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Abstract  

Background: Decision making in public health is limited by data availability where the most recent reports do not reflect 
the actual trajectory of an epidemic. Nowcasting is a modeling tool that can estimate eventual case counts by 
accounting for reporting delays. While these tools have generated reliable predictions when designed for specific use 
cases, several limitations exist when scaling the models to systems composed of multiple distinct surveillance systems. 
We seek to identify flexible application of nowcasting models to address these problems. 

Methods: We used a previously developed Bayesian nowcasting tool, which dynamically estimates delay probabilities up 
to a user-defined maximum delay using a user-defined training window. We tested automated approaches to select the 
maximum delay and training window, setting maximum delay values at the 90th, 95th, and 99th quantile distribution of 
the most recently reported data and training windows to the maximum delay plus one week or multiplied by 1.5 or 2.0. 
We generated and evaluated nowcasts for 321 datasets reflecting COVID-19 cases and dengue cases in different United 
States jurisdictions. We assessed prediction error and precision via logarithmic scoring and coverage metrics for the 
most recent three weeks of predictions in each nowcast. We used these metrics to further assess why nowcasts may fail 
and to compare predictions generated from three different publicly available tools. 

Results: Using recent data to estimate dynamic delay and training window parameters resulted in nowcast with less 
error relative to nowcasts made with static parameters for long historic periods. Nowcasts likely to fail could be 
predicted a priori by the relative width of the prediction intervals and the permutation entropy of the epidemic trend. 
More complex models do not significantly improve nowcast performance compared to simple models.  
 

Conclusions: We tested multiple systems for scaling up nowcasts in a flexible framework. We recommend using dynamic 
parameter selection and creating a system to suppress nowcasts likely to fail. This requires collaboration with 
surveillance colleagues to implement data-driven choices to improve the utility of predictions for decision making.  
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Introduction 

Reporting delays are inherent in all public health surveillance systems. The time between symptom onset and when an 
illness is captured in a public health agency database can be influenced by many factors, including, but not limited to, 
disease presentation, care seeking, testing protocols, and reporting processes (1). Consequently, when tracking the 
number of reported cases by onset date over time, the epidemic trend in the most recent weeks will always appear to 
decline, regardless of the true underlying trend. Without some sort of adjustment to the trend, raw surveillance data 
may have limited interpretability for timely public health action (2). Nowcasting, that is, a quantitative method to predict 
the number of cases that have occurred but are not yet reported, is one approach for reducing the impact of reporting 
delays on situational awareness.  
 
While not yet a routine component, nowcasting has been increasingly integrated into public health surveillance and 
outbreak response. For example, since 2015, the Brazilian government has incorporated nowcasting into public 
municipality-level communication tools for dengue, chikungunya, and Zika (https://info.dengue.mat.br/; (3). These 
dashboards are designed to inform public health action based on quantified levels of current transmission risk.  In the 
past few years, nowcasting has also been integrated into analyses for the recent United States (US) federal government 
response to mpox (4), and at the state (5) and local level (6) during the COVID-19 pandemic. Yet, despite increasing 
application of nowcasting in public health, there is little research on best practices for implementation.  
 
Further research into choosing parameters, determining if and when nowcasts should be suppressed, and comparisons 
of publicly available implementation tools can help guide real-time public health use. Here, we seek to assess nowcast 
performance for varying epidemiologic surveillance systems to guide implementation across diverse systems. Our goals 
are to 1) identify an optimized process for nowcasting when historical data are limited and reporting delays vary; 2) 
better understand and identify scenarios in which nowcasts fail; and 3) identify trade-offs in different nowcasting 
models.  
 
Methods 

Surveillance systems data: To assess nowcast performance in varying surveillance systems, we fitted models to both 
epidemic and endemic diseases. Surveillance system delays for epidemic diseases generally exhibit heterogeneity in 
reporting patterns as well as disease magnitude. Analysis of such systems may provide insight into nowcasting 
performance under conditions of evolving epidemiology. In contrast, important insight may also be gained by analyzing 
reporting patterns for endemic diseases. Surveillance systems for endemic diseases are generally well established and 
exhibit timely reporting. These systems may also include expected periods of lower burden or sporadic occurrence of 
cases.  
 
For epidemic surveillance, we used COVID-19 cases reported from US jurisdictions to the Centers for Disease Control and 
Prevention (CDC). We selected a subset of state level jurisdictions based on data completeness and variability of 
reporting. We first excluded all jurisdictions that did not report cases for at least 90% of weeks in the analysis period 
(n=13). The remaining jurisdictions were categorized based on the mean and standard deviation of reporting delays 
greater than 91 weeksL (July 5, 2020 – March 26, 2022; see Supplemental Figure 1 for distribution of reporting delays in 
all jurisdictions) into four groups: short or long delays (mean reporting delay greater than or equal to 4 weeks) and low 
or high variation in delays (standard deviation greater than or equal to median standard deviation across all jurisdictions, 
see Supplement 1). We excluded all jurisdictions classified as having along mean delay and low variation in delays 
because many of these jurisdictions had several months with extreme delays that were more likely artifacts than true 
reporting delays (for example, Missouri, Minnesota, and Texas) while others had sparse data (such as West Virginia). We 
consider these states to be outliers and hypothesize that their inclusion in the analysis may lead to spurious findings. In 
order to limit computation time, two jurisdictions were randomly selected per group and the following jurisdictions 
were included in the main analysis:  

G Florida and Michigan from the long mean delays with high variation group,  
G North Carolina and Wisconsin from the short mean delays with high variation group,  
G Idaho and South Carolina from the short mean delays with low variation group.  
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To assess performance for an endemic disease with an established surveillance system, we also analyzed dengue virus 
cases in Puerto Rico (213-week period, selecting every 4th week from January 1, 2010 – December 31, 2013). Dengue 
cases are reported to the Puerto Rico Department of Health.  
 
All data were aggregated to the weekly scale. Cases with erroneous negative reporting delays were excluded from 
further analysis. For each of the seven datasets analyzed, we sequentially ran nowcasts moving forward in time with the 
first nowcast for week 12 in each data set including all data reported by that week in that dataset. We then stepped 
forward one week at a time for COVID-19 and four weeks at a time for dengue, stopping at 8 months before the last 
reported case date in order to allow for retrospective performance evaluation. In total, this resulted in 321 sequentially 
expanding datasets (n=280 for COVID-19 in the 6 states and n=41 for dengue in Puerto Rico) with unique ending dates, 
which we refer to as the “target date” for each nowcast.  
 

Nowcasts: We fitted negative-binomial nowcast models using the  NobBS R package. NobBS is a Bayesian model that 
accounts for reporting delays estimated from recent data (7). Briefly, NobBS fits a log-linear model to reported cases at 
each time step with random effects for time and the probability of the reporting delay. To reflect the autoregressive 
nature of an epidemic, time has a first-order random walk. Default priors on the reporting delays are weakly informative 
to reflect an equal probability of reporting across the range of observed values. NobBS requires two parameters: (i) 
maximum delay, the maximum length of delays to be estimated, and (ii) training period, the period over which to 
estimate delays (called ‘window period’ in the function). By default, the function sets the maximum delay to the total 
number of weeks in the dataset minus 1 and the training period to the total number of weeks in the dataset. We 
selected fixed and dynamic maximum delay and training period parameters (see below). We ran the model with default 
package settings - one chain per model at 10,000 iterations each, with a burn-in period of 1,000 iterations - and used 
default settings for model priors. Because the package does not produce diagnostic statistics, we did not assess 
convergence. Rather, we suppressed nowcasts that were indicative of failure from the evaluation (see “Failed nowcasts” 
below). 
 

Fixed and dynamic parameters: We fitted NobBS models under two different fixed parameter scenarios: (1) a fixed 
maximum delay of 12 weeks and training period of 24 weeks and (2) a fixed maximum delay of 24 weeks and training 
period of 48 weeks. We also tested empirical methods for selecting these two values from the data selected dynamically 
in two steps: 

1. We selected an initial maximum delay value to correspond to the 90th, 95th, and 99th quantile of the 
distribution of onset-to-report delays for the most recent week of reported data, enforcing a minimum 
value of 4 weeks and a maximum value 12 weeks.  

2. We used a series of multipliers to adjust the maximum delay and training period values relative to the 
value from Step 1. For the maximum delay, we tested multipliers of 1.0 (i.e., no change) and 2.0. For the 
training period, we used values corresponding to the maximum delay plus one week or multiplied the 
maximum delay value by 1.5 or 2.0. We also included maximum delay multipliers of 3.0 with a window 
multiplier of 3.0. 

When selected values were longer than the available history, the entire history was used (i.e., the default approach).  
 

Evaluation: Predictive performance was assessed via logarithmic (log) scoring and prediction interval coverage on the 
last 3 predicted counts (i.e., the last three weeks in the dataset). We focused on the last three predicted counts because 
this period is when delays are common and most substantial. For each nowcast, we computed the mean and dispersion  
of  the predicted nowcast samples. Using these values, we then calculated the probability that the eventually observed 
outcome fell within the distribution of nowcast samples. The logarithm of this probability is the log score, with high log 
scores (closer to zero) indicating a greater probability assigned to the observed outcome and better performance. We 
used a lower bound probability of 1 per 10,000 to classify nowcasts as “failed” (see below). We calculated the 
proportion of “failed” nowcasts for each model according to this criterion. We then removed all nowcasts where at least 
one nowcast model “failed” (44% of all created nowcasts) and calculated log scores on a consistent set of observed 
values for all models. 
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Prediction interval coverage was calculated by determining the frequency with which the 50% or 95% prediction interval 
contained the eventually observed outcome. Jurisdictional level performance metrics are presented in Supplement 2.  
 

Failed nowcasts: As described above, we considered a nowcast to have “failed” when there was a mean probability of 
less than 1 per 10,000 of observing the number of reported cases that were eventually reported (log score = -9.2) over 
the last three weeks of the nowcast. Log scores are correlated with case counts (8) and we expect some nowcasts to 
“fail” due to high case numbers and not only poor nowcasts.  
 
We assess components of “failure” that could be used to suppress a nowcast through a robust, yet hypothesis 
generating, data reduction approach. We used a random forest classifier, a method shown to have improved 
generalizability relative to other techniques. Specifically, we trained a 1,000-tree random forest classifier with the 
following features (see Supplement 3 for correlation between them): 

G The mean number of reported cases in the last three weeks;  
G Width of the nowcast 50% prediction intervals and the 95% prediction intervals (i.e., the lower limit subtracted 

from the upper limit), each relative to the mean cases reported in the last three weeks; and  
G Stability of the epidemic trajectory, measured via permutation entropy of the entire history prior to the 

nowcast date; and permutation entropy of the 12 weeks prior to the nowcast date. Permutation entropy values 
range between 0 and 1, where larger values are indicative of epidemic trends with higher complexity.   

We chose these features to both adjust for drivers of high log scores (the magnitude of cases) and because they are 
available at the time the nowcast is created.   
 
We used the default number of random features as candidates (square root of total number of features) for each split 
during tree generation and selected the most important determinants of nowcast failure from the random forests’ 
permutation-based variable importance scores. The scores represent the mean decrease in classification accuracy over 
the entire forest when the features are removed from each tree. The change in accuracy is estimated by using the sub-
sample of data that was not used to build a given tree. We trained the algorithm using 80 percent of the dataset; the 
remaining 20 percent was used to evaluate model accuracy, sensitivity, and specificity. We also assessed the predictive 
capability of using the indicators selected from the random forest classifier with a logistic regression model. Florida 
nowcasts were excluded from this sub-analysis given the extreme log-scores of predictions (99% of nowcasts were 
classified as “failed”). 
 

Model comparison: After evaluating parameter selection approaches with NobBS, we used the optimized parameter set 
to fit negative-binomial nowcasting models with nowcaster (9) and epinowcast (10) using COVID-19 data for two 
representative locations: Idaho and Michigan. We compared model performance across all three models to assess how 
differences in the models influence performance. Like NobBS, nowcaster also uses a Bayesian log-linear model to predict 
reported counts by fitting a multilevel model with reported cases at each time step. Similarly, epinowcast also has an 
autoregressive model of counts but provides slightly more flexibility by allowing users to change the distribution of 
reporting delays. Epinowcast also extends the basic framework underlying nowcaster and NobBS to include a model for 
reporting patterns by weekday or week. The packages use distinct computational approaches for the nowcast function: 
NobBS and epinowcast use Markov chain Monte Carlo (MCMC), whereas nowcaster uses the Integrated Nested Laplace 
Approximation (INLA). Additional details on model differences are presented in Supplemental Table 4.  
 
For nowcaster models, we used the default value of 1,000 samples drawn from the approximate posterior distribution. 
For epinowcast models, we ran eight chains with 1,000 iterations and a burn-in period of 250 samples. Supplemental 
Table 5 provides a summary table of the similarities and differences between these models. At the time of this analysis, 
epinowcast could only be used to estimate daily predictions; we aggregated daily samples to the weekly scale for 

comparison with predictions from other models. Gelman-Rubin statistic (��), a convergence diagnostic, and model run 
time are presented in Supplement 4.  
 
Each model is configured to output prediction intervals rather than parametric forecasts. We therefore assessed 
performance based on prediction interval coverage and relative weighted interval scores (rWIS) on the last 3 predicted 
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counts. WIS reflects a weighted estimate of sharpness (i.e., the range of the predicted interval) and calibration (i.e., 
magnitude of over or under prediction) across three prediction intervals (50%, 95%, 98%) and the median prediction. To 
calculate rWIS, we first estimated the geometric mean of WIS across predictions and models in order to estimate a 
standardized rank score, and then divided that value by the WIS of the NobBS model. Relative WIS values greater than 
1.0 had worse performance than NobBS and values below 1.0 reflected better performance. 
 
Analyses were conducted using R (version 4.4.0) (11) on a 64-bit Windows 10 desktop (128 GB RAM, Intel(R) Xeon(R) w5-
3433 with 1.99 GHz processor). The following packages were used for primary analyses: nobbs (12), nowcaster (13), 
epinowcast (10), statcomp (14), scoringutils (15), and randomForest (16). R code is available in a public repository 
(https://github.com/cdcepi/Nowcasting_scale_up_analysis). 
 
This activity was reviewed by CDC to be deemed not human subject research and was conducted consistent with 
applicable federal law and CDC policy§. 
 
 

Results 

Reporting delays: We selected seven unique surveillance systems as a test bed for assessing nowcast performance. 
Reporting delays across these systems had a median of 2 weeks, interquartile range of 5 weeks, a mean of 5.6 weeks, 
and a standard deviation of 8.7 weeks, with substantial heterogeneity between systems (Figure 1). For example, in the 
datasets used here nearly all COVID-19 cases in Florida in the fall and winter of 2020 had reporting delays of at least 15 
weeks and 10-25% of COVID-19 cases occurring in Michigan in the spring of 2021 were reported nearly a year after they 
occurred (Figure 1A). Some of these represent extended delays for backfill and others represent retrospective batch 
reports. For example, in the state of Florida, the median difference in case count in the last three weeks of the nowcast 
at the time of reporting and those eventually reported is 12,082 cases. More than a quarter of this analysis (26% of 
included weeks) had a mean difference in reported cases greater than 20,000 cases, suggesting large batches of cases 
were reported several weeks after they occurred. Excluding those time periods and others with particularly long delays 
in Michigan and Wisconsin, we found that most delays were less than 4 weeks, the minimum value we allowed for the 
maximum delay parameter (Figure 1B).  
 

Nowcast performance: In the selected jurisdictions, we ran nowcasts with default, fixed, and dynamic parameters and 
assessed predictive performance of each parameter set with log scores and prediction interval coverage on the last 3 
predicted counts. Once nowcasts were scored, we classified nowcasts as “failed” if they had scores of less than -9.2 (i.e., 
if the nowcast probability of the observed outcome was 1 in 10,000 or less). Across parameter sets, 19% to 31% of 
nowcasts failed by this criterion, and failure was more common with the longer maximum delay values (Figure 2A). The 
log scores of non-failed nowcasts had similar interquartile ranges across all parameter sets, though the default 
parameters performed worst, with the lowest mean (-6.3) and median (-7.1) log scores (Figure 2B). Despite performing 
worst overall, the default model outperformed the dynamic parameter models approximately 20% of the time in PR and 
up to 10% of the time in NC (Supplemental Figure 2.1).  
 
Longer maximum delay parameters were also associated with lower log scores. The fixed 12-week maximum delay 
outperformed the default parameters (Figure 2C). Extending the 12-week delay or the training window led to worse 
performance. The dynamically selected parameters were shorter and generally outperformed the 12-week fixed 
maximum delays, especially without multipliers for the maximum delay or training window. Within the different 
quantiles used for setting the dynamic delays, extending the maximum delay or training window led to worse 
performance. Overall, the lowest proportion of failed nowcasts and the highest mean log score was attained with the 
maximum delay set dynamically to 95th quantile of the onset-to-report delays and the training period set to the 

                                                           

§ See e.g., 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. §552a; 44 U.S.C. §3501 et seq. 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.09.24315999doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.09.24315999


6 
 

maximum delay plus 1. The patterns across surveillance systems largely also reflect the patterns for each surveillance 
system, with the 95th quantile dynamics delay with no multiplier having the highest or second highest log score despite a 
slightly higher than average “failure” rate for dengue in Puerto Rico (Supplemental Figure 2.2).  
 
We also assessed prediction interval coverage to evaluate the reliability of the uncertainty estimates from the nowcast. 
All the models had lower than nominal coverage values for the 50% or 95% prediction intervals (Figure 3). Coverage 
followed the general patterns of the log scores with the default parameter selection having the lowest coverage values 
(37% and 84%, respectively). However, coverage was not maximized for the model with the best log score, doubling the 
maximum delay parameter for the 95th quantile delay led to higher coverage (45% vs. 49% and 84% vs. 90%, 
respectively). Coverage varied substantially by jurisdiction, but the trends in relative coverage across models were 
consistent (Supplemental Figure 2.3). 
 

Failed nowcasts: Even with the most robust dynamic maximum delay and training window parameters, 19% of forecasts 
were classified as “failed.” Of the “failed” nowcasts, 12% had observed values within the 95% PIs for two or three of the 
last three nowcasted dates, reflecting uncertainty across a relatively wide range of case values. On the other hand, 6% of 
the nowcasts with logarithmic scores above our “failure” threshold had lower coverage, reflecting overly confident 
nowcasts at low case numbers which could be problematic despite having reasonable logarithmic scores. 
 
We therefore assessed a priori indicators of the epidemic trend and the nowcast themselves that could indicate poor 
performance in real time. We analyzed five features: the mean number of reported cases in the last three weeks; the 
widths of the nowcast 50% prediction intervals and the 95% prediction intervals relative to mean reported cases; 
permutation entropy of the entire history prior to the nowcast date; and permutation entropy of the 12 weeks prior to 
the nowcast date. With a random forest model that included all five features, more than 99% of nowcasts were 
classified correctly and the sensitivity and specificity were greater than 99%. Along with the mean number of reported 
cases, the relative 95% prediction interval range and permutation entropy in the last 12 weeks were the most important 
determinants for predicting “failure” (Figure 4A).  
 
To determine the indicator values predictive of nowcast failure, we fitted a logistic regression model and calculated the 
marginal mean probability of “failure”. The regression included three indicators: the range of the 95% prediction interval 
relative to recently reported cases (on the log scale), permutation entropy for the last 12 weeks, and the mean number 
of reported cases in the last three weeks (on the log scale). The logistic regression model fit the data well (Figure 4B), 
with sensitivity of 84%, specificity of 96%, and accuracy of 93% in a 20% subset of data not used to fit the original 
models. Assessing the marginal mean to remove the impact of higher case numbers, we found strong relationships with 
both permutation entropy and relative width of the 95% prediction interval (Figure 4C). “Failure” was most likely with a 
wide 95% prediction interval and high permutation entropy. For example, when the epidemic trajectory was stable and 
permutation entropy was low, failure probability did not reach 50% up to a relative 95% PI width of approximately 55 at 
the highest observed permutation entropy value (0.69). In contrast, when the epidemic trajectory was unstable and 
permutation entropy was high, the threshold value for the relative 95% PI width was much lower, approximately 15 at 
the highest observed permutation entropy value (0.69). 
 

Model comparison: Using the optimal parameter set described above – 95% dynamic maximum delay value and a 
training period 1 week longer than the delay - we compared the NobBS package to two other publicly available R 
nowcasting packages: nowcaster, and epinowcast. Assessing nowcast performance on all dates for Idaho (relatively 
short delays and low variation) and Michigan (relatively long delays and high variation), average 50% PI coverage was 
highest for NobBS (29%) and the 95% PI coverage was highest for nowcaster (68%) but both were well below the 
nominal values (Figures 5 A and B). Relative WIS was lowest for NobBS followed by nowcaster, and then epinowcast 
(Figure 5C). We did not apply the “failure” criteria because we could not calculate logarithmic scores for nowcasts for 
epinowcast. 
 
We also monitored convergence and run time for each model. For NobBS and epinowcast we checked prediction 

convergence using �� and found that 35% of NobBS runs and 9% of epinowcast runs had at least one prediction with an 
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�� value greater than 1.01 (see Supplement 5, with the median Nobbs �� values > 1.01 = 1.03, range 1.02-1.18 and 

median epinowcast �� values > 1.01 =1.19, range 1.02-1.32). The median run time for a single nowcast was 276 seconds 
for epinowcast, 19 seconds for nowcaster, and 2 seconds for NobBS.  
 

Discussion 

Our analysis provides a roadmap for nowcast implementation as a component of routine public health situational 
awareness by focusing on standardized, data-driven implementation choices that optimize performance. We examined 
performance resulting from different parameter set choices and showed that using recent data to estimate delay and 
training window parameters dynamically resulted in better nowcast skill than when using all historic data. For example, 
when the longest sets of delays were used, these models often had the poorest performance which suggests that 
including too much trend data inhibited the model from capturing recent changes in trajectories. Appropriately sized 
delay and training windows enable the models to include important delays while also enabling adaptation as delays 
change. We also examined whether poor nowcasts could be predicted a priori and identified that the relative width of 
the prediction intervals and the permutation entropy of the epidemic trend can be used to guide nowcast suppression of 
potentially misleading nowcasts. Finally, we showed that more complex models do not significantly improve 
performance compared to simple models. Together, these findings help further not only the science of nowcasting, but 
also its utility in public health decision making. 
 
Much of the published public health nowcasting research has focused on how to improve model performance within a 
specific context. While there has been some exploration similar to ours that examines the impact of sliding window size 
on model accuracy (17), most researchers have suggested two primary approaches for reducing error - augmenting 
models with additional data inputs or changing the model structure. For example, dengue and chikungunya virus 
nowcasts that include internet data, such as search trends on Google or Twitter, in addition to reported case counts had 
lower error relative to the same models with case counts alone (18,19). Internet search data has also been shown to 
improve performance for influenza in ensemble nowcasts (20). Similarly, improved performance has been observed 
when including genomic data in COVID-19 nowcasts (21). The correlation between performance improvements and 
additional data, nevertheless, is not always positive for all predicted outcomes. Recent work by Klaassen and colleagues 
shows that augmenting COVID-19 models with wastewater surveillance data only improved nowcasts for deaths and not 
cases (22). Additionally, inclusion of day of the week effects in models has shown some improvement to prediction 
interval coverage, but limited meaning impact on error metrics (23).  In contrast to this body of literature, our work 
examines how to improve nowcasting predictions without additional data elements and across a wide range of 
surveillance systems.  
 
Some researchers have suggested that nowcasting approaches should be designed for each specific public health 
surveillance system (24). We argue that nowcasting should be flexible in order to scale-up and be useful for many 
jurisdictions of different sizes. Thus, we tested nowcasting in epidemic and endemic disease  surveillance systems with 
different reporting delay patterns to improve generalizability of our findings. We also expanded our analysis to shed 
light into when nowcasts may provide misleading information, which not only adds to their flexibility but also provides 
practical insight. Nevertheless, our approach has three main limitations. First and foremost, we examined nowcasting 
performance on aggregate and did not explicitly examine performance at different points in an epidemic trajectory, that 
is, when the trend in cases may rapidly change directions. Such an analysis may provide insight into why models with 
default parameters outperformed those with dynamic parameters in certain periods. Moreover, there are many ways of 
assessing nowcast performance, including whether the direction of the epidemic trend or specific threshold values were 
predicted. Nowcasting methods are generally not good at capturing changes in epidemic trajectory, and changes in the 
reporting delays themselves may also correlate with changes in the epidemic trend. While we did include jurisdictions 
with high variance in reporting delays to test the impact of parameter selection, we did not explicitly examine the 
relationship between changes in delay patterns and corresponding changes in epidemic trajectory. Further research is 
needed in this area. Second, there is no clear, objective definition for “failure”. We employed a “failure” metric that is 
correlated with the scale of the observed outcome; consequently, there may be  some misclassification of 
nowcasts. Finally, unlike other research, we did not test how additional data may impact model performance and 
aggregated daily reports to the weekly scale to smooth over weekday reporting effects.  
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Nowcasting implementation has been most successful when analysts closely collaborate with surveillance partners. We 
sought to identify options to build more robust nowcast predictions when nowcasts are implemented in real-time and 
assessing performance for individual nowcasts becomes untenable. Towards this end, our findings yield three main 
recommendations: 

1. Prior to running models, we recommend that batch reporting patterns are discussed and nowcasts should be 
avoided if batch reporting is anticipated. 

2. Programmatically setting maximum delay parameters dynamically for each week based on the distribution of 
onset-to-report delays for the most recent reported data resulted in the best performance. A fixed maximum 
delay of 12 weeks also outperformed the default parameters. The training window parameter can be set to the 
maximum delay value plus one week.  

3. We recommend that a system is implemented to suppress nowcasts likely to fail. This involves programmatic 
evaluation of the relative 95% prediction interval width and permutation entropy in the most recent 12 weeks. 
As a conservative approach, when the ratio of the width of the 95% prediction interval to the mean reported 
cases in the most recent three weeks is less than 10, the nowcast estimates are likely to be stable. This 
approach, like using a coefficient of variation, highlights a reasonable dispersion of the prediction relative to the 
mean reported cases.   

 

CDC disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the 
official position of the U.S. Centers for Disease Control and Prevention. 
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Main Figures 

Figure 1: A. Distribution of delays across all surveillance systems by onset week, with each vertical bar representing the delay distribution within that given onset 

week; B. Dynamically selected delay values for delay multiplier 1 for each quantile value across all surveillance systems; C. Examples of three nowcast 

predictions, with the median prediction in red and 95% prediction interval in the red band. Reported cases are also presented, with cases reported at the time 

the nowcast was made in the black dashed line and cases that were eventually reported in the solid black line. 
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Figure 2: A. The percent of nowcasts with failed log scores, which were excluded from the evaluation; B. Median log score (as a vertical line), interquartile range 

log scores (as a horizontal bar), and mean log score (as a yellow diamond); C. The parameter set mean log score relative to mean log score of the fixed delay of 

12 weeks with 1 window multiplier. In each plot, the parameter set is presented in a distinct color. Nowcasts for dates that “failed” for any model were excluded 

from all models in panels B and C. 
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Figure 3: Mean 50% prediction interval coverage and 95% prediction interval coverage per parameter set. The hue of the 

mean prediction interval coverage is darker as coverage increases. Nowcasts classified as “Failed” were removed.  
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Figure 4: A. Variable importance, as determined by the mean decrease in accuracy, per feature from a random forest classifier. More important variables are in 

dark pink; B. Median and interquartile range of predicted probability of nowcast failure from the regression model for observed nowcast classification. Points in 

red represent predicted probabilities greater than 0.50 and points in black represent predicted probabilities less than 0.50. ; C. The marginal mean probability of 

nowcast “failure” by width of the 95% prediction interval relative to mean cases in the last 3 weeks. Predicted values are disaggregated by the lowest and 

highest observed permutation entropy for the 12 weeks prior to the nowcast date. The horizontal dashed line represents the threshold values for marginal mean 

probability classification “failure”, where values greater than 0.50 are likely to be predicted “failures”.  
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Figure 5: A. Mean 50% prediction interval coverage, and B. 95% prediction interval coverage per model for all runs and per jurisdiction. The hue of the mean 

prediction interval coverage is darker as coverage increases. C. Scaled, pairwise relative Weighted Interval Score (rWIS) (see Methods for description) by each 

model, for all runs and per jurisdiction. All models used equivalent parameters for the nowcast: a 95% dynamic maximum delay value and a training period 1 

week longer than the delay. Nowcasts for all dates were included without any failure classification. 
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