It is made available under a CC-BY-NC-ND 4.0 International license .

1 Post-discharge mortality in suspected pediatric sepsis: insights from rural and

2 urban healthcare settings in Rwanda

- 3 Christian Umuhoza^{*1,2}, Anneka Hooft^{*3}, Cherri Zhang⁴, Jessica Trawin⁴, Cynthia
- 4 Mfuranziza⁵, Emmanuel Uwiragiye⁶, Vuong Nguyen⁴, Aaron Kornblith³, Nathan
- 5 Kenya Mugisha⁷, J Mark Ansermino⁴, and Matthew O. Wiens^{4,7,8}
- 6 *Authors contributed equally
- 7
- 8 Affiliations: ¹University Teaching Hospital of Kigali Department of Pediatrics,
- 9 ²University of Rwanda Department of Pediatrics, ³University of California San
- 10 Francisco Departments of Emergency Medicine and Pediatrics, ⁴Institute for Global
- 11 Health, BC Childrens' and Womens' Hospital, Vancouver, Canada, ⁵Rwanda
- 12 Pediatric Association, ⁶Ruhengeri Regional Referral Hospital, ⁷Walimu (Uganda),
- ⁸Department of Anesthesiology, Pharmacology and Therapeutics, University of
- 14 British Columbia
- 15
- 16 Corresponding author: Christian Umuhoza, <u>christian.umuhoza@chuk.rw</u>, Matthew
- 17 Wiens, mowiens@outlook.com.
- 18

19 Short title: Post-discharge Mortality in Pediatric Sepsis: A Rwandan Study

20

21 Author contributions: AH and CU were primarily responsible for the study design,

- 22 data collection, interpretation of results, and manuscript writing. JT, CM, and EU
- 23 assisted with the data collection, review of results, interpretation of results, and
- 24 manuscript editing. CZ and VN cleaned and analyzed all data and assisted with the
- 25 interpretation of the results and manuscript editing. AK contributed to the study

It is made available under a CC-BY-NC-ND 4.0 International license .

26	design.	interpretation	of the results.	and manuscrit	ot editing.	. NKM and JMA assisted

- 27 with interpretation of the results and manuscript editing. MW was responsible for the
- 28 study oversight, data collection, directing analysis, interpretation of results, and
- 29 manuscript writing and editing.
- 30 Data access statement: Study materials (protocol, consent forms, data
- 31 collection tools, and metadata) are publicly available through the Pediatric
- 32 Sepsis Data CoLaboratory's (Sepsis CoLab) Dataverse on Borealis, the Canadian
- 33 Dataverse Repository [1]. Due to the sensitive nature of clinical data and the
- 34 potential risk for re-identification of research participants, the de-identified
- 35 dataset is available through moderated access on the Sepsis CoLab Dataverse [2].
- 36 Access to these data will be granted on a case-by-case basis following approval
- 37 from the authors and Data Governance Committees.

It is made available under a CC-BY-NC-ND 4.0 International license .

38 Abstract

39	Post-discharge death is increasingly recognized as an important contributor to
40	pediatric mortality in sub-Saharan Africa. To address morbidity and mortality during
41	this period, a representative evidence base is needed to inform resource prioritization,
42	policy, and guideline development. To date, no studies have been conducted in
43	Rwanda, limiting understanding of post-discharge mortality in this region. We
44	conducted a prospective cohort study of children ages 0-60 months in two Rwandan
45	hospitals, one rural (Ruhengeri) and one urban (Kigali), from May 2022 to February
46	2023. We collected clinical, laboratory, and sociodemographic data on admission and
47	follow-up data on vital statistics at 2-, 4-, and 6-months post-discharge. Of 1218
48	children enrolled, 115 (9.4%) died, with half occurring in-hospital (n=57, 4.7%) and
49	half after discharge (n=58, 4.7%). Post-discharge mortality was lower in the 6-60-
50	month cohort (n=30, 3.5%) than in the 0-6-month cohort (10%) and higher in Kigali
51	(n=37, 10.3%) vs. Ruhengeri (n=21, 2.7%). Median time to post-discharge death was
52	38 days (IQR: 16-97.5) in the 0-6-month cohort and 33 days (IQR: 12-76) in the 6-
53	60-month cohort. In the 0-6 months cohort, malnutrition (weight-for-age z-score <-3)
54	was associated with increased odds of post-discharge death (aOR 3.31, 95% CI 1.28-
55	8.04), while higher maternal education was protective (aOR 0.15, 95% CI 0.03-0.85).
56	Significant factors associated with post-discharge death in the 6-60-month cohort
57	included an abnormal Blantyre Coma Scale (aOR 3.28, 95% CI 1.47-7.34), travel
58	time to care >1 hour (aOR 3.54, 95% CI 1.26-9.93), and referral for higher levels of
59	care (aOR 4.13, 95% CI 1.05-16.27). Children aged <2 months exhibited the highest
60	cumulative mortality risk. Post-discharge mortality among Rwandan children remains
61	a significant burden, necessitating targeted interventions for post-discharge care and
62	follow up to reduce mortality.

It is made available under a CC-BY-NC-ND 4.0 International license .

63 Introduction

64	Pediatric mortality following hospital discharge is often overlooked aspect of child
65	health in Sub-Saharan Africa (SSA). Despite significant decreases in in-hospital
66	mortality rates in pediatric patients in SSA, the early post-discharge period is an
67	especially vulnerable time marked by an increased risk of death, primarily within the
68	first six months [3–5]. An in-depth understanding of the many complex factors
69	contributing to pediatric post-discharge mortality is a critical first step in the design
70	and implementation of effective targeted interventions to reduce the burden of sepsis
71	and improve outcomes in low-resource settings.
72	Existing research from low- and middle-income country (LMIC) settings has provided
73	valuable insights into the epidemiology and risk factors associated with post-
74	discharge mortality in children. The multi-county Child Health and Mortality
75	Prevention Surveillance Network (CHAIN) study, evaluated the causal structure of
76	post-discharge mortality, outlining its complex nature, as it pertains to social,
77	nutritional, and illness-related vulnerability, and identified the importance of
78	malnutrition in post-discharge mortality [6]. In Uganda, the Smart Discharges studies
79	have emphasized that clinical, socioeconomic, behavioral, and lab-based risk factors
80	present on admission can be used for risk stratification of children to inform a more
81	personalized approach to post-discharge care [5,7]. These risk factors have been used
82	to create predictive algorithms to identify children at highest risk of post-discharge
83	death, in whom low-cost interventions based on this individual risk can be applied to
84	reduce mortality [5,8]
85	Like most of sub-Saharan Africa, Rwanda has seen dramatic reductions in child
86	mortality, likely a cumulative result of several different, national-level interventional
87	programs [9]. These include interventions such as introduction of community health

It is made available under a CC-BY-NC-ND 4.0 International license .

88	insurance, performance-based pay for providers [10], geographical accessibility
89	improvements [11], health system strengthening partnerships [12], nurse mentorship
90	programs [13], community health workers programs [14], and data-driven quality
91	improvement initiatives [15]. Despite a growing body of evidence describing the risks
92	and burden of post-discharge death in children treated for infections [3], its
93	epidemiology in Rwanda has not yet been evaluated.
94	With the complex interplay of health systems, population-, and individual-level risk
95	factors, Rwanda not only provides a unique setting for investigating post-discharge
96	mortality among children [14]. Given the existing healthcare infrastructure
97	improvements in Rwanda, a better understanding of disparities in post-discharge
98	mortality may further enhance their efficacy. This study aimed to investigate the
99	epidemiology of post-discharge mortality in children admitted with suspected sepsis
100	in Rwanda and to identify the key risk factors.
101	
102	Materials and Methods

103 Study Design and Setting

104 This prospective cohort study was conducted at two Rwandan hospitals. Situated in 105 the Northern Province, Ruhengeri Referral Hospital operates as the main referral 106 center and the only district hospital in Musanze District, serving a largely rural 107 population with a catchment area nearing 500,000. The hospital has four total ICU 108 beds and no pediatric-specific ICU capacity. The second, the University Teaching 109 Hospital of Kigali (CHUK), located in Nyarugenge District, Kigali City, is the largest 110 hospital in the country and serves as Rwanda's primary referral center, with a capacity 111 of 483 beds. It also serves as a teaching hospital and center for clinical research for

It is made available under a CC-BY-NC-ND 4.0 International license .

- 112 multiple medical schools and provides technical assistance to the surrounding district
- hospitals.
- 114
- 115 Participant Recruitment and Selection Criteria
- 116 We enrolled a cohort of children ages 0-60 months between May 2022 and February
- 117 2023. These groups were stratified into 0-6 months and 0-60 month sub-cohorts given
- 118 prior variability in risk predictors and model development specific to these age groups
- informed by prior studies [16,17]. Inclusion criteria included: any child within this
- age group admitted with suspected sepsis, defined as suspected or proven infection by
- 121 treating clinical team. We excluded children living outside the hospital service area,
- 122 admitted for short-term observation (less than 24 h), or treated for trauma or non-
- 123 infectious illness. Previous research in similar settings in Uganda demonstrated that
- 124 90% of children admitted with a confirmed or suspected infection met the
- 125 International Pediatric Sepsis Consensus Conference criteria for sepsis [5,18], Written
- 126 informed consent was obtained from the parents or legal guardians of all participants.
- 127 Children whose parents or caregivers refused to participate were excluded from the
- 128 study.
- 129
- 130 Data Collection Procedures
- 131 Data were collected at admission, discharge, and at 2, 4, and 6-months post-discharge.
- 132 A research nurse collected information on clinical history and evaluation, laboratory
- 133 findings, and sociodemographic characteristics, which mirrored the methodologies
- used in a similar study conducted in Uganda, ensuring consistency and comparability
- across studies [5]. All data collection instruments are accessible via the Smart
- 136 Discharges study dataverse [1]. Data were gathered directly at the point of care using

It is made available under a CC-BY-NC-ND 4.0 International license .

137	encrypted study tablets and subsequently uploaded to a Research Electronic Data
138	Capture (REDCap) system [19]. We used a combination of telephone interviews and
139	home visits by research field officers for follow-up visits. These follow-ups focused
140	on vital status, health-seeking behaviors, and any readmissions.
141	
142	Variables and Measurements
143	Clinical information collected included vital signs, anthropometric measurements to
144	determine malnutrition status, basic laboratory tests (such as glucose levels, malaria
145	and HIV rapid diagnostic tests [RDTs], hematocrit, and lactate), observed clinical
146	signs and symptoms, comorbidities, and healthcare history, including any prior
147	hospital admissions. We evaluated nutritional status using weight-for-age z-scores
148	based on the World Health Organization (WHO) growth standards [20].
149	Sociodemographic data included maternal and household details, such as mother's
150	age, education level, HIV status, household size, use of bed nets, proximity to the
151	health facility, and availability of clean drinking water. Information on the child's sex
152	was obtained from medical records. At the time of discharge, the study nurses
153	recorded the discharge status (categorized as routine discharge, referral for higher-
154	level care, or unplanned discharge) and feeding status, which were subjectively
155	assessed as feeding well or feeding poorly. Discharge diagnoses were also retrieved
156	from medical records. Field officers contacted caregivers by telephone at 2-, 4-, and
157	6-months post-discharge to assess the child's vital status, any instances of seeking
158	medical care after leaving the hospital and details of any readmissions. In cases where
159	contact was lost, we conducted in-person visits to gather this information. In instances
160	where a child passed away following hospital discharge, we performed verbal
161	autopsies to determine the likely cause of death.

It is made available under a CC-BY-NC-ND 4.0 International license .

162

163 Statistical Analysis

164	We performed descriptive statistics to characterize baseline clinical, social/maternal,
165	and discharge variables, stratified by age cohort using medians with interquartile
166	ranges for continuous variables and counts with percentages for categorical variables.
167	Multivariate logistic regression models were used to determine risk factors for post-
168	discharge mortality by estimating the odds ratios adjusted for age, sex, and site of
169	enrollment. Post-discharge mortality was treated as a binary outcome, and the site of
170	enrollment was included as a fixed effect because only two sites were included. We
171	also examined the secondary outcome, readmission post-discharge, using descriptive
172	statistics. We estimated the cumulative hazard for mortality and readmission after
173	discharge with Kaplan-Meier survival curves at four predefined age strata (0-<2
174	months, 2–6 months, >6–24 months, and >24–60 months). We had minimal missing
175	data and addressed these using k-nearest neighbor imputation to ensure the robustness
176	and validity of the results. We conducted all statistical analyses using Stata/MP
177	version 15.0 (StataCorp, College Station, TX, USA), R version 4.1.3, and RStudio
178	version 2022.2.3 (RStudio, Boston, MA, USA).
179	
180	Ethical Considerations
181	The study was approved by several institutional review boards: The University of
182	California, San Francisco (UCSF) on October 8, 2021 (No. 21-34663); the University
183	of British Columbia (UBC) on January 28, 2022 (No. H21-02795), University of
184	Rwanda on December 30, 2021 (No. 411), and University Teaching Hospital of
185	Kigali on January 14, 2022 (No. 005). Informed consent was obtained from the

186 parents or legal guardians of all participants in Kinyarwanda. This manuscript adheres

It is made available under a CC-BY-NC-ND 4.0 International license .

187 to the STrengthening the Reporting of OBservational studies in Epidemiology

- 188 (STROBE) statement for cohort studies [21].
- 189
- 190 Results
- 191 We enrolled 1,218 children over the 9-month study period, of whom 1,161 survived to
- 192 hospital discharge and 1,127 completed follow up at 6 months' post-discharge. There

193 were 115 (9.4%) deaths, evenly split between in-hospital (n=57, 4.7%) and the post-

discharge period (n=58, 4.7%) (Figure 1). Median age of participants was 13.5

195 months (IQR 6.1-24.7) with 60% of the cohort being male (n=676) (**Table S1**).

- 196 Severe malnutrition was common, with 9.1% (n=103) having a weight-for-age z-score
- 197 (waz) below -3, although this differed significantly between the 0-6 month and 6-60

198 month age groups (Table S1, Table 1). Fewer than half of the children (44.4%, n =

199 500) had a measured fever on presentation (temperature > 37.5 °C), while 18%

- 200 (n=208) had measured hypothermia (temperature <36.5 °C). An abnormal Blantyre
- 201 Coma Scale (BCS) score indicating impaired consciousness was observed in 17.2% of
- 202 patients (n=194). Only 1.5% (n=17) were malaria positive and and 0.3% (n=3) tested
- 203 positive for HIV. Anemia, defined as Hemoglobin level <11 g/dL was present in
- 204 36.8% (n=415) (**Table S1**). By disposition, 97.3% of all admitted children were
- routinely discharged, 1.9% and 0.8% referred to higher care and left against medical
- advice, respectively (Table S1). Characteristics of all enrolled children are detailed in
- 207 **Table S1**, and the characteristics of the two primary age categories are described in
- 208 Table 1.
- 209

Figure 1: Study flowchart stratified by age group

Table 1: Cohort characteristics and disposition, stratified by ages 0-6 months and
ages 6-60 months.

0m to 6m (n=274) 6m to 60m (n=853)

It is made available under a CC-BY-NC-ND 4.0 International license .

Variable	N (%)/Median (IQR)	aOR (95% CI)	N (%)/Median (IQR)	aOR (95% CI)
<u></u>	Γ	Demographics		
Site, n (%)		-		
Kigali	110 (40.2)	reference	251 (29.4)	reference
Ruhengeri	164 (59.9)	0.33 (0.15-0.75)	602 (70.6)	0.21 (0.10-0.46)
Sex, n (%)	1	1	1	1
Female	112 (40.9)	reference	339 (39.7)	reference
Male	162 (59.1)	0.73 (0.33-1.63)	514 (60.3)	0.87 (0.41-1.86)
Age, months*	1.4 (0.6-3.6)	0.91 (0.72-1.14)	17.9 (11.3-29.8)	0.98 (0.95-1.01)
		sion anthropome		
MUAC (mm)* ¹	120 (104-140)	0.98 (0.96-1.00)	150 (140-160)	0.98 (0.97-1.00)
<110/<115	83 (30.3)	2.27 (0.65-7.88)	26 (3.1)	2.69 (0.70-10.31
110-120/115-125	70 (25.6)	3.05 (1.14-8.16)	42 (4.9)	2.48 (0.68-9.05)
>120/ >125	121 (44.2)	reference	785 (92.0)	reference
Weight for age z-score	-0.9 (-2.2-0.02)	0.75 (0.62-0.90)	-0.6 (-1.6-0.3)	0.61 (0.50-0.74)
<-3	47 (17.2)	3.21 (1.28-8.04)	56 (6.6)	6.52 (2.63-16.16)
-3 to -2	24 (8.8)	2.22 (0.64-7.66)	92 (10.8)	3.17 (1.17-8.61)
>-2	203 (74.1)	reference	705 (82.7)	reference
· 2		on clinical assessr		Tererence
C 02 9/*	95 (88-98)	0.97 (0.92-1.02)	94 (88-97)	0.99 (0.95-1.04)
SpO2, %*				
Heart rate	150 (137-162)	1.02 (1.00-1.04)	140 (125-154)	0.99 (0.98-1.01)
Respiratory rate*	46 (40-55)	1.01 (0.98-1.04)	40 (34-46)	1.01 (0.98-1.05)
Temperature*	36.9 (36.5-37.9)		37.4 (36.7-38.2)	
< 36.5	63 (23.0)	1.01 (0.38-2.71)	145 (17.0)	0.40 (0.09-1.82)
36.5-37.5	123 (44.9)	reference	296 (34.7)	Reference
>37.5	88 (32.1)	0.53 (0.20-1.43)	412 (48.3)	0.83 (0.38-1.80)
Abnormal BCS*	74 (27.0)	1.05 (0.44-2.54)	120 (14.1)	3.28 (1.47-7.34)
HIV positive*	1 (0.4)	-	2 (0.2)	11.42 (0.67- 194.83)
Positive malaria test	3 (1.1)	-	14 (1.6)	-
Hemoglobin, g/dl*	12 (10.7-13.5)	0.83 (0.71-0.97)	11.3 (10.2-12)	0.84 (0.71-1.00)
No anemia: ≥11g/dL	192 (70.1)	reference	520 (61.0)	reference
Anemia: <11g/dL	82 (29.9)	1.91 (0.83-4.38)	333 (39.0)	2.04 (0.93-4.48)
Referral	241 (88.0)	6.41 (0.82-50.11)	769 (90.2)	1.44 (0.46-4.48)
Prior antibiotic use	90 (32.9)	2.13 (0.73-6.22)	333 (39.0)	1.50 (0.58-3.86)
Prior antimalarial use	4 (1.5)	2.48 (0.23-26.81)	29 (3.4)	1.78 (0.48-6.67)
Respiratory distress	66 (24.1)	1.20 (0.49-2.92)	162 (19.0)	1.62 (0.72-3.62)
·		nd Social Charact		
Time to reach hospital*				
< 30m	112 (40.9)	reference	341 (40.0)	reference
30 min - 1h	88 (32.1)	1.49 (0.55-4.09)	350 (41.0)	1.36 (0.48-3.90)
>1h	74 (27.0)	0.90 (0.31-2.63)	162 (19.0)	3.54 (1.26-9.93)
Water source*	, , , , , , , , , , , , , , , , , , , ,	5155 (5151 2105)	102 (10.0)	510 1 (1120 5155)
Municipal water/tap	182 (66.4)	reference	533 (62.5)	reference
Other sources	92 (33.6)	0.84 (0.36-1.96)	320 (37.5)	2.01 (0.94-4.32)
Boil/disinfect/filter water*	94 (34.3)	0.21 (0.06-0.72)	347 (40.7)	0.74 (0.34-1.62)

It is made available under a CC-BY-NC-ND 4.0 International license .

Maternal education ²				
No schoo∣ or ≤P3	33 (12.0)	reference	118 (13.8)	reference
P4 to P6	114 (41.6)	0.47 (0.17-1.31)	343 (40.2)	0.41 (0.15-1.09)
S1 to S6	103 (37.6)	0.10 (0.03-0.40)	325 (38.1)	0.38 (0.14-1.02)
> S6	23 (8.4)	0.15 (0.03-0.83)	65 (7.6)	0.09 (0.01-0.76)
	Disc	harge Characteristics		Ľ
Discharge status				
Routine discharge	264 (96.4)	reference	833 (97.7)	reference
Referred to higher level of care	5 (1.8)	1.38 (0.14-13.49)	16 (1.9)	4.13 (1.05-16.27)
Unplanned discharge	5 (1.8)	2.40 (0.24-24.39)	4 (0.5)	-
Length of stay	6 (3-9)	1.04 (1.01-1.08)	4 (2-7)	1.08 (1.05-1.12)
	Variables c	ollected only for 0-6-	month	
Fontanelle*	5 (1.8)	1.73 (0.17-17.19)	-	-
Neonatal jaundice*	15 (5.5)	2.42 (0.63-9.23)	-	-
Sucking well when breastfeeding*	117 (42.7)	0.32 (0.13-0.81)	-	-
Duration of present illness*				
< 48h	134 (48.9)	reference	-	-
48h-7d	104 (38.0)	2.13 (0.78-5.84)	-	-
>7d	36 (13.1)	3.57 (1.05-12.18)	-	-

212 * variables used previously in Smart Discharge prediction models; ¹small number represents cutoff for under 6

213 months; ²3 participants reported unknown level of education

Abbreviations: OR = odds ratio; IQR = interquartile range; BCS = Blantyre Coma scale; HIV = human

214 215 immunodeficiency virus; $SpO_2 = oxygen saturation$

216

217 *Post-discharge mortality*

218 The overall rate of post-discharge mortality among those discharged alive was 5.2%

219 (n=58), with a higher cumulative mortality hazard among younger children (Figure

220 **2**). Post-discharge deaths occurred at a median of 38 days (IQR 16-97.5) and 33 days

221 (IQR 12-76) in the 0–6-and 6–60 months groups, respectively, with most deaths

222 occurring in the hospital (57.1% [n=16] and 70.0% [n=21], respectively) (Table 2).

223 For the 0–6 months group, a waz below -3 (aOR 3.31, 95% CI 1.28-8.04) was

224 associated with increased risk of mortality, while higher maternal education (aOR

225 0.15, 95% CI 0.03-0.85) and use of clean drinking water (aOR 0.21, 95% CI 0.06-

226 0.72) were protective (**Table 1**). In the 6–60 months group, a waz below -3 was

227 associated with significantly increased risk of mortality (aOR 6.52, 95% CI 2.63-

It is made available under a CC-BY-NC-ND 4.0 International license .

- 16.16), along with an abnormal coma score (aOR 3.28, 95% CI 1.47-7.34), travel time
- over 1 hour to a healthcare facility (aOR 3.54, 95% CI 1.26-9.93), and the need for
- referral to higher care (aOR 4.13, 95% CI 1.05-16.27). Higher maternal education was
- also protective in the 6–60 months group, reducing mortality risk (aOR 0.09, 95% CI
- 232 0.01-0.76) (**Table 1**).

Figure 2: Hazard curves for post-discharge mortality, stratified by age

Table 2: Secondary endpoint and characteristics of post-discharge deaths

	0m to 6m	6m to 60m	Total (N=1127)
	(n=274)	(n=853)	
Outcome		N (%)/Median (IQR	k)
Readmission			
Never	228 (83.2)	686 (80.4)	914 (81.1)
Once	36 (13.2)	112 (13.1)	148 (13.1)
Twice	8 (2.9)	35 (4.1)	43 (3.8)
More than twice	2 (0.7)	20 (2.3)	22 (2.0)
Number of days from discharge to 1 st readmission	45 (8-125)	53 (25-98)	53 (24-108)
Number of days from discharge to death	38 (16-97.5)	33 (12-76)	29 (16-90)
Location of death			
At home	8 (28.6)	8 (26.7)	16 (27.6)
In-transit	4 (14.3)	1 (3.3)	5 (8.6)
In hospital	16 (57.1)	21 (70.0)	37 (63.8)

235 Note: IQR = interquartile range

236

237 Post-discharge readmission

- 238 The overall rate of post-discharge readmission was 18.9% (n=213), with 5.8% (n=65)
- 239 of children experiencing multiple readmissions (Table 2). The median time to first
- readmission was 45 days (IQR 8-125) and 53 days (IQR 25-98) for the 0–6 and 6–60
- 241 month groups, respectively. Unlike post-discharge mortality, readmission was not
- significantly affected by age, although there was a trend suggesting that those younger
- than 2 months may have a lower risk of readmission (**Figure 3**).
- Figure 3: Hazard curves for first readmission, stratified by age
- 245

It is made available under a CC-BY-NC-ND 4.0 International license .

246 **Discussion**

247	In our prospective observational study of children under five admitted with suspected
248	or confirmed infections in Rwanda, nearly 1 in 20 children died after discharge,
249	similar to the rate of mortality during the index hospital admission. We found key
250	clinical and socio-behavioral factors are associated with higher odds of post-discharge
251	mortality, including, for both age groups, severe malnutrition (WAZ $<$ -3); and, for
252	children aged 6-60 months, malnutrition, abnormal coma scores, long travel times to
253	healthcare, and the need for referral to higher-level of care. Infants aged < 2 months
254	had the highest risk of death.
255	These results as well as the risk factors identified are largely in line with previous
256	studies conducted in Uganda and elsewhere in East Africa [3,22,23]. The negative
257	health effects of malnutrition are well known and include reduced immune
258	competence [24,25] and deficiencies in macro- and micronutrients [26,27], leading to
259	a cycle of recurrent infections and deteriorating nutritional status, which further
260	increases the risk of post-discharge mortality [28]. We also found higher post-
261	discharge mortality rates in urban Kigali (9%) than in rural Ruhengeri (3%), in
262	contrast to the typical rural-urban health disparity in many LMICs, where patients in
263	rural areas typically fare worse due to limited healthcare access and resources [29].
264	We hypothesize that elevated mortality rates in Kigali are likely due to CHUK's role
265	as a tertiary care hospital admitting the most critically ill pediatric patients
266	nationwide, including referrals of severe and complex cases from Ruhengeri, which
267	does not have ICU capacity.
268	Rwanda has already implemented programs to improve child health and is one of the
269	few countries in sub-Saharan Africa to have achieved the Millennium Development
270	Goal (MDG) related to under-5 mortality [30]. With several key health systems

It is made available under a CC-BY-NC-ND 4.0 International license .

271	measures already well established in Rwanda, the use of simple models to identify the
272	"at risk" child could be leveraged towards an effective solutions to address the high
273	rates of post-discharge mortality [31]. These include programs such as the well-
274	established Community Health Worker (CHW) program for follow-up care [32],
275	"Mutuelle de Santé," a community-based health insurance program, which lowers
276	financial barriers to potentially improve access to post-discharge services [33], a
277	unified Health Management Information System (HMIS) to facilitate patient tracking
278	and widespread integration of risk-based prediction models [34], and the Mentoring
279	and Enhanced Supervision at Health Centers (MESH) for healthcare providers that
280	could be used for training and implementation of system-wide post-discharge care and
281	education packages[35]. These systems argue that more immediate implementation of
282	discharge education and community-based interventions may have substantial effects
283	[36–38] on outcomes. Other public health campaigns and community-based
284	programs, increased access to quality education, nutritional supplementation,
285	expanded access to healthcare, and imprpoved socioeconomic conditions, would also
286	help reduce both post-discharge and overall child mortality in Rwanda [39].
287	
288	Limitations
289	The limitations of this study include a small sample from only two hospitals,
290	potentially limiting its generalizability to other regions in Rwanda or similar settings,
291	and a six-month observation period possibly missing longer-term effects. The primary
292	data collection method and interviews may have introduced recall bias and
293	inaccuracies. Despite this, the study provided detailed information on the severity of
294	the children's conditions and comorbidities. The study did not fully explore all

295 socioeconomic and environmental factors, healthcare quality, disease severity,

It is made available under a CC-BY-NC-ND 4.0 International license .

- 296 concurrent illnesses, genetic influences, and healthcare-seeking behaviors affecting
- 297 post-discharge mortality. Future research should address these limitations by using a
- 298 larger, more diverse sample, extending the follow-up period, and conducting a
- 299 comprehensive analysis of the relevant factors.
- 300

301 **Conclusions**

- 302 This study identified a significant burden of post-discharge mortality among pediatric
- 303 patients in Rwanda, particularly affecting infants and those who are socially
- 304 vulnerable, including those with malnutrition. These findings underscore the need for
- 305 targeted interventions to address risk factors, improve healthcare access, and enhance
- 306 care during the post-discharge period. This study also calls for more longitudinal
- 307 research to identify additional factors influencing post-discharge mortality and the
- 308 development of interventions and implementation strategies. A comprehensive
- 309 approach that combines improvements in the health system with broader
- 310 socioeconomic initiatives is needed to reduce post-discharge mortality and improve
- 311 pediatric health outcomes.

312

313 Acknowledgements

We would like to acknowledge all past and present members of the Smart Discharges

Research program for their efforts in data collection, administration, logistics support,

and all study activities, including but not limited to: Godefroid Rucinga, Esperance

- 317 Umulisa, Didas Mugambinumwe, Jeanne d'Arc Mazimpaka, Claudine Uwingabiye,
- 318 Theogene Bizimungu, Juliette Unyuzumutima, Peter Lewis, and Martina Knappett.
- 319
- 320

It is made available under a CC-BY-NC-ND 4.0 International license .

321 References

322 323 324 325 326	1.	Smart Discharges to improve post-discharge health outcomes in children in Rwanda - Smart Discharges - Study Protocols & Supplementary Materials [Internet]. [cited 2024 Nov 1]. Available from: https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/NT NTZX
327 328 329	2.	Umuhoza C, Zhang C, Hooft A, Trawin J, Uwiragiye E, Mfuranziza CG, et al. Epidemiology of pediatric post-discharge mortality in Rwanda. 2024 Apr 18 [cited 2024 Nov 1]; Available from:
330 331		https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/60D TRF
332 333 334 335	3.	Knappett M, Nguyen V, Chaudhry M, Trawin J, Kabakyenga J, Kumbakumba E, et al. Pediatric post-discharge mortality in resource-poor countries: a systematic review and meta-analysis. EClinicalMedicine [Internet]. 2024 Jul;67:102380. Available from:
336		http://www.thelancet.com/article/S2589537023005576/fulltext
337	4.	Menon K, Schlapbach LJ, Akech S, Argent A, Biban P, Carrol ED, et al.
338		Criteria for Pediatric Sepsis—A Systematic Review and Meta-Analysis by
339		the Pediatric Sepsis Definition Taskforce*. Crit Care Med [Internet]. 2022
340		Jan 1 [cited 2024 Jan 30];50(1):21. Available from:
341	_	/pmc/articles/PMC8670345/
342	5.	Wiens MO, Bone JN, Kumbakumba E, Businge S, Tagoola A, Sherine SO, et
343		al. Mortality after hospital discharge among children younger than 5 years
344 245		admitted with suspected sepsis in Uganda: a prospective, multisite,
345 346		observational cohort study. Lancet Child Adolesc Health [Internet]. 2023 Aug 1 [cited 2024 Jan 21];7(8):555–66. Available from:
340 347		http://www.thelancet.com/article/S2352464223000524/fulltext
348	6.	Bassat Q, Blau DM, Ogbuanu IU, Samura S, Kaluma E, Bassey IA, et al.
349	0.	Causes of Death among Infants and Children in the Child Health and
350		Mortality Prevention Surveillance (CHAMPS) Network. JAMA Netw Open.
351		2023;6(7).
352	7.	Wiens MO, Kissoon N, Kabakyenga J. Smart hospital discharges to address
353		a neglected epidemic in sepsis in low- and middle-income countries
354		[Internet]. Vol. 172, JAMA Pediatrics. American Medical Association; 2018.
355		p. 213–4. Available from: https://pubmed.ncbi.nlm.nih.gov/29379956/
356	8.	Wiens MO, Nguyen V, Bone JN, Kumbakumba E, Businge S, Tagoola A, et al.
357		Prediction models for post-discharge mortality among under-five children
358		with suspected sepsis in Uganda: A multicohort analysis. PLOS Global
359		Public Health. 2024 Jul;4(4):e0003050.
360	9.	Sayinzoga F, Bijlmakers L. Drivers of improved health sector performance
361		in Rwanda: A qualitative view from within. BMC Health Serv Res
362		[Internet]. 2016 Apr 8 [cited 2024 Jan 22];16(1):1–10. Available from:
363		https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-
364 265	10	016-1351-4
365 366	10.	Logie DE, Rowson M, Ndagije F. Innovations in Rwanda's health system: looking to the future. The Lancet. 2008;372(9634).
500		100 King to the future. The ballett, 2000,372(7034).

It is made available under a CC-BY-NC-ND 4.0 International license .

367	11.	Huerta Munoz U, Källestål C. Geographical accessibility and spatial
368	I I .	coverage modeling of the primary health care network in the Western
369		Province of Rwanda. Int J Health Geogr. 2012;11.
370	12.	Drobac PC, Basinga P, Condo J, Farmer PE, Finnegan KE, Hamon JK, et al.
371	14.	Comprehensive and integrated district health systems strengthening: The
372		Rwanda Population Health Implementation and Training (PHIT)
373		Partnership. BMC Health Serv Res. 2013;13(SUPPL.2).
374	13.	Anatole M, Magge H, Redditt V, Karamaga A, Niyonzima S, Drobac P, et al.
375	15.	Nurse mentorship to improve the quality of health care delivery in rural
376		Rwanda. Nurs Outlook. 2013;61(3).
370	14.	Abbott P, Sapsford R, Binagwaho A. Learning from Success: How Rwanda
378	14.	Achieved the Millennium Development Goals for Health. World Dev
378		[Internet]. 2017 [cited 2024 Jan 22];92(ISSN 0305-750X):103–16.
379		Available from: http://dx.doi.org/10.1016/j.worlddev.2016.11.013
381	15	
382	15.	Wagenaar BH, Hirschhorn LR, Henley C, Gremu A, Sindano N, Chilengi R, et
		al. Data-driven quality improvement in low-and middle-income country
383		health systems: Lessons from seven years of implementation experience
384 385	16.	across Mozambique, Rwanda, and Zambia. BMC Health Serv Res. 2017;17. Wiens MO, Nguyen V, Bone JN, Kumbakumba E, Businge S, Tagoola A, et al.
386 386	10.	Prediction models for post-discharge mortality among under-five children
387		with suspected sepsis in Uganda: A multicohort analysis. PLOS Global
388		Public Health. 2024 Apr 29;4(4):e0003050.
389	17.	Wiens MO, Bone JN, Kumbakumba E, Businge S, Tagoola A, Sherine SO, et
390	17.	al. Mortality after hospital discharge among children younger than 5 years
390 391		admitted with suspected sepsis in Uganda: a prospective, multisite,
391		observational cohort study. Lancet Child Adolesc Health. 2023 Aug
393		1;7(8):555–66.
394	18.	Wiens MO, Larson CP, Kumbakumba E, Kissoon N, Ansermino JM, Singer J,
395	10.	et al. Application of Sepsis Definitions to Pediatric Patients Admitted With
396		Suspected Infections in Uganda. Pediatr Crit Care Med [Internet]. 2016
397		May 1 [cited 2024 Sep 2];17(5):400–5. Available from:
398		https://pubmed.ncbi.nlm.nih.gov/27043996/
399	19.	Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The
400	17.	REDCap Consortium: Building an International Community of Software
401		Platform Partners. J Biomed Inform [Internet]. 2019 Jul 1 [cited 2024 Sep
402		2];95:103208. Available from: /pmc/articles/PMC7254481/
403	20.	WHO Multicentre Growth Reference Study Group. WHO Child Growth
404	20.	Standards based on length/height, weight and age. Acta Paediatr Suppl.
405		2006;450.
406	21.	Elm E von, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP.
407	<i>2</i> 1.	Strengthening the reporting of observational studies in epidemiology
408		(STROBE) statement: guidelines for reporting observational studies. BMJ
409		British Medical Journal [Internet]. 2007 Oct 10 [cited 2024 Sep
410		30];335(7624):806. Available from: /pmc/articles/PMC2034723/
411	22.	Wiens MO, Pawluk S, Kissoon N, Kumbakumba E, Ansermino JM, Singer J,
412	- -	et al. Pediatric Post-Discharge Mortality in Resource Poor Countries: A
413		Systematic Review. PLoS One [Internet]. 2013 Jul;8(6). Available from:
414		https://pubmed.ncbi.nlm.nih.gov/23825556/
•		r //r

415 416 417	23.	Nemetchek B, English L, Kissoon N, Ansermino JM, Moschovis PP, Kabakyenga J, et al. Paediatric postdischarge mortality in developing countries: A systematic review [Internet]. Vol. 8, BMJ Open. BMJ Publishing
418		Group; 2018. p. 23445. Available from:
419	24	https://europepmc.org/articles/PMC6318528
420	24.	Jones KD, Thitiri J, Ngari M, Berkley JA. Childhood malnutrition: Toward an
421		understanding of infections, inflammation, and antimicrobials. Food Nutr Bull. 2014;35.
422 423	25.	
423 424	25.	Rytter MJH, Kolte L, Briend A, Friis H, Christensen VB. The immune system in children with malnutrition - A systematic review. Vol. 9, PLoS ONE.
424 425		2014.
425 426	26.	Elmadfa I, Meyer AL. The Role of the Status of Selected Micronutrients in
420 427	20.	Shaping the Immune Function. Endocr Metab Immune Disord Drug
428		Targets. 2019;19(8).
429	27.	Gombart AF, Pierre A, Maggini S. A review of micronutrients and the
430	27.	immune system–working in harmony to reduce the risk of infection.
431		Nutrients. 2020;12(1).
432	28.	Tam E, Keats EC, Rind F, Das JK, Bhutta ZA. Micronutrient supplementation
433	201	and fortification interventions on health and development outcomes
434		among children under-five in low-and middleincome countries: A
435		systematic review and meta-analysis. Vol. 12, Nutrients. 2020.
436	29.	Sidze EM, Wekesah FM, Kisia L, Abajobir A. Inequalities in Access and
437		Utilization of Maternal, Newborn and Child Health Services in sub-Saharan
438		Africa: A Special Focus on Urban Settings. Vol. 26, Maternal and Child
439		Health Journal. 2022.
440	30.	Nyandekwe M, Kakoma JB, Nzayirambaho M. The health-related
441		Millennium Development Goals (MDGs) 2015: Rwanda performance and
442		contributing factors. PAMJ 2018; 31:56 [Internet]. 2018 [cited 2024 Sep
443		30];31(56). Available from: https://www.panafrican-med-
444		journal.com//content/article/31/56/full
445	31.	Hooft A, Umuhoza C, Trawin J, Mfuranziza C, Uwiragiye E, Zhang C, et al.
446		Validation of a risk-prediction model for pediatric post-discharge
447		mortality after hospital admission in Rwanda. medRxiv. 2024 Oct
448	~ ~	27;2024.10.25.24316146.
449	32.	Haver J, Brieger W, Zoungrana J, Ansari N, Kagoma J. Experiences engaging
450		community health workers to provide maternal and newborn health
451		services: Implementation of four programs. International Journal of
452	22	Gynecology and Obstetrics. 2015;130(S2).
453	33.	Makaka A, Breen S, Binagwaho A. Universal health coverage in Rwanda: a
454 455		report of innovations to increase enrolment in community-based health
455 456	24	insurance. The Lancet. 2012;380.
456	34.	Amoroso CL, Nisingizwe MP, Rouleau D, Thomson DR, Kagabo DM, Buguna T, et al. Next were a fintermentione to reduce under five mortality
457 458		Bucyana T, et al. Next wave of interventions to reduce under-five mortality in Rwanda: A cross-sectional analysis of demographic and health survey
458 459		data. BMC Pediatr. 2018;18(1).
459 460	35.	Manzi A, Mugunga JC, Iyer HS, Magge H, Nkikabahizi F, Hirschhorn LR.
461	55.	Economic evaluation of a mentorship and enhanced supervision program
462		to improve quality of integrated management of childhood illness care in
463		rural Rwanda. PLoS One. 2018;13(3).
100		

It is made available under a CC-BY-NC-ND 4.0 International license .

464 465 466	36.	Pratley P. Associations between quantitative measures of women's empowerment and access to care and health status for mothers and their children: A systematic review of evidence from the developing world. Vol.
467		169, Social Science and Medicine. 2016.
468	37.	Karra M, Fink G, Canning D. Facility distance and child mortality: A multi-
469		country study of health facility access, service utilization, and child health
470		outcomes. Int J Epidemiol. 2017;46(3).
471	38.	Mohamad Fadli K., Muhamad Hanafiah J., Rosliza AM. Spatial Accessibility
472		of Primary Healthcare in Rural Population: A Review. International Journal
473		of Public Health and Clinical Sciences. 2018;5(6).
474	39.	Niragire F, Achia TNO, Lyambabaje A, Ntaganira J. Child mortality
475		inequalities across Rwanda districts: A geoadditive continuous-time
476		survival analysis. Geospat Health. 2017;12(1).
477		
478		

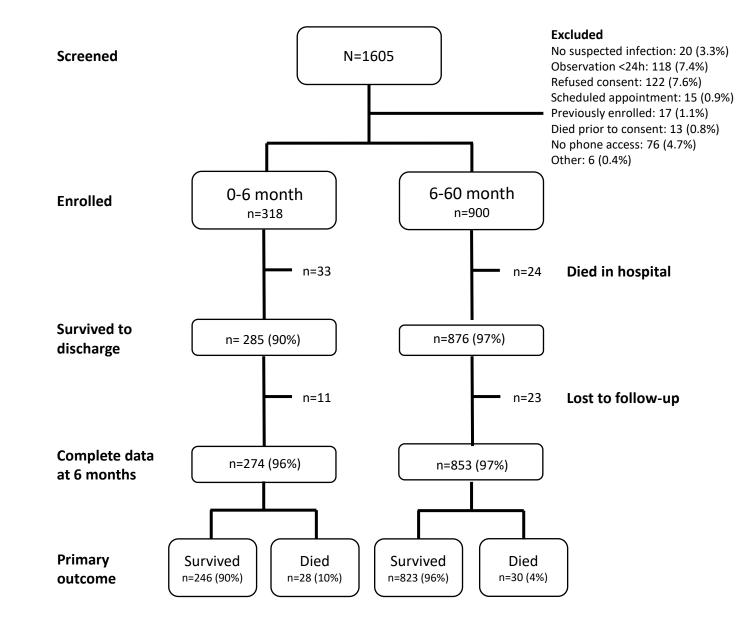
It is made available under a CC-BY-NC-ND 4.0 International license .

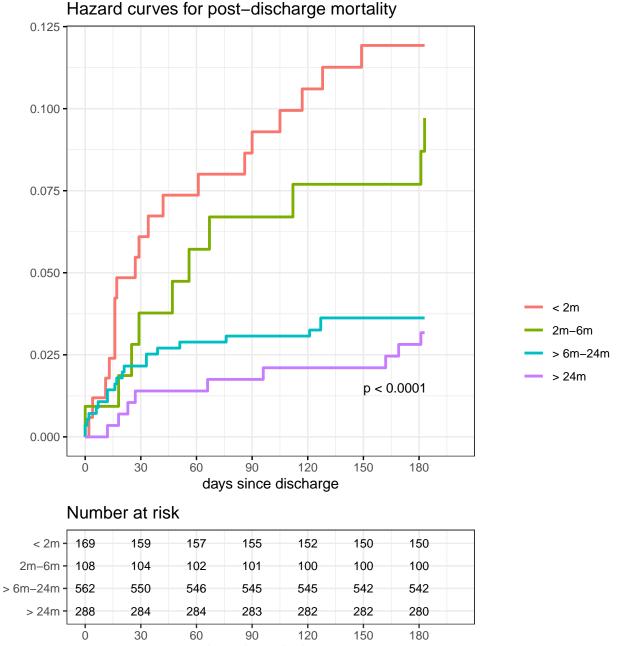
480 Supplementary Files

481 **Table S1**: Supplementary Table 1, Overall demographics and cohort characteristics

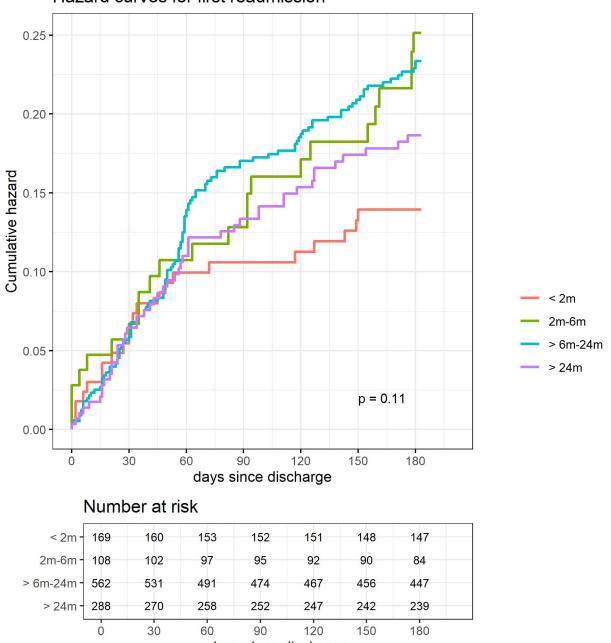
	N = 1127	
Variables	N (%)/Median (IQR)	aOR* (95% CI)
Site, n (%)		
Kigali	361 (32.3)	reference
Ruhengeri	766 (68.0)	0.24 (0.14-0.43)
Male (ref=female)	676 (60.0)	0.81 (0.47-1.39)
Age, months	13.5 (6.1-24.7)	0.96 (0.94-0.99)
MUAC (mm) ¹		
<110/<115	109 (9.7)	2.69 (1.19-6.08)
110-120/115-125	112 (9.9)	3.01 (1.47-6.17)
>120/ >125	906 (80.4)	reference
Weight for age z-score		
<-3	103 (9.1)	4.63 (2.42-8.85)
-3 to -2	116 (10.3)	2.62 (1.22-5.65)
>-2	908 (80.6)	reference
SpO ₂ , %	95 (88-97)	0.98 (0.95-1.02)
Heart rate	142 (128-157)	1.00 (0.99-1.02)
Respiratory rate	41 (35-49)	1.01 (0.99-1.03)
Temperature	()	(
< 36.5	208 (18.5)	0.75 (0.34-1.66)
36.5-37.5	419 (37.2)	reference
>37.5	500 (44.4)	0.67 (0.37-1.22)
Abnormal BCS	194 (17.2)	1.93 (1.06-3.52)
HIV positive	3 (0.3)	4.04 (0.35-46.89)
Positive malaria test	17 (1.5)	4.04 (0.35-40.07)
	17 (1.5)	
Haemoglobin, g/dl	712 ((2.2))	6
No anemia: ≥ 11	712 (63.2)	reference
Anemic: < 11	415 (36.8)	1.74 (1.00-3.00)
Respiratory distress	228 (20.2)	1.37 (0.76-2.48)
Referral	1010 (89.6)	2.37 (0.90-6.24)
Prior antibiotic use	423 (37.5)	1.58 (0.80-3.11)
Prior antimalarial use	33 (2.9)	1.98 (0.63-6.23)
	nal and Social Characteristics	l
Time to reach hospital		
<30 min	453 (40.2)	reference
30 min - 1h	438 (38.9)	1.28 (0.63-2.60)
>1h	236 (20.9)	1.88 (0.91-3.88)
Maternal education ²		
No school or <=P3	151 (13.4)	reference
P4 to P6	457 (40.6)	0.46 (0.23-0.91)
S1 to S6	428 (38.0)	0.24 (0.11-0.52)
> \$6	88 (7.8)	0.13 (0.04-0.49)
Water source		
Municipal water/tap	715 (63.4)	reference
Other sources	412 (36.6)	1.33 (0.76-2.30)
Boil/disinfect/filter water	441 (39.1)	0.46 (0.24-0.88)
Dong distilicul iller waler	771 (37.1)	0.40 (0.24 0.00)

It is made available under a CC-BY-NC-ND 4.0 International license .


Discharge status		
Routine discharge	1097 (97.3)	reference
Referred to higher level of care	21 (1.9)	2.77 (0.85-9.01)
Unplanned discharge	9 (0.8)	1.57 (0.18-13.50)
Length of stay	4 (3-8)	1.06 (1.04-1.09)


482 Note: *adjusted for age, sex, and site. ¹small number represents cutoff for under 6 months; ²3 participants

483 reported unknown level of education


484 Abbreviations: OR = odds ratio; IQR = interquartile range; BCS = Blantyre Coma scale; HIV = human

485 immunodeficiency virus; SpO₂ = oxygen saturation

days since discharge

Hazard curves for first readmission

days since discharge