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Abstract

Characterizing the feedback linking human behavior and the transmission of infectious diseases

(i.e., behavioral changes) remains a significant challenge in computational and mathematical Epi-

demiology. Existing Behavioral Feedback Models often lack real-world data calibration and cross-

model performance evaluation in both retrospective analysis and forecasting. In this study, we sys-

tematically compare the performance of three mechanistic behavioral models across nine geographies

and two modeling tasks during the first wave of COVID-19, using various metrics. The first model,

a Data-Driven Behavioral Feedback Model, incorporates behavioral changes by leveraging mobility

data to capture variations in contact patterns. The second and third models are Analytical Behav-

ioral Feedback Models, which simulate the feedback loop either through the explicit representation of

different behavioral compartments within the population or by utilizing an effective non-linear force

of infection. Our results do not identify a single best model overall, as performance varies based

on factors such as data availability, data quality, and the choice of performance metrics. While the

data-driven model incorporates substantial real-time behavioral information, the Analytical Com-

partmental Behavioral Feedback Model often demonstrates superior or equivalent performance in

both retrospective fitting and out-of-sample forecasts. Overall, our work offers guidance for future

approaches and methodologies to better integrate behavioral changes into the modeling and projec-

tion of epidemic dynamics.

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2024. ; https://doi.org/10.1101/2024.11.08.24316998doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.11.08.24316998
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

During the COVID-19 Pandemic, epidemic models became central tools for providing situational aware-

ness, scenario analysis, and forecasts. Specifically, mathematical and computational models were used

to characterize the initial outbreak phases [1–6], assess policy interventions [6–12], evaluate risks from

new virus strains [13–17], and estimate outcomes of various vaccination strategies [18–23]. Achieving the

required level of realism in these models necessitated incorporating population-level behavioral changes

due to epidemic awareness and mandated or recommended non-pharmaceutical interventions (NPIs) [24–

26]. However, capturing the feedback loop between the transmission of infectious diseases and human

behavior has long been regarded, and still remains, as a major challenge in Epidemiology [24, 27–29].

In this context, we identify two major classes of mechanistic modeling approaches: Data-Driven Be-

havioral Models and Analytical Behavioral Feedback Models. Data-Driven Behavioral Models integrate

real-world data on behavioral changes, such as mobility patterns and social distancing measures into

epidemic simulations [13, 20, 30–44]. Hence, these models rely on empirical data to simulate how behav-

iors change. Analytical Behavioral Feedback Models, instead, use theoretical frameworks to incorporate

non-linear mechanisms describing how individual behaviors change in response to the epidemic’s progres-

sion [45–52]. These models do not rely on real-world data but rather on mechanistic rules that capture

the feedback loop between behavior and epidemic dynamics.

Data-driven approaches have been prevalent in the COVID-19 literature for several reasons. First,

using empirical data can drastically reduce the number of free parameters and explicit mechanisms needed

to capture human behavior. Additionally, most models in the analytic class were developed before the

COVID-19 pandemic and often lacked empirical validation [27]. Using an explicit behavioral model rather

than data, however, has the potential to accurately capture the interplay between human behavior and

the spread of infectious diseases, enabling more precise projections and forecasts. Furthermore, data-

driven models are not necessarily simpler than their analytical counterparts. In fact, they often integrate

large amounts of temporal data, relying on methodologies that involve assumptions, may be prone to

biases and other data collection issues. These considerations stress the need for a systematic analysis of

the performance and calibration of these model classes to understand their reliability and usefulness in

informing decision-making processes.

Here, we present a systematic comparison of the performance of different behavioral feedback models

during the first wave of the COVID-19 pandemic, spanning nine geographies and two modeling tasks.

Specifically, we investigate three mechanistic models: i) the Data-Driven Behavioral Model exemplifies

data-driven approaches, leveraging mobility data to estimate effective changes in contact patterns; ii) the

Compartmental Behavioral Feedback Model simulates the feedback loop by explicitly representing different

behavioral classes within the population; iii) the Effective Force of Infection Behavioral Feedback Model

employs an effective non-linear forcing to adjust the infection rate based on the epidemic’s progression and
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the resulting behavioral changes. We first quantitatively assess the performance of these models through

a retrospective analysis of their ability to capture the dynamics of the first COVID-19 wave across nine

diverse geographical areas. Using the same datasets, we also evaluate their out-of-sample forecasting

performance over a rolling four-week horizon in these regions. Remarkably, in the retrospective analysis

the Data-Driven Behavioral Model, which integrates mobility data, does not consistently outperform

the Analytical Behavioral Feedback Models. In forecasting performance, similar results are observed,

indicating that Analytical Behavioral Feedback Models, though largely neglected during the COVID-19

pandemic, can often provide superior, or comparable, performance by capturing the interplay between

human behavior changes and disease progression.

Overall our results pave the way for a broader use of analytical behavioral approaches in epidemic

modeling and forecasting contexts. Modeling choices should therefore consider factors such as data

availability and quality, target metrics, and geographic scope. It is important to note that, despite similar

performances in retrospective and forecasting analyses, the models often offer different characterizations

of disease dynamics, exemplified by different effective reproductive numbers time series. This evidence

reinforces the indication of interpreting disease dynamics in the context of the model’s structure rather

than as intrinsic properties of the pathogen. While our results focus on COVID-19, they hold broad

relevance for the analysis and forecasting of respiratory and other transmissible diseases.

2 Results

We consider three mechanistic models in which the disease progression is described via an age-structured

Susceptible-Exposed-Infected-Recovered (SEIR) disease dynamic with the addition of compartments ac-

counting for COVID-19 deaths and their delayed reporting (see Fig. 1). Each model differs in the way

population behavioral changes are integrated into the dynamic:

• Data-Driven Behavioral (DDB) model. This model integrates data from the COVID-19 Commu-

nity Mobility Report published by Google LLC [53] to derive a time-varying contact reduction

coefficient.

• Compartmental Behavioral Feedback (CBF) model. This model introduces behavioral changes

explicitly through a new compartment SB for Susceptible individuals who are risk averse. These

individuals experience a relative reduction r < 1 in the force of infection. Additional parameters

of the model characterize the transitions to and out of the risk-averse compartment.

• Effective Force of Infection Behavioral Feedback (EFB) model. This model integrates the behavior

changes in the population with an explicit modulation of the transmissibility [51]. More precisely,

we consider a non-linear function (that saturates as the number of reported deaths grows) charac-

terizing the rate at which susceptible individuals acquire infection (i.e., the force of infection).
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In Fig. 1 we show a schematic depiction of the compartmental structure and the transitions among

compartments of each model. Full details of the models are provided in the Material and Methods

section and the Supplementary Information. It is important to note that none of the models distinguishes

between spontaneous and mandated behavioral changes [24, 27–29]. In all cases, increased risk aversion

among individuals and the resulting reduction in contacts account for all causes leading to behavioral

changes.
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Figure 1: Flow diagrams of the epidemic-behavior models considered. The top row shows the base-
line SEIR-like epidemic model. The bottom row shows the epidemic-behavior mechanisms for the three
models considered. In particular, β indicates the transmission rate, rmobility is the contact reduction
parameter estimated on mobility data, βB regulates the behavioral transitions in the Compartmental
Behavioral Feedback model and r is the relative reduction in the force of infection of risk-averse individ-
uals, and f(Drep) is a non-linear function of the number of reported deaths that modulates the force of
infection in the Effective Force of Infection Behavioral Feedback model.

Retrospective model inference

We calibrated the three models to fit the initial wave of COVID-19 deaths across nine distinct geo-

graphical areas: metropolitan areas such as Bogotá, Chicago, Jakarta, London, Madrid, New York, Rio

de Janeiro, and Santiago de Chile, as well as a larger administrative region, such as Gauteng in South
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Africa. This selection captures a diverse range of epidemiological, socio-demographic, and socioeconomic

contexts from both the global North and South. In each region, models are calibrated to weekly deaths

using an Approximate Bayesian Computation - sequential Monte Carlo (ABC-SMC) algorithm [54] (de-

tails are reported in the Material and Methods section and the Supplementary Information). In Fig. 2,

we present the fitted curves (median and 90% predictive intervals) for these nine locations using the

three models. Overall, all models successfully replicate the shape of the observed epidemic curves. How-

ever, we observe inferior fit quality in specific cases. For instance, the models exhibit lower performance

in the epidemic tail for Gauteng and Rio de Janeiro, possibly due to factors such as the completeness

and reporting time of epidemiological data in those settings. To quantitatively characterize the model’s

performance, in Tab. 1, we report the normalized mean absolute error (nMAE), the normalized weighted

interval score (nWIS), and the Bayesian Information Criterion (BIC) weight of each model.
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Figure 2: Fitted curves (median, 90% predictive intervals obtained from 1, 000 stochastic trajectories)
of weekly deaths during the COVID-19 initial wave across the nine geographies considered and three
epidemic-behavior models. DDB stands for Data-Driven Behavioral model, CBF for Compartmental
Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral Feedback model.

When considering the nMAE of the median, the Compartmental Behavioral Feedback model is the

top performer in all geographies, except for Rio de Janeiro and Santiago de Chile, where the Data-Driven

Behavioral model performs better. The WIS measures the effectiveness of predictive intervals in bound-

ing reported data, with normalization enabling comparisons across different geographies. Analyzing the

nWIS, the Compartmental Behavioral Feedback model is the top performing model in 6 geographies (Bo-

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2024. ; https://doi.org/10.1101/2024.11.08.24316998doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.08.24316998
http://creativecommons.org/licenses/by-nc-nd/4.0/


gotá, Chicago, Gauteng, London, Madrid, New York), although there is more variability in performance.

The Data-Driven Behavioral model is the top performer in 3 geographies (Jakarta, Rio de Janeiro, and

Santiago de Chile).

It is important to note that the models have different structures and number of free parameters that

obfuscate the simple comparison through goodness of fit. To have a more unbiased estimator we consider

the Bayesian Information Criterion that discounts the number of estimable parameters, and calculate the

BIC weights of each model in each location. The BIC weight can be interpreted as the probability that

any given model is the best model (i.e., likelihood of the model given the data) among those considered.

According to the BIC weights, the Compartmental Behavioral Feedback model is the most probable in

4 cases (Bogotá, Chicago, London, Madrid), while the Data-Driven Behavioral model is most probably

the best model in the remaining 5 (Gauteng, Jakarta, New York, Rio de Janeiro, Santiago de Chile).

We note how, in Data-Driven Behavioral models, the contact reduction values estimated on mobility

data (i.e., rmobility(t)) are discounted from the number of free parameters as they are not subject to

calibration. In the Supplementary Information, we also report the models’ accuracy in reproducing both

the intensity and timing of epidemic peaks. Interestingly, we find that the Effective Force of Infection

model and the Data-Driven model are more accurate than the Behavioral Compartmental model when

evaluating these target quantities. This highlights that the definition of the best model often depends

on the specific metric being evaluated.

Table 1: Comparison of models performance in retrospective modeling task (** indicates probabilities
< 0.01%). DDB stands for Data-Driven Behavioral model, CBF for Compartmental Behavioral Feedback
model, and EFB for Effective Force of Infection Behavioral Feedback model.

nMAE nWIS BIC Weights
DDB CBF EFB DDB CBF EFB DDB CBF EFB

Bogotá 0.41 0.18 0.35 0.29 0.14 0.27
** 99.99 **

Chicago 0.20 0.14 0.20 0.12 0.09 0.14
** 99.90 0.09

Gauteng 0.32 0.25 0.34 0.25 0.18 0.26
94.20 5.73 0.07

Jakarta 0.14 0.13 0.14 0.09 0.09 0.11
97.92 0.35 1.73

London 0.12 0.07 0.18 0.07 0.06 0.11
4.57 95.42 **

Madrid 0.28 0.10 0.24 0.21 0.08 0.14
** 99.99 **

New York 0.13 0.13 0.21 0.09 0.08 0.15
98.97 1.02 **

Rio de
Janeiro

0.23 0.33 0.52 0.16 0.25 0.43
99.99 ** **

Santiago de
Chile

0.24 0.25 0.32 0.14 0.19 0.26
63.80 36.17 0.03
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Estimates of transmission potential

Although the three models offer a similar fit of the epidemic trajectories, it is important to quantify the

difference in the disease dynamic emerging from them. First, we considered the posterior distribution

of the basic reproductive number (i.e., R0) provided by the three models across the nine geographies.

This quantity is defined as the number of secondary infections, due to a single infectious individual, in

an otherwise susceptible population [55]. In all three models, R0 is defined as R0 = ρ(C̃)β/µ, where C̃ is

the contact matrix weighted by age group populations, ρ(·) is the spectral radius, β is the transmission

rate, and µ is the inverse of the infectious period. More details on the calculation of R0 are provided

in the Supplementary Information. Notably, in each behavioral model, R0 remains the same as in the

baseline. Indeed, they all converge to the baseline in a fully susceptible population, where behavioral

effects are negligible, such as during the epidemic’s early phase.

As shown in Fig. 3, we observe comparable posterior distributions in some instances, as in the case

of London, where the three models estimate median and 90%CI for R0 values of 2.54 [2.29, 2.90] (DDB),

2.77 [2.43, 3.20] (CBF), and 2.38 [2.09, 2.68] (EFB). The posterior distributions of the three models are

similar (to different extents) also for Jakarta, Madrid, and New York. However, we also find significant

variations. For instance, in Santiago de Chile, the Data-Driven Behavioral model estimates a R0 of

4.20 [3.96, 4.42], whereas the estimates from the Compartmental and the Effective Force of Infection

Behavioral Feedback models are notably lower, at 1.87 [1.69, 2.04] and 1.77 [1.59, 1.97], respectively. To

quantify the similarity among R0 distributions, we employ the Wasserstein distance. On average, we

find that the distributions projected by the two Analytical Behavioral Feedback Models (CBF and EFB)

are closer to each other compared to the distribution projected by the Data-Driven Behavioral model,

which tends to exhibit greater dissimilarity. We refer the reader to the Supplementary Information for

full details on R0 distributions and related analysis.

While R0 is of epidemiological significance, the effective reproductive number Rt emerged as a crucial

and closely monitored metric during the COVID-19 pandemic. Unlike R0, Rt accounts for fluctuations

in transmissibility attributed to seasonality, changes in susceptibility, and also behavioral changes. For

this reason, in Fig. 4 we compare the Rt estimated using the method described in Ref. [56] from the

three models’ data. Generally, we observe a consistent trend in their evolution. Noteworthy is the close

alignment of tipping points (i.e., instances where Rt crosses 1) projected by all three models. However,

deviations are evident in the cases of Bogotá and Gauteng, where the Data-Driven Behavioral model

predicts an early tipping point in March/April 2020. This divergence can be attributed to decreased

mobility in those regions during the early months of 2020, prompted by global emergency measures,

despite a subsequent rise in cases and deaths. This underscores some limitations of mobility data in

accurately estimating the impact of NPIs (see the Discussion section). As an additional analysis, we

calculate pairwise correlations between one-step changes in Rt as estimated by the three models (shown
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in the inset of Fig. 4). We generally observe positive and statistically significant correlations, with a

few exceptions. For instance, the evolution of Rt in the Data-Driven Behavioral model does not show

a significant correlation with the corresponding quantity estimated by the Compartmental Behavioral

Feedback model and the Effective Force of Infection Behavioral Feedback model in Gauteng. Similarly,

theRt of the Data-Driven Behavioral model is not significantly correlated with that of the Compartmental

Behavioral and of the Effective Force of Infection Behavioral Feedback model in Santiago de Chile.

Similar to the findings regarding R0 distributions, we note that the evolution of Rt projected by the two

Analytical Behavioral Feedback Models generally shows higher correlations.

Overall, our results highlight an important point. Differences in the estimated values of R0 and

Rt across models are influenced by approaches used to describe the force of infection. Hence, they are

affected by different underlying assumptions and approximations. Ensemble approaches, which average

across models, might be used to provide more reliable estimations of the real value of such quantities [57].

While these methods are typically used in out-of-sample forecasts, they have been also used to provide

in-sample consensus estimates across models for Rt [58].

Forecasting performance

As a final step in comparing the three models, we use them to forecast the number of weekly deaths

during the first wave in the nine geographies under consideration. It is important to note that in

assessing forecast performance, the role of model complexity and the number of parameters remains

unclear. Especially at the early stage of an epidemic wave, limited available data can disadvantage

more complex models, which may be outperformed by more parsimonious approaches. Specifically, we

calibrate each model up to time t, forecast the subsequent four weeks, then shift the calibration window

to t + 1 and repeat the process. We assess forecasting performance using two metrics: the Weighted

Interval Score (WIS) and the mean absolute error (MAE) of the median. Normalization of metrics is not

required in this context, as forecasting performance is assessed relative to a baseline model, as explained

below. For simplicity, we present analysis concerning the WIS as a performance metric in the main text,

while MAE results are reported in the Supplementary Information. The main findings remain consistent

across both metrics.

In Fig. 5A, we present the ratio, for all forecasting rounds, between the average WIS of each model

over the 4-week horizon and the average WIS of a baseline model. The latter is defined as a model

that consistently predicts, as median value, the last data point within the calibration period and whose

predictive intervals are estimated on past data. Similar baseline models have become a standard neu-

tral benchmark providing a simple reference for all models in the context of collaborative forecasting

hubs, such as the US and the European COVID-19 Forecast Hub [57, 59]. We refer the reader to the

Material and Methods for more details and the definition of the baseline model. It follows that, values
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Figure 3: Boxplot of R0 posterior distributions according to the three models considered across the nine
geographies, considering 1, 000 posterior samples. The box boundaries represent the interquartile range
(IQR) between the first and third quartiles (Q1 and Q3), the line inside the box indicates the median
and the upper (lower) whisker extends to the last datum less (greater) than Q3+1.5IQR (Q1−1.5IQR).
DDB stands for Data-Driven Behavioral model, CBF for Compartmental Behavioral Feedback model,
and EFB for Effective Force of Infection Behavioral Feedback model.

below (above) 1 indicate superior (inferior) performance compared to the baseline. We observe het-

erogeneous forecasting performance among the geographies under consideration. Notably, in Chicago,

Gauteng, London, Madrid, New York, and Santiago de Chile, all models statistically outperform the

baseline. However, in other locations, some models significantly underperform compared to the baseline;

for instance, the Effective Force Behavioral Model in Rio de Janeiro and the Data-Driven Behavioral

Model in Bogotá. We use the Wilcoxon signed-rank test (with outliers removal) to statistically compare
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Figure 4: Effective reproductive number (Rt) analysis. Effective reproductive number (median, 90%
predictive intervals) projected by three epidemic-behavior models across nine geographical regions con-
sidered. Shaded grey area indicates Rt < 1, while dots indicate points in time where Rt went below 1. In
the inset of each figure, we show pairwise Pearson correlation coefficients between one-step changes in Rt

as estimated by the three models. Asterisks indicate correlations significant at the 5% significance level.
DDB stands for Data-Driven Behavioral model, CBF for Compartmental Behavioral Feedback model,
and EFB for Effective Force of Infection Behavioral Feedback model.

the performance of different models. The null hypothesis of this test is that the two groups come from

the same distribution. In Fig. 5A we report the statistical significance of the tests comparing different

pairs of models as follows: ****: pvalue ≤ 10−4, ***: 10−4 < pvalue ≤ 10−3, **: 10−3 < pvalue ≤ 10−2,

*: 10−2 < pvalue ≤ 0.05, and otherwise blank if pvalue > 0.05. The Data-Driven Behavioral Model

performs best in terms of median relative WIS in Chicago, Jakarta, London, New York, Rio de Janeiro

and Santiago de Chile. However, its performance distribution is statistically different from that of the

Compartmental Behavioral Model only in three cases (Chicago, London, and New York). The Compart-

mental Behavioral Model is the median top performer in the remaining three locations. Its performance

distribution is statistically different from that of the Data-Driven model in all these three cases, namely

Bogotá, Gauteng, and Madrid.

To provide an overall performance assessment, in Fig. 5B, we show the distribution of the relative

WIS with respect to the baseline model for the three models. To provide an overall view of models’

performance, we combine results from all geographies and all forecasting points. The analysis shows that

the Compartmental Behavioral Feedback model is statistically the top performer with an overall median

relative WIS of 0.64, closely followed by the Data-Driven Behavioral model (0.67) and the Effective Force
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of Infection Behavioral Feedback model (0.83). The reported significance of the Wilcoxon test confirms

the statistical difference in performance between the Compartmental Behavioral Model and the other two

models. Furthermore, for this model, nearly 70% of the forecasts are better than the baseline compared

to only the 60% and 58% for the Data-Driven and the Effective Force of Infection Behavioral Feedback

model, respectively.

In the Supplementary Information, we present the forecasting performance analysis for two ensemble

models that combine the forecasts of individual epidemic-behavior models. Ensemble forecasts have

consistently demonstrated greater accuracy and reliability over time in various epidemiological forecasting

contexts [57, 59]. In the first ensemble approach, all models are weighted equally, while in the second,

weights are proportional to past forecasting performance. Interestingly, we find that ensemble models

outperform individual epidemic-behavior models in most cases across different metrics. Although the

performance-weighted ensemble shows slight improvements over the equally weighted ensemble, these

improvements are generally marginal and not statistically significant.
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Figure 5: Forecasting performance (WIS). A) Relative WIS computed over all forecasting rounds for
the three epidemic-behavior models across the nine geographical regions considered. Values below 1
indicate better performance with respect to baseline forecasting model. Each data point underlying the
boxplot represents the relative WIS averaged over the four-week horizon of the corresponding forecasting
round. In the bottom right of each plot, we report the number of forecasting rounds for each location.
B) Boxplot and swarmplot of relative WIS for different models pooling together results from all rounds
and geographies. The box boundaries represent the interquartile range (IQR) between the first and
third quartiles (Q1 and Q3), the line inside the box indicates the median and the upper (lower) whisker
extends to the last datum less (greater) than Q3 + 1.5IQR (Q1 − 1.5IQR). DDB stands for Data-
Driven Behavioral model, CBF for Compartmental Behavioral Feedback model, and EFB for Effective
Force of Infection Behavioral Feedback model. In both panels we report the statistical significance of
the Wilcoxon test comparing different forecasting performances as follows: ****: pvalue ≤ 10−4, ***:
10−4 < pvalue ≤ 10−3, **: 10−3 < pvalue ≤ 10−2, *: 10−2 < pvalue ≤ 0.05, and otherwise blank if
pvalue > 0.05.
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3 Discussion

Modeling the interplay between human behavior and the spread of infectious diseases is still considered

a hard problem in epidemiology [24, 27, 28, 60]. One of the main obstacles to solving this challenge

has been the lack of data to validate the theoretical models developed. A review of studies published

between 2010 and 2015 found that only about 15% utilized data to parameterize and/or validate the

proposed epidemic-behavior mechanisms [27]. The COVID-19 pandemic has significantly altered this

landscape. The abundance of novel data sources and the scale of the emergency made incorporating

behavioral data into modeling studies not only possible but essential. Most computational models,

however, have leveraged data to include behavioral changes as an exogenous factor, as seen in the Data-

Driven Behavioral Feedback Model used here. While this approach benefits from a transparent data

integration process, it has limited the use and validation of general classes of models that explicitly

simulate the feedback loop between the spread of infectious diseases and human behaviors.

Interestingly, our results show that Analytical Behavioral Feedback Models, developed well before the

COVID-19 pandemic, often provide comparable or superior performance to data-driven approaches in

both retrospective analysis and forecasting. Although we observe variability depending on the task, geo-

graphical context, and the metrics considered, our findings suggest that purely data-driven methodologies

to model behavior change may not always represent the best modeling solution.

While it may seem counter-intuitive to suggest that data-driven approaches based on mobility data

are less reflective of the actual dynamics of an epidemic, several factors contribute to this conclusion. In

many cases, there is limited knowledge about the underlying population or the data generation process,

complicating the assessment of data representativeness and potential biases. Additionally, for forecasting

purposes, real data can only be used under specific assumptions about the future —often with a status

quo assumption— which may not accurately capture the true dynamics of the population. Additionally,

there is limited mobility data available for many low and middle-income countries, and when available,

the data quality can be poor [61–64]. This can easily deteriorate the modeling results [65]. These issues

can be mitigated by using analytical behavioral feedback models, which derive the epidemic-behavior

interplay in a self-consistent way through calibration and parameterization of behavioral mechanisms.

However, purely model-based approaches can misinterpret errors in reporting, the emergence of more

transmissible virus strains, or other factors influencing the epidemic’s progression as changes in behavior.

Moreover, the high-dimensional space characterizing complex analytical behavioral feedback models can

lead to challenges such as parameter identifiability, interpretability, and overfitting.

Our results stress the critical importance of systematically evaluating different modeling approaches

and considering the use of ensemble modeling techniques. Indeed, as shown in the Supplementary

Information, by integrating the three models, ensemble methods generally improve forecast accuracy

and generate a broader range of potential epidemic trajectories. Since no single model can completely
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capture the feedback mechanisms of epidemic dynamics and human behavior, ensembling multiple models

allows for the integration of different mechanisms and factors, potentially resulting in a more reliable

representation of the epidemic-behavior interplay [66, 67].

As with all modeling approaches, this study is not without limitations. First, we could not consider

all the possible approaches used to model COVID-19 epidemic-behavior interplay. For instance, we did

not test the performance of survey-driven models [68–71] and semi-mechanistic models [72, 73].

Furthermore, translating mobility changes into contact reductions remains an open challenge. There-

fore, the performance of the data-driven model may vary depending on different approaches to effective

contacts rescaling [74–78]. Finally, our forecasts are based on data reported as of today, not address-

ing the challenge of retrospective data adjustments (i.e., backfilling) very common for epidemiological

datasets. While this could impact forecast performance, our primary goal is to compare models. There-

fore, assuming that all models would be equally affected, this issue may not significantly impact our

comparative analysis.

In light of the assumptions and limitations, our study offers a clear path forward for the application of

analytic feedback behavioral models in both retrospective analysis and epidemic forecasting [59, 79, 80].

The strong performance of the Compartmental Behavioral Feedback model in both tasks suggests that

the epidemic-behavior interplay can be mechanistically captured in a parsimonious way, substantially

improving accuracy. Moreover, our study paves the way for more systematic use of analytic feedback

behavioral models in operational forecasting efforts. By demonstrating their capability to account for

the dynamic relationship between human behavior and disease spread, these models can improve epi-

demic forecasts and projections without relying on explicit assumptions about the possible evolution of

population behavior. This approach can be particularly valuable in anticipating the effects of public

health interventions and supporting more informed decision-making.

4 Materials and methods

4.1 Epidemic models

4.1.1 Compartmental and age structure

In all models studied, we adopt a SEIR compartmentalization setup. Healthy and susceptible individuals

are placed in the compartment S. Through interactions with infectious, they transition to the compart-

ment of the exposed E. Individuals in the E compartment get infectious only after the latent period (ϵ−1)

when they transition to the compartment I. Finally, after the infectious period (µ−1) individuals in the I

compartment transition to the compartment of the recovered R. We assume the population to be strati-

fied into 10 different age groups ([0−9, 10−19, 20−24, 25−29, 30−39, 40−49, 50−59, 60−69, 70−79, 80+]).

We introduce the contact matrix C ∈ RK×K , whose element Ci,j is the average number of daily con-
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tacts that an individual in age group i has with individuals in age group j [81]. The rate at which

susceptible individuals acquire infection, namely the force of infection, is λ(k, t) = s(t)β
∑K

k′=1 Ckk′
I′
k(t)
N ′

k

(where s(t) is a seasonality modulation term and Nk′ is the number of individuals in age group k′ such

that N =
∑K

k′=1Nk′), and the basic reproductive number for this model is R0 = ρ(C̃)β/µ, where

C̃ij = CijNi/Nj and ρ(C̃) is the spectral radius of the matrix. Our implementation of the model is

stochastic and the number of individuals transitioning among compartments is simulated via chain bino-

mial processes. Additionally, we model COVID-19 deaths by applying the age-stratified infection fatality

rates [82] to the number of individuals transitioning from Ik to Rk and accounting for a lag ∆ between

such transition and actual death due to isolation, hospitalization, and reporting delays. More details on

the model definition are provided in the Supplementary Information.

4.1.2 Data-Driven Behavioral Model

In the Data-Driven Behavioral model, we use the COVID-19 Community Mobility Report published by

Google LLC [53] to modulate the force of infection. This dataset reports percentage changes in mobility

to specific locations on a given day and geography. Our models do not consider multiple locations,

so we derive an overall mobility change percentage m(t) as the average of mobility changes towards all

locations (excluding mobility towards parks due to its anomalous behavior). Finally, m(t) is turned into a

contacts reduction parameter as follows: rmobility(t) = (1−|m(t)|/100)2. The intuition is that, under the

homogeneous mixing assumption, the number of contacts will be proportional to the square of the number

of individuals. Then, we use rmobility(t) to modulate the rate at which susceptible becomes infected as a

consequence of behavior change, namely, we modify the force of infection as λ′(k, t) = rmobility(t)λ(k, t).

In short-term forecasting, we assume that future rmobility(t) will be equal to the last observed contacts

reduction parameter in the calibration window (i.e., status quo assumption).

4.1.3 Compartmental Behavioral Feedback Model

In the Compartmental Behavioral Feedback model, we introduce an additional compartment SB
k of

susceptible individuals that adopt behavior change and thus get infected at a lower rate rλ(k, t), where

r < 1 is a parameter that describes the efficacy of preventive measures. The transition from Sk to

SB
k happens at rate βB

(
1− e−γDrep(t−1)

)
, where the βB and γ regulate the behavioral response, and

Drep(t−1) is the total number of reported deaths in the previous day. We also assume that SB
k individuals

can relax their behavior and transition back to Sk at a rate µB

(∑K
k′=1 Sk′(t) +Rk′(t)

)
/N , where µB

set the tendency of susceptibles to drop safer behaviors [83].
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4.1.4 Effective Force of Infection Behavioral Feedback Model

In the Effective Force of Infection Behavioral Feedback model, we consider the following function

f(t) =
1

1 + ξDrep(t− 1) + ψ
∑t−1

t′=1Drep(t′)
, (1)

where, as above, Drep(t − 1) is the number of reported deaths at time t − 1,
∑t−1

t′=1Drep(t
′) is the

cumulative number of reported deaths up to t − 1, ξ and ψ are parameters that set the behavioral

reactivity of individuals [51]. This function multiplies the force of infection and serves as a proxy for the

modulating effect of behavioral changes. Specifically, it takes into account new reported deaths in the

last time step, capturing short-term effects of recent epidemiological conditions on behavior, as well as

cumulative reported deaths, capturing the long-term effects of past epidemiological conditions on current

behavior.

4.2 Models calibration

Models are calibrated using an Approximate Bayesian Computation - sequential Monte Carlo (ABC-

SMC) algorithm [54, 84]. The ABC-SMC is an extension of the more simple rejection algorithm, which

works as follows. The modeler needs to choose prior distribution π(θ) for the free parameters θ of the

model, a distance metric d(·), a tolerance δ, and a population size P . Then, the model is run iteratively

sampling at each step a parameters set θi from the prior distribution π(θ). At each iteration an output

quantity produced by the model yi (i.e., simulated deaths) is compared to the corresponding real quantity

yobs using the distance metric d(yi, yobs). If d(yi, yobs) < δ then θi is accepted, otherwise it is rejected.

This process continues until P parameter sets are accepted. The main limitation of this approach is that

the acceptance criterion remains fixed, causing slow convergence. Additionally, finding an appropriate

tolerance value δ beforehand is challenging, especially with multiple models and geographies. The ABC-

SMC algorithm addresses these issues by using a sequence of T rejection steps (i.e., generations) with

decreasing tolerance. Each generation’s prior distribution is the posterior distribution from the previous

one perturbed via a kernel function. This method starts with high error tolerances and broad prior

distributions, progressively refining the parameter space. The final generation’s accepted θi distribution

approximates the true posterior distribution of the parameters. Here, we consider 10 generations, 1, 000

parameter sets accepted at each step, weekly deaths as output quantity, and the weighted mean absolute

percentage error (wMAPE) as a distance metric, defined as

wMAPEi =

∑tn
t=1 |yi(t)− yobs(t)|∑tn

t=1 |yobs(t)|
(2)
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where yobs is the vector of actuals and yi of model estimates, and tn is the number of weeks considered. We

use the ABC-SMC implementation of the pyabc Python package [85]. In the Supplementary Information,

we report additional information on the calibration, including prior distributions.

4.3 Performance metrics

The Mean Absolute Error (MAE) of the median is defined as:

MAE =

∑tn
t=1 |yobs(t)−M(t)|

tn

Where yobs is the vector of actuals and M the model’s medians. Its normalized version is simply defined

as nMAE =MAE/mean(yobs).

The Weighted Interval Score (WIS) is a score that approximates the continuous ranked probability

score (CRPS) [86]. For a given a prediction interval (1 − α) × 100% (i.e., 90% interval) of a model’s

estimate, the interval score (ISα) is defined as:

ISα = (u− l) +
2

α
(l − yobs)I(yobs < l) +

2

α
(yobs − u)I(yobs > u)

Where u (l) is the upper (lower) limit of the prediction interval, yobs is the actual outcome, and I(c) is an

indicator function that equals 1 if condition c is met and 0 otherwise. Looking at ISα we see that its first

term captures how wide is the prediction interval, while the second and third terms are the penalization

for under and over-prediction. Indeed, they are different from 0 only if the actual data point yobs is

below or above the interval limits. The WIS is an extension of the IS and takes into account multiple

prediction intervals at once. It is defined as:

WISα0:K
=

1

K + 1
2

(
w0|yobs −M |+

K∑
k=1

wkISαk

)

Where K is the number of prediction intervals considered, M is the model’s median, and wk are the non-

negative weights of the different intervals. We can see that, the first term in parenthesis measures how

much the model’s central estimateM differs from the actual data yobs, while the second term is a weighted

sum of the different interval scores ISαk
. Following a common approach, we set w0 = 1/2, wk = αk/2,

and we consider 11 prediction intervals (αk = 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90).

Its normalized version is simply defined as nWIS =WIS/mean(yobs).

The Bayesian Information Criterion (BIC) is a metric that evaluates the model’s estimates based on

the accordance with real data and on the model complexity [87]. For a model q it is defined as:

BICq = kqln(tn)− 2ln(Lq)
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Where kq is the number of model’s free parameters, and Lq is the model’s likelihood which we define it

here as

Lq =
1

tn

tn∑
t=1

(yobs(t)−Mq(t))
2

(3)

the mean squared error between actual (yobs) and median predicted values (Mq). Intuitively, the model

reaching the lowest BIC is the best, since it guarantees the minimum deviation from observed data with

the minimum number of parameters. In this sense, BIC favors both accordance with real data and the

model’s parsimony, however, its values lack an immediate interpretation. For this reason, we consider

BIC weights defined as:

wq(BIC) =
e−

1
2∆q(BIC)∑

q′ e
− 1

2∆q′ (BIC)

Where ∆q(BIC) = BICq − minq′(BICq′). These weights express the relative probability of a model

over the others.

4.4 Forecasting

In each forecasting round, we calibrate the three models using data up to time t and we forecast weekly

deaths in the next four weeks. In the next round, we move our window up to t + 1 and we repeat

the calibration and forecasting procedures. This process is performed iteratively until the end of the

epidemic curve, starting with at least 4 data points for model calibration. Instead of the ABC-SMC

algorithm, for forecasting, we adopt a modified version of the rejection algorithm where, instead of

setting a predefined tolerance, we calibrate models by selecting top 1, 000 simulations out of a total of

1M simulations obtained through sampling from the prior distributions. In the case of forecasting, we

also consider as distance metric a generalized version of the wMAPE which gives more importance to

more recent data points defined as
∑tn

t=1

(
w(t) |yobs(t)−yi(t)|

|yobs(t)|

)
/
∑tn

t=1 w(t), where w(t) = 1/((tn + 1)− t).

4.4.1 Baseline forecasting model

We employ a baseline forecasting model that consistently predicts the median value as the last data

point within the calibration period. To compute predictive intervals, we consider the previous 1-step

increments. Specifically, we compute 1-step differences up to time t: δ = (d2, d3, . . . , dt). To ensure the

median forecast aligns with the last calibration point, we symmetrize δ by considering δ′ = (δ,−δ). If the

maximum horizon is H, we sample H differences from δ′. Finally, predictions at horizon h are computed

as: fh = vt +
∑h

i=1 d̂i, where vt represents the last observed data points. Following this process, we

generate 10, 000 trajectories from which we compute quantiles and predictive intervals.
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Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies. BMC

medicine, 18(1):1–13, 2020.

[12] Moritz UG Kraemer, Chia-Hung Yang, Bernardo Gutierrez, Chieh-Hsi Wu, Brennan Klein, David M

Pigott, Open COVID-19 Data Working Group†, Louis Du Plessis, Nuno R Faria, Ruoran Li, et al.

The effect of human mobility and control measures on the COVID-19 epidemic in China. Science,

368(6490):493–497, 2020.

[13] Nicholas G Davies, Sam Abbott, Rosanna C Barnard, Christopher I Jarvis, Adam J Kucharski,

James D Munday, Carl AB Pearson, Timothy W Russell, Damien C Tully, Alex D Washburne,

et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science,

372(6538):eabg3055, 2021.

[14] Rosanna C Barnard, Nicholas G Davies, Mark Jit, and W John Edmunds. Modelling the

medium-term dynamics of SARS-CoV-2 transmission in England in the Omicron era. Nature

communications, 13(1):1–15, 2022.

[15] Wan Yang and Jeffrey Shaman. COVID-19 pandemic dynamics in India, the SARS-CoV-2 Delta

variant and implications for vaccination. Journal of the Royal Society Interface, 19(191):20210900,

2022.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2024. ; https://doi.org/10.1101/2024.11.08.24316998doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.08.24316998
http://creativecommons.org/licenses/by-nc-nd/4.0/


[16] Min Cai, George Em Karniadakis, and Changpin Li. Fractional SEIR model and data-driven predic-

tions of COVID-19 dynamics of Omicron variant. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 32(7):071101, 2022.

[17] Moritz UG Kraemer, Verity Hill, Christopher Ruis, Simon Dellicour, Sumali Bajaj, John TMcCrone,

Guy Baele, Kris V Parag, Anya Lindström Battle, Bernardo Gutierrez, et al. Spatiotemporal

invasion dynamics of sars-cov-2 lineage b. 1.1. 7 emergence. Science, 373(6557):889–895, 2021.

[18] Kate M Bubar, Kyle Reinholt, Stephen M Kissler, Marc Lipsitch, Sarah Cobey, Yonatan H Grad,

and Daniel B Larremore. Model-informed COVID-19 vaccine prioritization strategies by age and

serostatus. Science, 371(6532):916–921, 2021.

[19] Laura Matrajt, Julia Eaton, Tiffany Leung, and Elizabeth R Brown. Vaccine optimization for

COVID-19: Who to vaccinate first? Science Advances, 7(6):eabf1374, 2021.
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