 
data point in the ancestry continuum space, varies linearly in that space, we 57 
introduce a Genetic Distance-assisted PRS Combination Pipeline for Diverse Genetic 58 
Ancestries (DiscoDivas) to interpolate a harmonized PRS for diverse, especially 59 
admixed, ancestries, leveraging multiple PRS weights fine-tuned within single-60 
ancestry samples and the genetic ancestry continuum information. DiscoDivas treats 61 
ancestry as a continuous variable and does not require shifting between different 62 
models when calculating PRS for different ancestries. We generated PRS with 63 
DiscoDivas and the current conventional method, i.e. fine-tuning multiple GWAS PRS 64 
using the matched or similar ancestry sample, for simulated datasets and large-scale 65 
biobank datasets (UK Biobank [UKBB] N=415,402, Mass General Brigham Biobank 66 
N=53,306, All of Us N=245,394) and compared our method with the conventional 67 
method with quantitative traits and complex disease traits. DiscoDivas generated a 68 
harmonized PRS of the accuracy comparable to or higher than the conventional 69 
approach, with the greatest advantage exhibited in admixed samples: DiscoDivas 70 
PRS for admixed samples was more statistically accurate than the PRS fine-tuned in 71 
matched or similar ancestry sample in 12 out of 16 simulated scenarios and was 72 
statistically equivalent in the remaining four scenarios; when tested with quantitative 73 
trait data in UKBB, DiscoDivas increased the PRS accuracy of admixed sample by 74 
5% on average; yet no statistical difference was observed when tested for binary 75 
traits in UKBB where ancestry-matched data was available. For the single ancestry 76 
samples, the accuracy of DiscoDivas PRS and PRS fine-tuned in match samples 77 
was similar. In summary, our method DiscoDivas yields a harmonized PRS of robust 78 
accuracy for individuals across the genetic ancestry spectrum, including where 79 
ancestry-matched training data may be incomplete. 80 
 81 

Introduction/Main 82 

Individuals not of European ancestry remain underrepresented in GWAS, which at 83 
least partly explains why PRS performance is generally reduced among those of non-84 
European versus European ancestry1. Within the constraints of existing data, the 85 
current principal solution to increase the PRS accuracy among non-European 86 
individuals is to fine-tune a combination of PRS derived from multiple populations or 87 
multiple traits with the individual-level data of a validation sample2–6. However, PRS 88 
accuracy decays as the genetic distance between the testing and validation samples 89 
increases7. Relative to the vast diversity across the genetic ancestry continuum, the 90 
existing and near-term individual-level datasets that can be used for fine-tuning PRS 91 
combinations remains very sparse. Most existing individual-level genotype data are 92 
mainly collected from single-ancestry populations and therefore admixed populations 93 
are left underrepresented and largely unaddressed 8–11. Additionally, testing and 94 
validation samples that are labeled as “from the same superpopulation” are often 95 
truly genetically heterogeneous 10,12–15, leading to variable accuracy within such 96 
samples.  97 
 98 
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PRS analysis across diverse ancestries may also be limited by inconsistency. The 99 
raw PRS distributions of the same model varies by ancestry and therefore the raw 100 
PRS values for individuals of different genetic ancestries should not be directly 101 
compared without ancestry correction16–18. Although prior research16,18,19 has shown 102 
that regressing out the top principal components of ancestry (PCA) from the PRS can 103 
unify the PRS distributions of different ancestries (i.e., the mean and standard 104 
deviation of corrected PRS sampled from different populations can become very 105 
close), the inconsistency is only partially solved. In the application of PRS across 106 
diverse ancestries, one would have to use one PRS model for all the individuals, 107 
causing inconsistent PRS accuracy, or use several discrete PRS models for different 108 
individuals approximating superpopulations causing inconsistent PRS modelling and 109 
accuracy.  110 
 111 
Given these issues and the increasing clinical use of PRS20–22, PRS generation for 112 
diverse genetic ancestries with more consistent accuracy and more unified PRS 113 
distributions is critically needed. We devised a method, DiscoDivas, a Genetic 114 
Distance-assisted PRS Combination Pipeline for Diverse Genetic Ancestries, to 115 
generate PRS across the genetic ancestry continuum. This method is based on the 116 
recent observation7 that the PRS accuracy in the testing data decays approximately 117 
linearly as the genetic distance between the testing and validation samples 118 
increases, and that the genetic distance can be approximated by Euclidian distance 119 
of PCA based on the global ancestries7.  Based on this observation, we assumed that 120 
the most informative PRS weights for a sample can be linearly interpolated from the 121 
currently available PRS weights that are fine-tuned in the ancestries surrounding it in 122 
the global ancestry-based PCA space with the interpolation weights based on the 123 
Euclidian distance of the PCA. In summary, DiscoDivas calculates PRS for diverse 124 
genetic ancestries whose genetic data may not be sufficiently powerful to train the 125 
PRS model by linearly interpolating the multiple PRS fine-tuned in ancestries whose 126 
genetic data are more available. We evaluated its performance in simulated and 127 
empiric data. 128 
 129 

Results 130 

Overview of DiscoDivas 131 

DiscoDivas combines PRS fine-tuned in different validation samples - generally from 132 
different single-ancestry populations - to linearly interpolate PRS for individuals of 133 
diverse genetic ancestries, treating the ancestry information as a continuous variable. 134 
The rationale for PRS combination is based on the observation that the correlation of 135 
the most informative PRS weight for two samples of different ancestry drops as the 136 
genetic distance, represented by Euclidean distance of global ancestry-based PCA, 137 
increases7. Therefore, the best PRS weight for an ancestry representation can be 138 
linearly interpolated from other PRS weights fine-tuned in other ancestries with the 139 
additional consideration of the genetic distance between the samples.  140 
 141 
Under the same principle of interpolating the PRS weight, the best PRS can be 142 
interpolated from several PRS calculated using the weight fine-tuned in other 143 
ancestries. Since generating individual-specific PRS weights in a testing dataset 144 
causes redundant calculation and given the difficulty of normalizing information from 145 
different datasets, we combine the PRS instead of the SNP weights. The PRS of 146 
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individuals in the testing sample is a linear combination of PRS based on the SNP 147 
weights fine-tuned in different validation samples: 148 

𝑃𝑅𝑆! = ∑ 	𝑤!,	$𝑃𝑅𝑆!,	$ 					149 
where 𝑃𝑅𝑆!,	$ is the PRS of testing individual 𝑖 calculated using the weight fine-tuned 150 
in validation sample 𝑘; 𝑤!,	$ is the combination coefficient mainly based on the 151 
reciprocal of the PCA Euclidean distance between the testing individual and median 152 
point of validation sample 𝐷!%$. Note that the input PRS and PCA should be of the 153 
same scale: all the individuals are projected to the same PCA space based on a 154 
global ancestry reference panel and the PRS input 𝑃𝑅𝑆!,	$ 	is the raw PRS regressed 155 
out the top PCs and then standardized. 156 
 157 
In addition to the PCA distances, other factors are included in the model. First, since 158 
some fine-tuning samples are more correlated than others (e.g., EAS and SAS are 159 
more correlated than AFR and EUR), the combination coefficients should be further 160 
modified by these correlations, which can also be extracted from the PCA Euclidean 161 
distances. Second, since PRS fine-tuned in each of the validation samples may be of 162 
differing qualities (e.g., when the PRS model fine-tuned in different samples are 163 
based on GWAS of different sample sizes or populations), the quality of the PRS 164 
trained with each of the training data will vary and should be taken into account when 165 
combining the PRS. Thus, the combination coefficient 	𝑤!,	$ in the previous formula is 166 
a function of multiple factors: 167 

	𝑤!,	$ = 𝑓 ,
1

𝐷!%$
	 , 𝐺, 𝑟$1 		168 

where &
'!"#

	 is the reciprocal of PCA Euclidean distance between the individual 𝑖 and 169 
the validation sample 𝑘; 𝐺 is the matrix of PCA Euclidean distance between 170 
validation samples; 𝑟$ is the parameter describing the quality of validation samples. A 171 
more detailed description of implementing DiscoDivas is given in the Method session. 172 
 173 

Overview of multi-population GWAS PRS model 174 

  175 
 Figure 1: The workflow of comparing DiscoDivas with the existing method. 176 

Left: The ideal situation for the existing method is to fine-tune a PRS model that contains multiple 177 
GWAS with matched validation data, which is not currently available for many under-represented 178 
populations. Right: DiscoDivas first fine-tunes the PRS in the available ancestries, which are currently 179 
AFR, EAS, EUR, and SAS, and interpolates PRS for diverse ancestry groups based on these fine-tuned 180 
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PRS. In this plot, POP refers to any ancestry for which the PRS is to be calculated.  181 
 182 
A common approach for constructing PRS is to include as much genome-wide 183 
association study (GWAS) summary statistic data as possible in the discovery 184 
data5,23,24. The GWAS data is typically then processed by PRS methods that will 185 
adjust the SNP effect size using a set of hyper-parameters. Individual-level data of an 186 
independent validation sample is used to fine-tune the hyper-parameters across PRS 187 
methods and the combination of the fine-tuned PRS. The resulting PRS is expected 188 
to perform the best in samples of matched ancestry with the validation sample.  189 
 190 
The current approach, as shown in the left panel of Figure 1, is to use the multi-191 
GWAS PRS fine-tuned in the matched sample or the closest approximation when the 192 
matched sample is unavailable. The pipeline of adjusting SNP effect sizes and 193 
combining information from different GWAS varies widely. Without loss of generality, 194 
we built the following pipeline as a representation of the current conventional method: 195 
we first adjusted the SNP effect size of each of the summary statistical GWAS 196 
datasets by a Bayesian method and then chose the most predictive PRS from all the 197 
PRS generated under different hyper-parameters. For simulated GWAS data, we 198 
used PRS-CS25  to adjust the SNP effect size and LDpred226 for real GWAS. Then 199 
we used the validation data to first select the most predictive PRS based on each 200 
GWAS and then to train the linear combination of the most predictive single-GWAS 201 
PRS with a linear regression model. The final PRS model generated from each of the 202 
validation datasets is a linear combination of PRS. For the empiric data set, the PRS 203 
were fine-tuned controlling for the following covariates: top 20 PCA, sex, and age. 204 
We used AFR, EAS, EUR, SAS, AMR, and admixed samples to fine-tune the PRS.  205 
 206 
On top of the conventional method, DiscoDivas calculates PRS of any ancestry using 207 
a linear combination of a group of PRS fine-tuned in currently available samples as 208 
shown in the right panel of Figure 1. The PRS input for DiscoDivas in this study was 209 
the multi-GWAS PRS fine-tuned in AFR, EAS, EUR, and SAS validation samples 210 
with the conventional method pipeline as mentioned above. The interpolation of 211 
these four PRS is based on the PCA calculated using the 1000 Genomes reference 212 
panel. For most of the PRS analysis conducted in in the present study, the input PRS 213 
of DiscoDivas are based on the same set of discovery GWAS and the validation 214 
datasets are sufficiently large to generate a stable result. Therefore, we assumed 215 
that all the input PRS can be viewed as of equal quality and their parameter for PRS 216 
quality 𝐴$ can be viewed as a constant value in the present study.  217 
 218 

Simulated data results 219 

Summary-level GWAS used as discovery data were generated based on simulated 220 
genotype data based on 1000 Genomes reference as described in the previous 221 
publication provided by Zhang et al6. The phenotypes were based on 100, 300, 222 
1,000, or 10,000 causal SNPs randomly selected from the 1.4 million Hapmap3 223 
SNPs to represent traits of different polygenicity. The per-allele effect sizes of the 224 
causal SNPs followed a normal distribution, and the heritability was set as 0.6. 225 
Scenarios where both casual SNPs and effect sizes were constant across the 226 
populations and where the casual SNPs were shared but the effect sizes varied 227 
across the populations were simulated. We used up to 100,000 simulated individuals 228 
from AFR, EAS, EUR, and SAS to generate the discovery summary statistic GWAS 229 
dataset with PLINK227 and left the remaining samples out for other downstream 230 
analyses.  231 
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 232 
Validation and testing samples were also simulated based on UKBB genotype data 233 
with the phenotypes simulated using the same pipeline and parameters as described 234 
above. UKBB participants were divided by genetic ancestry using 1000 Genomes as 235 
a reference. In addition to the groups of AFR, EAS, EUR, SAS, and AMR whose PCA 236 
information were matched with the 1000 Genomes reference, we identified the group 237 
of “to-be-determined” (tbd) for admixed individuals whose PCA information was not 238 
matched with any of the five ancestries by definition. From each ancestry group, 1.3k 239 
individuals were used as the validation datasets (See section entitled ‘Simulated 240 
data’ in Methods). The SNP effect sizes from the discovery GWAS data were 241 
adjusted using PRS-CS with the default parameters, fine-tuned, then combined using 242 
the validation data based on 1.3k UKBB-based individuals per population and tested 243 
in the rest of the UKBB-based individuals. The process of selecting causal SNPs, 244 
assigning effect size, simulating phenotype data, and the downstream GWAS and 245 
PRS analysis was repeated 20-fold.  246 
 247 
We primarily focused on the PRS performance in the admixed testing sample. 248 
DiscoDivas, which is based on PRS fine-tuned in AFR, EAS, EUR, and SAS, was 249 
compared with the conventional PRS fine-tuned in the matched admixed validation 250 
sample in scenarios of different causal SNP numbers, different discovery GWAS 251 
sample sizes, and different causal SNP distribution across ancestry (See Figure 2) 252 
 253 

 254 
Figure 2 Relative R2 increase of DiscoDivas over the conventional PRS fine-tuned in a matched 255 
sample when tested in admixed individuals. The x-axis shows the simulated number of causal 256 
SNPs. The horizontal bar shows the mean relative R2 increase and the color of the horizontal bar 257 
indicates the p-value of the paired t-test of DiscoDivas PRS R2 and conventional PRS R2, with 258 
cyan being p-value<0.0005, dark blue being p-value<0.05 and grey being p-value>0.05. In panels 259 
a, b, and c, the causal SNP effect sizes are constant across different populations. The annotation 260 
texts on the top of each panel shows the sample size of discovery GWAS of different 261 
populations and the distribution of causal SNP effect sizes.  262 

 263 
Although the comparison between DiscoDivas and the conventional method of fine-264 
tuning PRS with matched ancestry sample in a single test iteration usually showed 265 
no statistical significance due to the small numeric differences, the paired t-test of 266 
DiscoDivas R2 and the conventional PRS R2 over the 20 iterations better clarified 267 
significant differences. When effect sizes of causal SNPs were constant across 268 
different ancestries (Figure 2 panel a, b, and c), the PRS generated by DiscoDivas 269 
had comparable accuracy with the PRS fine-tuned using matched data. We noticed 270 
that when the sample size of non-European discovery GWAS dropped and the 271 
dataset was relatively more Eurocentric, the advantage of DiscoDivas became less 272 
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statistically significant. In Figure 2 panel d, we compared DiscoDivas and the 273 
conventional PRS method of fine-tuning the PRS with matched ancestry in the 274 
scenario where causal SNPs were shared across all populations, but the effect sizes 275 
varied linearly in the PCA space. The advantage of DiscoDivas over conventional 276 
PRS method was more obvious in this scenario than when the effect sizes were 277 
constant across populations (Figure 2 panel a and d), presumably because 278 
personalized PRS combination with DiscoDivas better captured the changing effect 279 
sizes for the admixed testing sample. In all the scenarios tested, the advantage of 280 
DiscoDivas was least statistically significant when the number of causal SNPs was 281 
10,000 but still significant when the number of causal SNPs was 1,000. Notably, the 282 
accuracy of both DiscoDivas and the conventional PRS method was the lowest when 283 
the number of causal SNPs was 10,000 (Supplementary Figure 1), indicating that the 284 
difference of the two PRS methods became less obvious when the input data 285 
became increasingly underpowered.  286 
 287 
When predicting the individuals that are usually classified as single ancestries, i.e. 288 
AFR, EAS, EUR, and SAS, DiscoDivas showed no statistically significant difference 289 
or a slight advantage over the conventional PRS method (Supplementary Figure 2). 290 
When predicting AMR individuals, we used admixed validation data (tbd) to fine-tune 291 
the conventional PRS due to the small sample size of the AMR dataset. The PRS 292 
performance when testing in the AMR dataset was similar as in admixed data but the 293 
statistical significance was weaker, potentially due to the small sample size and the 294 
high heterogeneity of the AMR dataset. In general, DisocDivas showed its clearest 295 
advantage over the conventional method of fine-tuning PRS with matched PRS when 296 
the testing data and the validation data for the conventional method were of different 297 
ancestries. 298 
 299 

Sensitivity tests 300 

Since the quality of validation data is essential to the performance of DiscoDivas, we 301 
evaluated the influence of minor missing information or alternative choices of 302 
validation data with the following tests: 303 
 304 
First, we considered the possible scenario where PRS weights for different 305 
ancestries are provided from a publication but key detailed information about the 306 
validation data was not fully available, especially the PCA information of the 307 
validation datasets. A convenient approximation of the PCA of validation datasets is 308 
the median PCA value of the 1000 Genome28 individuals of a certain ancestry or 309 
“superpopulation.” Based on the simulation test as mentioned above, we tested the 310 
influence of replacing the actual PCA of the UKBB validation datasets with the 1000 311 
Genome approximate on the 1) PCA Euclidean distance, 2) combination coefficient 312 
for interpolation, and 3) the PCA accuracy.  313 
 314 
Since the UKBB individuals were selected to be included in validation datasets based 315 
on the PCA information of the 1000 Genomes, the PCA distribution of UKBB 316 
validation datasets closely aligned with that of the 1000 Genomes reference 317 
(Supplementary Figure 3). PCA distances between the testing individuals and the 318 
median point of validation datasets based on the actual UKBB validation data were 319 
highly correlated with the PCA distances based on the 1000 Genome approximation 320 
for all the testing ancestry groups AFR, AMR, EAS, EUR, SAS, and admixed (“tbd”), 321 
with the data residing within the highly overlapped intervals and the correlation of 322 
individual datapoints close to 1 (Supplementary Figure 4). The combination 323 
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coefficients were calculated assuming that the PRS weights fine-tuned in the four 324 
validation datasets, i.e. AFR, EAS, EUR, and SAS, were of equal quality. According 325 
to the formula in Method session, 𝑤!,	$, the combination coefficient of weighting the 326 
PRS fine-tuned in validation sample 𝑘 for individual 𝑖 , should be 𝑤!,	$ 	≡ 	

&
'!"#

	𝑑	$, 327 
with the 𝐷!%$ being the PCA distance between individual 𝑖 and the median point of 328 
sample 𝑘; 𝑑	$ being the adjustment coefficient for PRS fine-tuned in sample 𝑘 based 329 
on the distance between the validation samples. 𝑤!,	$ was compared between the two 330 
scenarios of using the actual UKBB validation datasets versus using the 1000 331 
Genomes approximate. The correlation of the combination coefficients was lower 332 
than the correlation of the PCA distance, especially for SAS testing individuals. 333 
However, each combination coefficient remained in almost the same range and the 334 
PRS fine-tuned in the SAS sample still had the highest weights (Supplementary 335 
Figure 5). When testing with the simulated data, the PRS R2 had almost identical 336 
distribution and correlation > 0.99 with the R2 of PRS based on the actual PCA 337 
information in all the simulated scenarios including when the causal SNP effect size 338 
varied with the ancestries (Supplementary Figure 6). The high similarity of the PRS 339 
accuracy despite the difference in combination coefficient might partly result from the 340 
correlation of the PRS fine-tuned in different samples and the constant combination 341 
coefficient range.  342 
 343 
In addition, we tested if the results of DiscoDivas would remain robust for admixed 344 
individuals when using a different set of validation datasets. In addition to the primary 345 
simulation test where the validation datasets were simulated data based on UKBB 346 
genotype, PRS were fine-tuned with the left-out simulated datasets that were 347 
independent from the discovery GWAS while other parts of the analysis pipeline 348 
remained the same. The simulated AMR dataset was used to fine-tune PRS for AMR 349 
and admixed (tbd) testing samples for the conventional method. The PRS R2 based 350 
on the two sets of validation datasets were compared in the scenarios where the 351 
discovery GWAS was based on 100k AFR, EAS, EUR, and SAS, and where the 352 
causal SNP effect sizes were constant across different ancestries. The correlation of 353 
PRS R2 based on UKBB-based validation datasets and purely simulated validation 354 
datasets of DiscoDivase was larger than 0.99 in at scenarios, much higher than that 355 
of conventional PRS method, which ranged from 0.73 to 0.98 (Supplementary Figure 356 
7). The advantage of DiscoDivas over the conventional PRS method showed a 357 
similar pattern (Supplementary Figure 8)  358 
 359 

Biobank data results 360 

We downloaded publicly available summary statistical data of body-mass index 361 
(BMI), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol 362 
(LDL), total cholesterol (TC), triglycerides (TG), systolic blood pressure (SBP), 363 
diastolic blood pressure (DBP), coronary artery disease (CAD), and diabetes mellitus 364 
(DM2) and adjusted the SNP effect size using LDpred2 as described previously5.  365 
 366 
For the quantitative traits, we used the validation samples of AFR, EAS, EUR, SAS, 367 
and admixed (“tbd”) ancestry to fine-tune the model. The remaining UKBB samples 368 
were used as the testing data. The results for empiric quantitative trait data were 369 
highly aligned with the simulation results (Figure 4): DiscoDivas showed a robust 370 
advantage over the conventional PRS method of fine-tuning PRS with matched or 371 
similar ancestry samples when compared across the 7 traits in the admixed testing 372 
dataset. When predicting AFR, EAS, EUR, and SAS, DiscoDivas and the 373 
conventional PRS method had similar performance. The results of both methods in 374 
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AMR testing dataset had large deviations due to the small sample size and greater 375 
genetic heterogeneity of the AMR data.       376 

 377 
 378 

Figure 3 Relative R2 increase of DiscoDivas over the conventional PRS fine-tuned in a matched 379 
sample. The x-axis shows the population in which the PRS was tested. We used “tbd” as the 380 
fine-tuning dataset for the test in both tbd and AMR due to the absence of matched AMR 381 
validation data. The horizontal bar shows the mean of relative increase and the line-type of the 382 
bar indicates the p-value of paired t-test of DiscoDivas PRS R2 and conventional PRS R2, with the 383 
solid bar being p-value <0.05 and dotted bar being p-value>0.05 384 

For the binary traits coronary artery disease (CAD) and type 2 diabetes (DM2) 385 
(Figure 4), we used the AFR, EAS, EUR, SAS, AMR, and OTH (i.e., unclassified) 386 
samples from AoU as the fine-tuning data and tested in AFR, EAS, EUR, SAS, and 387 
tbd individuals in UKBB and AFR, EAS, EUR, SAS, and AMR individuals in MGBB. 388 
The DiscoDivas PRS were based on the PRS fine-tuned in AFR, EAS, EUR, and 389 
SAS and used the default assumption that the PRS fine-tuned from all the samples 390 
were of similar quality even though the sample sizes of both discovery GWAS and 391 
the fine-tuning samples were not balanced across different ancestries. AMR in UKBB 392 
was excluded because of the small sample size (N=669).  393 
 394 
The PRS fine-tuned in different single samples and the DiscoDivas PRS had similar 395 
performances. It also appeared that some of the validation sample could be 396 
underpowered: generally, we expect the PRS fine-tuned in the matched sample to 397 
perform the best in the testing samples, but PRS fine-tuned in larger validation data 398 
performed better than PRS fine-tuned in smaller validation data in general. For 399 
example, the PRS fine-tuned in EAS AoU data performed worse than other PRS in 400 
both MGBB and UKBB EAS data and had low accuracy in other testing data as well; 401 
the CAD PRS fine-tuned in EUR performed better than all the other PRS in all the 402 
testing data and the effective sample size of EUR CAD validation data was much 403 
larger than all the other validation data.  404 
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 405 

 406 
 407 
Figure 4 PRS performance for coronary artery disease (CAD) and type 2 diabetes (DM2) tested in 408 
UKBB and MGBB. The plot shows OR per SD with the error bar showing 95% CI. The sub-panels 409 
show that population of the testing sample and the different colors show the method for 410 
generating the PRS, either fine-tuning in a single sample or combining the PRS using 411 
DiscoDivas. 412 
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 413 

Discussion 414 

We propose a new method, DiscoDivas, to interpolate the PRS for diverse, especially 415 
admixed, ancestries with a generalized framework that does not requiring binning 416 
into discrete ancestries. Our results shows that the accuracy of DiscoDivas was 417 
comparable to or greater than the conventional method, i.e. fine-tuning using the 418 
matched population sample when available. In addition, when generating PRS for a 419 
wide range of ancestries, DiscoDivas did not require shifting from several sets of 420 
PRS weight fine-tuned in discrete samples while remaining matched with the 421 
ancestry information. Our method provides a new solution to generate PRS for 422 
underrepresented, generally admixed, populations and as well as generate a 423 
harmonized PRS model across different ancestries. 424 
 425 
The performance of our method depends on the quality of both the discovery GWAS 426 
data and the validation data. As shown in the simulation test, discovery GWAS 427 
datasets that represent diverse ancestries with sufficient sample size will increase 428 
the accuracy of interpolated PRS generated by DiscoDivas. On the contrary, 429 
Eurocentric and underpowered discovery GWAS datasets would limit the advantage 430 
of DiscoDivas over the conventional PRS method. This might partly explain the 431 
limited advantage of DiscoDivas when predicting binary traits: the discovery GWAS 432 
datasets were highly Eurocentric and the GWAS, especially the non-European ones, 433 
could be more underpowered than quantitative trait GWAS. Furthermore, the PRS 434 
fine-tuned in validation datasets of insufficient sample size will be overfitted and 435 
cannot be used to fairly evaluate the performance of either the conventional PRS 436 
method or DiscoDivas. We aimed to address this issue by only using traits that 1) 437 
had effective sample sizes larger than 200 in all the validation samples, and 2) had 438 
high-quality phenotyping data in both the validation datasets and the testing datasets, 439 
However, Asian populations were largely under-represented in the current public 440 
biobanks: the effective sample size of many binary traits in EAS or SAS can be as 441 
small as <200 even in AoU, the most diverse and large-scale largely publicly-442 
available biobank we had access to. This limited our choice for binary traits to only 443 
CAD and DM2. One additional limitation of our method is that DisoDivas does not 444 
consider the local ancestry information, which improve PRS predictions in various 445 
research24,29,30, especially PRS prediction of newly admixed populations31.  446 
 447 
Our research underscores the notion that non-European populations, both admixed 448 
and singe-ancestry populations, remain largely under-represented in the existing 449 
genetic data. Furthermore, some potential extensions of our method will not become 450 
possible until we collect more diverse and larger datasets. First, our method has not 451 
been designed nor tested for extrapolating data, e.g. generating PRS for continental 452 
African samples based on African American, European, and Asian samples. Even 453 
though it is mathematically plausible to alter our method to extrapolate the PRS, we 454 
lack data such as continental African samples to test the method. Secondly, we 455 
currently only consider the assumption that the most informative genome-wide PRS 456 
weight shifts linearly in the PCA space. Although more complicated PRS 457 
interpolation, e.g. interpolation guided by local ancestry information 24,29,30, pathway-458 
specific32,33 and annotation-guided34 PRS weights and polynomial interpolation35,36, 459 
can possibly further improve the PRS accuracy, training such complicated models 460 
would require collecting much larger and more diverse datasets than the existing 461 
data. Finally, additional biological insights could be revealed by interpolating PRS if 462 
genetic data of all the involved diverse ancestries are of sufficient power. In this case, 463 
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the differences between interpolated PRS and the PRS trained using the matched 464 
ancestry would indicate the population- or sample- specific factors absent in the 465 
interpolation model, e.g. population-specific genetic variance37,  complicated 466 
population stratification involving cofounding factors38,39, sample/ancestry-specific 467 
modifiers like local adaptation38, gene x environment interactions40 or other factors 468 
that contribute to the genetic variant frequency or effect size in these samples/ 469 
ancestries.  470 
 471 
In conclusion, our method provides a new option to treat the ancestry information as 472 
a continuous variable and interpolate a harmonized PRS for diverse ancestries. 473 
Notably, although our method was developed primarily to calculate PRS when the 474 
matched validation datasets were unavailable, our research showed that successfully 475 
interpolating PRS required sufficient input data and highlighted the need to collect 476 
genetic data for underrepresented populations. We believe that more diverse and 477 
larger data collected in the coming future will enable the development of new 478 
methods of interpolating PRS and the elucidation of the genetic basis of complex 479 
traits. 480 
 481 

Methods 482 

DiscoDivas 483 

DiscoDivas interpolates PRS of testing individuals of diverse ancestry according to 484 
the testing individual’s PRS calculated using the PRS weight fine-tuned in other 485 
validation datasets and genetic distance information. The pipeline consists of two 486 
parts: harmonizing the input PRS data and interpolating the PRS.  487 
 488 
Data harmonization 489 
To reduce the bias in the interpolation, the PRS and PCA information should be in a 490 
unified and harmonized scale. First, all the individuals in the validation datasets and 491 
the testing dataset are projected in the same PCA space based on balanced 492 
reference data covering the global genetic ancestry continuum. The reference data is 493 
essential to avoid a skewed correlation between the similarity of the genotype and 494 
the genetic distance and ensure that the PCA Euclidian distance can present 495 
consistent genetic distance. The results presented in this study were based on PCA 496 
calculated using pruned SNPs of 1000 Genomes28 samples. A detailed description of 497 
calculating PCA and Euclidian distance in this research is provided in the section 498 
entitled ‘Calculation of 1000 Genomes-based PCA and Euclidean distance.’ 499 
 500 
Second, all the PRS input should be transferred to a comparable scale. We 501 
regressed out the top 10 PCs from the PRS and then standardized the PRS residuals 502 
to mean = 0 and standard deviation =1.  503 
 504 
PRS interpolation 505 
The overall mathematical model of DiscoDivas is a linear combination of PRS based 506 
on the weight fine-tuned in different validation datasets:  507 

𝑃𝑅𝑆! =5𝑎! 	𝑤!,	$𝑃𝑅𝑆!,	$ 	508 
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where 𝑃𝑅𝑆!,	$ is the normalized PRS of individual i trained in validation dataset k; 𝑤!,	$ 509 
is the combination weight which is a function of genetic distance between the 510 
individual i and dataset k and other factors. 𝑎! 	 is a constant for individual i so that 511 
∑𝑎! 		𝑤!,	$ = 1. 512 
 513 
The essential factor contributing to 𝑤!,	$ is the reciprocal of 𝐷!%$ , the genetic distance 514 
between individual I and dataset k, so that the interpolation is basically linear. In the 515 
ideal situation where all the validation samples are independent and generate PRS of 516 
the same level of accuracy, the genetic distance between the testing individuals and 517 
validation datasets is the only contribution factor and we define: 518 

𝑤!,	$ 	≡ 	
&

'!"#
	. 519 

However, considering the more realistic scenarios where the validation samples can 520 
be correlated and the PRS trained from different validation datasets can be of 521 
different accuracy, we introduce two parameters: 522 

1) 𝑑	$: tuning parameters based on the genetic distance / correlation between 523 
the training datasets.  524 

2) 𝑟	$: tuning parameter that represent the accuracy of the PRS fine-tuned in 525 
sample k; 526 

so that the overall combination weight is  527 

𝑤!,	$ 	≡ 	
1

𝐷!%$
	𝑑	$ 	𝑟	$ 	528 

The final model of DiscoDivas is  529 

𝑃𝑅𝑆! =5	𝑎! 	
1

𝐷!%$
	𝑑	$ 	𝑟	$ 	𝑃𝑅𝑆!,	$ 	530 

 531 
Here we propose the default method for calculating 𝑑	$ and 𝑟	$: 532 
𝑑	$ is based on the genetic distance matrix 𝐺 in which each row and column 533 
represent a validation sample, and the element is genetic distance between the 534 
samples, with diagonal ones being zero. The shrinkage follows the similar principle of 535 
correcting marginal SNP effect size by inversing the LD matrix, except that the 536 
correlation between the shrinkage in this step 𝑑	$ and other factors like the genetic 537 
distance between individuals in the testing data and the validation sample 𝐷!%$ and 538 
the accuracy of the PRS fine-tuned in the validation sample, the vector of shrinkage 539 
parameter 𝑑	$ is only derived from 𝐺%&:  540 

𝑑 = 𝐺%&18⃗  541 
, where 18⃗  is a vector of the same length as 𝑑 and with all the elements being 1. 542 
𝑟	$ is based on the accuracy of the PRS fine-tuned in the sample k. Theoretically, a 543 
PRS based on common SNPs can explain all the heritability contributed by common 544 
SNPs under the additive assumption. Under this scenario, the PRS R2 is close to the 545 
heritability h2, and the PRS is saturated (namely, adding more samples in the 546 
Discovery GWAS would further increase the PRS accuracy if other conditions remain 547 
the same). Previous research used percentage of heritability explained to present the 548 
accuracy of the PRS so that PRS predicting traits of different heritability and binary 549 
traits of different prevalence can be compared directly. Here we recommend using 550 
common SNP heritability explained as the first choice of 𝑟	$ if the heritability of the 551 
target trait in the validation samples or a larger sample but is homogenous with the 552 
validation sample is available: 553 

𝑟	$ = 9𝑅()*
+

ℎ+
	554 

If ℎ+ is unknown, we provided an alternative approach that approximates the PRS 555 
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given the fact that most of the PRS is far from saturation and the accuracy of the 556 
PRS is roughly linearly correlated with the sample size of the discovery GWAS 𝑁$, 557 
we combine the information from different samples in a similar way by combining Z 558 
scores in fixed-effect size meta-analysis: 559 

𝑟	$=<𝑁$	,!-./0123  560 
If the trait used in the discovery GWAS is not the same for all the validation data, the 561 
accuracy of the PRS for predicting the target traits also depends on the heritability of 562 
the trait in the discovery GWAS ℎ	$	,!-./0123+	and the genetic correlation between the 563 
discovery GWAS trait and the target trait 𝑟𝑔$	,!-./0123%452614 564 

𝑟	$ =	>𝑁$	,!-./0123 ∗ ℎ	$	,!-./0123
+ ∗ 𝑟𝑔$	,!-./0123%452614	565 

In a common scenario where discovery data come from multiple GWAS from 566 
different ancestries and of decent statistical power for each ancestry yet the 567 
heritability of the target trait in the validation sample is unknown or cannot be 568 
accurately estimated, the accuracy of the PRS fine-tuned in each single-ancestry 569 
validation sample is hard to estimate but is likely of similar accuracy. Therefore 𝑟	$ 570 
can be omitted, or equivalently set to a default constant value of 1. 571 
  572 
In the DiscoDivas script provided, the 𝑟	$ is set to be the default value 1 unless 573 
defined by the user otherwise,  𝑎!, 𝐷!%$, 𝑑	$ is automatically calculated from the PCA 574 
information provided by the user.  575 
 576 

Constructing PRS with single fine-tuning sample  577 

The PRS were derived from multiple GWAS conducted in different populations. 578 
GWAS data were first processed with PRS-CS or LDpreds2 to generate adjusted 579 
SNP weight: Hapmap3 SNP were first extracted from each GWAS as the input for 580 
the PRS method. The PRS methods were performed using default parameters: For 581 
PRS-CS, parameters of the prior distribution were set to phi = 1, 10-2, 10-4, 10-6, a = 582 
1, b = 0.5 and the parameters of Markov Chain Monte Carlo (MCMC) were total 583 
number of MCMC iterations = 1000, number of burn-in = 500, thinning factor of the 584 
Markov chain = 5. For LDpred2, the parameter were the default set as in previous 585 
research5: proportion of variants assumed to be causal was 1.0 × 10−4, 1.8 × 10−4, 586 
3.2 × 10−4, 5.6 × 10−4, 1.0 × 10−3, 1.8 × 10−3, 3.2 × 10−3, 5.6 × 10−3, 1.0 × 10−2, 587 
1.8 × 10−2, 3.2 × 10−2, 5.6 × 10−2, 1.0 × 10−1, 1.8 × 10−1, 3.2 × 10−1, 5.6 × 10−1 and 1, the 588 
scale of heritability was  0.7, 1 and 1.4 times of the estimated heritability, with options 589 
of whether allowing a sparse output or not.  590 
 591 
Each set of parameters generated a corresponding set of adjusted SNP weight, 592 
which were then used to calculate PRS in the fine-tuning samples. The most 593 
predictive PRS for each GWAS was selected based on a linear or logistic regression 594 
model predicting the phenotype using the PRS and adjusting for top 10 PCs, age, 595 
sex information and genotyping batch for biobank empirical analyses, and adjusting 596 
for only top 10 PCs for simulated analyses. For All of Us data, sex information 597 
combined assigned sex and self-reported gender to capture inclusiveness in data 598 
collection. 599 
 600 
To generate the final PRS weight, multiple top-performing PRS based on each 601 
GWAS were combined through a linear or logistic regression in the fine-tuning 602 
sample. Final adjusted PRS weights were a linear combination of the top SNP 603 
weights from each GWAS, weighted by the regression coefficients. These combined 604 
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SNP weights were subsequently used to calculate PRS in the testing sample.  605 
 606 
Conventionally, when fine-tuning polygenic risk scores (PRS) for a testing sample, it 607 
is ideal to use a sample from a matched or similar population. If such a sample is 608 
unavailable, the PRS can be fine-tuned using any available sample, which is often 609 
from individuals of European ancestry. 610 
 611 

Calculation of 1000 Genomes-based PCA and Euclidean 612 

distance 613 

We use 1000 Genomes as the reference panel for PCA calculation. The PCA should 614 
be based on SNPs that are constantly included in as many samples as possible to 615 
enable the use of wide-ranging training and validation datasets. We started with the 616 
Hapmap3 SNPs for this set of SNPs, which has been widely used as a subset of 617 
SNPs that approximates the feature of genome-wide common SNPs in many recent 618 
studies that involve multi-ancestry prediction 6,25,26,41. We further filtered for the SNPs 619 
likely to be frequently genotyped or imputed with relatively high quality by most 620 
samples based on the 1000 Genome data: Hapmap3 SNPs were first extracted from 621 
the five super-populations, Africans (AFR), Admixed Americans (AMR), East Asians 622 
(EAS), Europeans (EUR) and South Asians (SAS) of the 1000 Genomes. Secondly, 623 
SNPs described as the following were excluded: 1) of minor allele frequency lower 624 
than 1% in any of the super-population, 2) of minor allele frequency lower than 5% in 625 
the combined 1000 Genomes data, and 3) in the long-range LD region (25Mb – 626 
35Mb by hg19 assembly on chromosome 6 and 7Mb – 13Mb on chromosome 8). To 627 
calculating the PCA loading, the QC’ed SNPs of the five super-populations were 628 
merged then pruned using the PLINK2 function “indep-pairwise” with the parameter 629 
“200 100 0.1” - namely the pruning was performed using window size = 200kb, step 630 
size = 100, and phased-hardcall-r2= 0.1. The principal components and the SNP 631 
loadings are calculated using PLINK2 function “pca” with the parameter “allele-wts” 632 
based on the pruned SNPs. 633 
 634 
Based on the protocol suggested on the PLINK2 website (https://www.cog-635 
genomics.org/plink/2.0/score#pca_project), we projected samples for fine-tuning and 636 
PRS testing into the PCA space as describe above by calculation the linear score, 637 
i.e. the sum of alternative alleles weighted by the SNP effect size, using the PLINK2 638 
function “score” with the SNP loadings as effect size. The original online protocol 639 
suggested linear score should be first scaled to standard variation and then rescaled 640 
by multiplying the square root of eigenvalue. However, the actual standard deviation 641 
of a sample in the same PCA space varies with the homogeneity and the ancestry of 642 
the sample. Forcing the PCA of all the samples to have the same standard deviation 643 
will cause inconsistent scaling when the samples can be of different ancestries. 644 
Therefore, we directly calculated the PCA from sum basic linear score based on the 645 
SNP loadings as generated above without any further scaling. The PCA in this study 646 
was the sum basic linear score calculated using the PLINK2 function “score” with the 647 
parameter “cols=+scoresums'”. For large samples whose genotype data were divided 648 
into per-chromosome files, the same commands were used to calculate per-649 
chromosome score and the genome-wide score was the sum of the score of all the 650 
autosomes.  651 
 652 
In DiscoDivas’ default setting, the genetic distance between two individuals is defined 653 
as the Euclidian distance between the PCA of the two individuals. When the genetic 654 
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distance calculation involves a sample, we use the median point to present the whole 655 
sample.  656 
 657 
We also explored the relationship between number of PCs included in the calculation 658 
and the Euclidean distance calculated (Supplementary Figure 9) and the distance 659 
calculated converged when the number of PCs was larger than 6 in our tests. In our 660 
analysis we use the top 10 PCs to calculate the PCs.  661 
 662 

Genetic ancestry reference 663 

We noticed that the protocol of generating top PCs for ancestry references varied in 664 
previous publications. In our pilot test (see supplementary text section entitled ‘Pilot 665 
test of generating PCA based on less QC’ed SNPs’), we compared the ancestry 666 
reference based on Hapmap3 SNP without any QC and found the result to be highly 667 
correlated. We used the same set of PCs based on QC’ed SNP as described in 668 
section ‘Calculation of 1000 Genomes-based PCA and Euclidean distance’ for both 669 
genetic ancestry reference and Euclidean distance calculation for data consistency. 670 
 671 
Random forest model of 100 trees was trained based on the 1000 Genome data. The 672 
out-of-bag estimate of error rate stabilize at the level of 0.28% after the number of 673 
PCs passed 5. We used the model using the top 6 PCs to infer the genetic ancestry 674 
of UK Biobank individuals and the Mass General Brigham Biobank individuals. The 675 
genetic ancestry of an individual was assigned to any of the five ancestries 676 
represented in the 1000 Genomes reference data, i.e. AFR, AMR, EAS, EUR and 677 
SAS, if the highest probability of an individual belonging to that ancestry passed a 678 
threshold. If none of the ancestries had a probability above the threshold, the 679 
individuals were assigned as “to be decided” (tbd), which indicated that the individual 680 
was of admixed ancestries. With the consideration of the sample size and confirmed 681 
by visual inspection, the threshold of probability for UK Biobank and the Mass 682 
General Brigham Biobank was 0.9 and 0.8 respectively. 683 
 684 

Data 685 

UK Biobank 686 
The UK Biobank (UKBB) is a volunteer sample of approximately 500,000 adults aged 687 
40-69 upon enrollment living in the United Kingdom recruited since 200642. UKBB 688 
data used in this research were first QC’ed with the following process: Remove the 689 
individuals meeting the criteria that indicate low genotype quality or contamination: 1) 690 
have missing genotype rate larger than 0.02; 2) have genotype-phenotype sex 691 
discordance; 3) are identified as having excess heterozygosity and missing rates; 4) 692 
are identified as putatively carrying sex chromosome configurations that are not 693 
either XX or XY; 5) appeared to have unreasonably large numbers of relatives. From 694 
the remaining samples, individuals from a group of multiple individuals that are closer 695 
than 3rd-degree relatives were retained. 415,402 individuals were left after the QC. 696 
390,037 were self-identified as EUR, 7,039 AFR, 8,652 non-Chinese Asian (ASN), 697 
1430 Chinese (CHN) and 6572 unknown or not answered (“tbd”), and 1672 as 698 
admixed (MIX). The genetic ancestry referred from PC was largely correlated with 699 
the self-reported race, with 385,038 EUR, 7,450 AFR, 8,298 SAS, 2,163 EAS, 669 700 
AMR and 11,784 admixed, or to-be-decided (“tbd”).  701 
 702 
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In the PRS test, UKBB samples were grouped by their genetic ancestry (see section 703 
‘Genetic ancestry reference’). The validation datasets for the single-ancestry 704 
populations (AFR, EAS, EUR and SAS) were based on 1.3k randomly selected 705 
samples whose self-report ancestry matched with their genetic ancestry and the 706 
probability of random forest = 1. The validation dataset for admixed ancestry (“tbd”) is 707 
1.3k randomly selected samples of individuals of “tbd” genetic ancestry (see 708 
Supplementary Figure 3). AMR didn’t have its corresponding validation dataset due 709 
to its small sample size and we used “tbd” validation datasets as a proxy since the 710 
two genetic ancestries had similar PCA. The remaining individuals of UKBB were 711 
used as testing data.  712 
 713 
The quantitative trait of the UKBB samples was the measurement collected after the 714 
participants enrolled. The lipid trait measurement was adjusted for cholesterol-715 
lowering medication by dividing TC by 0.8 and LDL by 0.7 as before43. Cases of 716 
coronary artery diseases (CAD) are defined using the definition described 717 
previously24; Cases of diabetes are defined as ever report the following code: E10X, 718 
E11X, E12X, E13X, and E14X where X can be any integer between 0 to 9 in the 719 
ICD10 diagnosis code.  720 
 721 
UKBB participants provided consent in accordance with the primary IRB protocol, 722 
and the Massachusetts General Hospital IRB approved the present secondary data 723 
analysis of the UKBB data under UKBB application 7089.  724 
 725 
Mass General Brigham Biobank 726 
The Mass General Brigham Biobank (MGBB) is a volunteer sample of approximately 727 
142,000 participants receiving medical care in the Mass General Brigham health care 728 
system recruited starting 2010. 53,306 MGBB participants underwent genotyping via 729 
Illumina Global Screening Array (Illumina, CA). MGBB genotype data was quality 730 
controlled, imputed and assigned one of the populations AFR, AMR, EAS, EUR, SAS 731 
using K-nearest neighbor model as described previously44. The phenotype data of 732 
CAD and diabetes are drawn from PheCodes based on International Classification of 733 
Diseases codes, Nineth (ICD9)110 and Tenth (ICD10) revisions, from the EHR as 734 
described previously32. MGBB participants provided consent in accordance with the 735 
primary IRB protocol, and the Massachusetts General Hospital IRB approved the 736 
present secondary data analysis. 737 
 738 
All of Us Research Program 739 
The All of Us (AoU) Research Program is a volunteer sample of more than one 740 
million United States residents recruited starting 2016. AoU aims to engage 741 
communities previously underrepresented in biomedical research in the United 742 
States and beyond45. In the present analysis, genetic data from the v7 245,394 743 
participants who were genotyped using short read whole genome sequencing 744 
(srWGS) data.  Hapmap3 SNPs were extracted for the callset with the threshold of 745 
(AF) > 1% or population-specific allele count (AC) > 100. Related individuals were 746 
pruned according to the information provided by AoU. Due to the inclusive data 747 
collection, we didn’t excluded individuals whose self-report gender were different with 748 
their assigned sex at birth and used the combination of self-report gender and 749 
assigned sex as one of the covariates. The predicted ancestry information was 750 
provided by AoU46. The phenotypes were defined as described in previous research 751 
by Buu et al47. 752 
 753 
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Simulated data 754 
To generate the simulated GWAS summary statistics, the genotype data was 755 
generated by Zhang et al6  and downloaded from 756 
https://dataverse.harvard.edu/dataverse/multiancestry. Only Hapmap3 SNPs were 757 
included in the simulation. Causal SNPs were randomly selected from the Hapmap3 758 
SNPs and simulated per allele effect size following normal distribution. The ladder of 759 
causal SNP number was 100, 1000, 3000, 10000 and the heritability in each of the 760 
population was 0.6.  761 
When simulated trait whose causal SNP effect size varied linearly in the PCA space, 762 
we first assumed that individuals whose PCA was the median point of the 1000 763 
Genomes followed multivariate normal distribution with the covariance matrix being:  764 
 765 

 EUR SAS and EAS AFR 
EUR 1 0.7 0.4 

SAS and EAS 0.7 1 0.7 
AFR 0.4 0.7 1 

 766 
Similar to the principle that PRS weight can be interpolated is equivalent to PRS can 767 
be interpolated, causal SNP effect size varies linearly in the PCA space and, 768 
therefore, can be interpolated is equivalent to genetic burden can be interpolated. 769 
The genetic burden of an individual is the weighted sum of what the genetic burden 770 
could be based on the simulated SNP effect size of the median point of each 771 
validation sample, with the weight proportion to the reciprocal of the PCA distance. 772 
We assumed that the non-genetic factor of individuals across different ancestries 773 
could be summed up as a quantitative variable independently drawn from the same 774 
normal distribution. The phenotype is the sum of genetic burden and non-genetic 775 
factor:  776 

𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒! =	5𝛽7𝑥7,! + 𝐸! 	777 
where the 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒! and 𝐸! were the phenotype and non-genetic factor of individual 778 
𝑖; 𝛽7 was the effect size of causal SNP 𝑗, and 𝑥7,! was the number of risk alleles of 779 
individual 𝑖 in SNP 𝑗. 780 
 781 
We used the PLINK228 to calculate the genetic burden based on the simulated causal 782 
SNPs and effect size and used R to simulate the non-genetic factors, scale the 783 
genetic burden and non-genetic factor, and generate a phenotype of heritability set to 784 
be 0.6. We used up to 100k individuals per population to generate the summary 785 
statistical GWAS as the discovery data for the PRS test. The rest simulated data 786 
were left out for the validation and testing datasets 787 
 788 
In addition to the completely simulated data, we generated more realistic validation 789 
and testing datasets of a wider ancestry range by using the QC’ed genotype data 790 
from UKBB described in the section ‘Biobank data.’ While we used all the non-791 
European testing data, the EUR testing dataset was down-sampled to 10,000 for the 792 
simulation test to reduce the computation burden. We simulated the genetic burden, 793 
non-genetic factor, and phenotype based on the real-life UKBB genotype data with 794 
the same pipeline and parameters. The simulated data based on UKBB genotype 795 
data were used as validation and testing data in the main test and left-out completely 796 
simulated data were used in the sensitivity test.  797 
 798 
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Supplementary Figures 934 

Supplementary Figure 1: Comparison of PRS R2 of conventional PRS method and 935 
DiscoDivas when the validation dataset for the conventional method were of the 936 
matched ancestry with the testing dataset. The four subplots correspond to the four 937 
simulated scenarios of different discovery GWAS sample size and causal SNP effect 938 
size shown in the 4 panels in Figure 2. Within each subplot, each panel shows the 939 
performance of the two methods in each testing sample; the color of the datapoints 940 
showed the number of causal SNPs simulated. 941 
 942 
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Supplementary Figure 2: The relative increase PRS R2 of DiscoDivas over 947 
conventional PRS method. The four subplots correspond to the four simulated 948 
scenarios of different discovery GWAS sample size and causal SNP effect size shown 949 
in the 4 panels in Figure 2. Within each subplot, each panel shows the performance of 950 
the two methods in each combination of validation sample for the conventional PRS 951 
method and the testing sample; the horizontal bar show the mean value of the  relative 952 
increase; the color of the horizontal bar indicating mean value of relative increase and 953 
p-value of the paired t-test of DiscoDivas PRS R2 and conventional PRS R2, with cyan 954 
being the mean increase>0 and p-value<0.0005, dark blue being mean increase>0  955 
and p-value<0.05, dark red being mean increase<0 and p-value<0.05, and grey being 956 
p-value>0.05 957 
 958 
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Supplementary Figure 3: The comparison of PCA of UKBB validation sample and the 967 
1000 Genomes reference.  968 
 969 
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Supplementary Figure 4: The comparison of PCA distance between the testing 975 
individual and the median point of validation samples when using the actual value of 976 
UKBB validation samples and the approximated value of using the 1000 Genomes 977 
sample. Each column of the panels shows the ancestry of testing individuals, and each 978 
row of the panels shows the distance to the validation samples. The range of the 979 
distance to median point of the validation samples shows in the lower edge of the panel, 980 
with the blue color indicating the range of distance based on actual UKBB validation 981 
sample and the red color indicating the range of distance based on 1000 Genomes 982 
approximate. The correlation of the two sets of calculated distance is shown in each 983 
panel. 984 
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Supplementary Figure 5: The comparison of the interpolation combination coefficient 987 
when using the actual value of UKBB validation samples and the approximated value 988 
of using the 1000 Genomes sample. Each column of the panels shows the ancestry of 989 
testing individuals, and each row of the panels shows validation sample for which the 990 
interpolation combination coefficient is for. The range of interpolation combination 991 
coefficients shows in the lower edge of the panel, with the blue color indicating the 992 
range of combination coefficients based on actual UKBB validation sample and the red 993 
color indicating the range of combination coefficients based on 1000 Genomes 994 
approximate. The correlation of the two sets of combination coefficients is shown in 995 
each panel. 996 
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Supplementary Figure 6: The comparison of DiscoDivas PRS R2 when using the actual 1000 
value of UKBB validation samples and the approximated value of using the 1000 1001 
Genomes sample. Each column of the panels shows the ancestry of testing individuals, 1002 
and each row of the panels shows the simulated number of causal SNPs. The four 1003 
subplots correspond to the four simulated scenarios of different discovery GWAS 1004 
sample size and causal SNP effect size shown in the 4 panels in Figure 2. 1005 
 1006 
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Supplementary Figure 7 Comparison of PRS R2 of using UKBB-based validation 1012 
sample and using the purely simulated validation sample. The upper subplot shows 1013 
the results of conventional PRS method and the lower shows the result of 1014 
DiscoDivase 1015 
Within each subplot, the column of panels and the color of the datapoints shows the 1016 
testing sample and the row of the panels shows the simulated number of causal 1017 
SNPs;  1018 
 1019 
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Supplementary Figure 8: The relative increase PRS R2 of DiscoDivas over 1024 
conventional PRS method when using the purely simulated validation data. Each panel 1025 
shows the performance of the two methods in each combination of validation sample 1026 
for the conventional PRS method and the testing sample; the horizontal bar show the 1027 
mean value of the  relative increase; the color of the horizontal bar indicating mean 1028 
value of relative increase and p-value of the paired t-test of DiscoDivas PRS R2 and 1029 
conventional PRS R2, with cyan being the mean increase>0 and p-value<0.0005, dark 1030 
blue being mean increase>0  and p-value<0.05, dark red being mean increase<0 and 1031 
p-value<0.05, and grey being p-value>0.05 1032 
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Supplementary Figure 9: The PRS distance between individuals in testing samples to 1036 
the median point of the validation samples when including different numbers of PCA 1037 
in the distance calculation. Each panel shows the ancestry of the testing samples and 1038 
the color of the line shows the validation samples to which the distance is calculated. 1039 
The plot is based on 100 randomly selected individuals from each UKBB testing 1040 
sample.  1041 
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