
1 Using a Bayesian network to classify time to return to 
2 sport based on football injury epidemiological data
3

4 Kate K.Y. YUNG 1,2, Paul P.Y. Wu2,3, Karen aus der Fünten4, Anne Hecksteden 5,6, Tim Meyer4 

5 1. Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese 
6 University of Hong Kong, Shatin, Hong Kong
7 2. School of Mathematical Sciences, Queensland University of Technology, Brisbane, 
8 QLD, Australia 
9 3. ARC Centre of Excellence in Mathematical and Statistical Frontiers (ACEMS), 

10 Melbourne, VIC, Australia
11 4. Institute for Sports and Preventive Medicine, Saarland University, Saarbrücken, 
12 Germany
13 5. Institute of Sports Science, Universität Innsbruck, Innsbruck, Austria

14 6. Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria

15

16
17 ORCID
18 Kate K. Yung 0000-0003-1906-4111
19 Paul P.Y. Wu 0000-0001-5960-8203
20 Karen aus der Fünten 0000-0002-6269-5069
21 Anne Hecksteden 0000-0003-3390-9619
22 Tim Meyer 0000-0003-3425-4546



23 Abstract
24 Objective

25 The return-to-sport (RTS) process is multifaceted and complex, as multiple variables may 

26 interact and influence the time to RTS. These variables include intrinsic factors of the player, 

27 such as anthropometrics and playing position, or extrinsic factors, such as competitive pressure. 

28 Providing an individualised estimation is often challenging, and yet clinical decision support 

29 tools are often rare in the industry. This study aims to demonstrate the functions of a Bayesian 

30 network by the use of a set of basic epidemiological data.

31

32 Methods

33 To exemplify the use of Bayesian network in sports medicine, such as providing an 

34 individualised estimation time to RTS for individual players, we applied Bayesian network to 

35 a set of basic epidemiological data. Bayesian network was used as a decision support tool to 

36 model the epidemiological data and to integrate clinical data, non-clinical factors and expert 

37 knowledge. Specifically, we used the Bayesian network to capture the interaction between 

38 variables in order to 1) classify days to RTS and 2) injury severity (minimal, mild, moderate 

39 and severe). 

40

41 Results

42 Retrospective injury data of 3374 player seasons and 6143 time-loss injuries from seven 

43 seasons of the professional German football league (Bundesliga, 2014/2015 through 

44 2020/2021) were collected from public databases and media resources. A total of twelve 

45 variables from three main categories (player’s characteristics and anthropometrics, match 

46 information and injury information) were included. The key response variables are 1) days to 

47 RTS (1-3, 4-7, 8-14, 15-28, 29-60, >60 , and 2) severity (minimal, mild, moderate and severe). 

48 As there are more than two categories, producer’s and user’s accuracy was used to reflect the 

49 sensitivity and specificity of the model. The producer’s accuracy of the model for days to RTS 

50 ranges from 0.24 to 0.97, while for severity categories range from 0.73 to 1.00. The user’s 

51 accuracy of the model for days to RTS ranges from 0.52 to 0.83, while for severity categories, 

52 it ranges from 0.67 to 1.00. 



53

54 Conclusions

55 The Bayesian network can help to capture different types of data to model the probability of 

56 an outcome, such as days to return to sports. In our study, the result from the BN may support 

57 coaches and players in predicting days to RTS given an injury, 2) support team planning via 

58 assessment of scenarios based on player’s characteristics and injury risk and 3) provide 

59 evidence-based support of understanding relationships between factors and RTS. This study 

60 shows the key functions and applications of the Bayesian network in RTS, and we suggest 

61 further experimenting and developing the Bayesian network into a decision-supporting aid.

62



63 1. Background

64 1.1. Challenges in return to sport decision making

65 Return to sport (RTS) is when an injured athlete can return to full unrestricted team training 

66 without modifications in duration and/ or activities(1-3). Forecasting or estimating the return 

67 date of an injured athlete is crucial for team planning, performance optimisation, and game 

68 strategy development. By having an estimated return date, medical staff can create an 

69 individualised rehabilitation plan to gradually improve the athlete's condition and mitigate re-

70 injury risk. The predicted timeframe also helps coaching staff to adjust their game plans and 

71 strategies, maximising the team's chances of success.

72 There is a growing acknowledgement that athletes operate within a complex system 

73 and are subject to the influences of a multitude of variables(4, 5). These factors include 

74 previous injury history, current injury, body mass index, playing positions, sociological factors, 

75 psychological status, and the nature of the sports event(4). Accurately predicting an athlete's 

76 RTS can be a challenging task for medical staff due to the intricate interactions between various 

77 variables and their influence on injuries. The human body's complexity and the system's highly 

78 intricate nature further complicate the task. Understanding these interactions and their impact 

79 on injuries becomes crucial for providing accurate prognoses and projecting a range of the 

80 likely RTS time (e.g., there is a 75% chance for the player to return between 4-5 weeks). This 

81 could help medical staff and athletes to prepare for both ends of the scenario.

82 Large-scale epidemiological studies have made promising strides in providing valuable 

83 insights into the expected time to RTS for major injuries in football at the population level(6-

84 9). These studies describe the risk factors for a disease or injury and the extent of the 

85 problem(10). Medical staff can use them as a starting point for estimating the time to RTS(11). 

86 This approach aligns with the “anchor and adjust” strategy(12), which can be used to optimise 

87 predictive accuracy, especially when making decisions in uncertain scenarios (e.g., injury). 

88 However, typical epidemiological studies are intended to offer correlations and data based on 

89 groups to reflect population-level insights and trends. While this data is valuable for 

90 highlighting general patterns and insights, a tool to translate population-level data into 

91 individual-level assessments and allow for personalised estimations would be helpful.

92 Due to the complex systems, forecasting the time to RTS based on individual 

93 characteristics can be challenging. There are several reasons why this process is not 



94 straightforward. First, personal characteristics and other factors, such as age and playing 

95 position, are recommended to be considered in the Strategic Assessment of Risk and Risk 

96 Tolerance framework(13). However, quantifying and synthesising these information in the 

97 clinical reasoning process can be difficult. For example, what is the difference between the 

98 rehabilitation time required for a 20-year-old striker versus a 30-year-old defender with a same 

99 type of hamstring strain injury? Second, synthesising useful information from broad 

100 population-level epidemiological data covering entire leagues and multiple seasons and then 

101 personalising it to a specific player-context is almost cognitively infeasible for a single 

102 individual or even a small group of individuals. There is a lack of tool to help translate the 

103 sheer volume and complexity of the population-level data and tailor them on an individual 

104 level. Third, medical staff, like any other humans, are susceptible to various decision-making 

105 challenges. They have limited information processing capacity (14) and face potential 

106 cognitive biases(15, 16). Human judgment can be vulnerable, particularly when it comes to 

107 statistical and probabilistic reasoning(17). Without an objective and reliable decision tool 

108 specifically designed to provide individualised RTS estimations, medical staff often rely 

109 heavily on their clinical experience and population-level epidemiological data.

110 Data scientists have the potential to develop decision support tools that can effectively 

111 synthesise broad epidemiological data and personalise it to specific player-contexts, 

112 overcoming the cognitive limitations faced by individuals. These tools can provide valuable 

113 additional information that would otherwise be challenging for a single human to process. In 

114 practical setting, data scientists can take charge of setting up and maintaining the decision 

115 support tool, while users such as medical staff and coaches utilise the tool in planning for an 

116 athlete’s RTS, making necessary adjustments for the team, and ensuring the team remains 

117 competitive. This collaboration between data scientists and end users can lead to more 

118 informed decision-making and strategic planning.

119 Developing a computer-based decision support tool that uses a complex systems 

120 approach may be helpful to overcome the previous challenges and offer a competitive 

121 advantage in forecasting RTS(18). Specifically, the key differentiator of a complex systems 

122 approach in RTS is the explicit modelling of factor interactions that could be queried and used 

123 by medical staff in multiple ways. This includes but is not limited to understanding the strength 

124 of influence of different variables and predicting the outcome based on custom RTS scenarios. 



125  Computer-based decision support tools can be divided into predictive and descriptive 

126 modelling(19). Predictive modelling can be used for injury diagnosis, severity estimation, and 

127 rehabilitation planning. In particular, the Bayesian network (BN) is well suited for providing 

128 injury prognosis in sports, due to its capacity to model complex systems and to integrate clinical 

129 data, non-clinical factors and expert knowledge. However, it has not been used for such 

130 purpose.

131 1.2. About the Bayesian network

132 A BN is a graph-based modelling method where the relationships between variables 

133 (nodes) are represented with arrows (arcs). The presence of an arc denotes the influence of one 

134 node on another, and the absence of one assumes conditional independence(20). In Figure 1, 

135 we illustrated how the parent nodes and a child node can be related using graph-based 

136 modelling. While real data often contains a mixture of discrete and continuous variables, BN 

137 structure learning algorithms often assume the random variables are discrete. This type of BN 

138 is called the discrete BN, which involves discretising continuous variables in the dataset into 

139 categories. Although some information is lost when continuous data are categorised(21), there 

140 are merits of using the discrete Bayesian network that worth discussing. 

141 In practical settings, people often find it easier to work with discrete representations 

142 rather than continuous data. Discrete variables tend to be more interpretable, facilitating 

143 abstract reasoning(22). For example, word tokens often enable fast and exact processing(22).  

144 Consider the comparison between the words "tall" and "short" versus the numerical values 

145 "183cm" and "150cm". Some may find the discrete terms are easier to grasp and apply in 

146 reasoning. Given the complexity of the human body and interacting processes involved in RTS, 

147 discretisation may help capture the resolution of data available and relevant to the decision 

148 support scenario at hand(23). 

149 However, it's important to note the disadvantages to discretising continuous 

150 variables(24). Discretisation can lead to information loss, as the finer details and nuances 

151 captured by continuous data may be overlooked. By converting continuous variables into 

152 discrete categories, we sacrifice the precision and granularity inherent in the original data. 

153 Additionally, the choice of how to discretise the variables can introduce subjectivity and bias 

154 into the analysis and therefore, it is crucial to ensure transparency in how variables are 

155 discretised to mitigate these potential issues.



156 BNs provide a platform for inferring state probabilities given observations, referred to as 

157 evidence, of one or more nodes in the network. In the discrete BN, the relationship between 

158 parent nodes and a child node can be quantified using conditional probability tables (CPTs). 

159 The CPT reflects the probability of child node states (or outcomes) given every possible 

160 combination of parent node states(25). As new evidence comes in, changes may be brought to 

161 the node’s marginal probability(26), which is known as the posterior probability. The posterior 

162 probability is the updated probability of a hypothesis or event after considering new evidence. 

163 They combine prior beliefs with the likelihood of the data to provide an updated estimate of 

164 the event's probability.

165 BNs can perform both predictive and diagnostic inference. For example, medical staff 

166 can use the former to predict the outcome of an injury for a given clinical diagnosis, 

167 anthropometric and match factors (predictive inference); but can also enter the injury severity 

168 as an observation to examine what injury factors could explain that observation (diagnostic 

169 inference). As an important feature to end users who may not be familiar with statistics, the 

170 BN provide visuals to facilitate understanding and supporting decision making across teams of 

171 users, such as, among athletes, coaching staff, medical and non-medical personnel.

172 Figure 1 A graph-based modelling showing nodes (A to F) and arcs (arrows). A is the 

173 parent of B, while B is the child of A; B is the parent of C and D, while C and D are the children 

174 of B; and so on. A is the ancestor of B, C, D, E and F, while B, C, D, E and F are the descendants 

175 of A; and so on. The arrows indicate the direction of influence.

176



177 Another key feature of a BN is that medical staff can integrate and visualise data from 

178 multiple sources into a single BN, such as clinical data, empirical evidence and expert 

179 knowledge(27), or a combination of both them(28). Expert knowledge can be invaluable when 

180 empirical data is scarce or unavailable. It also plays a significant role in developing models, 

181 selecting data or variables, estimating parameters, interpreting results and determining the 

182 uncertainty characteristics. Since the BN can be customised based on the experts’ 

183 knowledge(29, 30), it may be appealing for small sample size research in elite sports 

184 research(31-33), where some data may be missing or not be feasible to collect (e.g., limitations 

185 in applied settings)(27). BNs have been used to support clinical decisions(34-37), analyse 

186 complex systems in ecology (23, 38, 39) and logistics(40).

187 1.3. Study objectives

188 The objective of this study was to demonstrate the use of a Bayesian network and its 

189 potential use in becoming a decision support tool for medical staff for RTS. Specifically, a 

190 discrete BN was modelled based on a set of basic epidemiological data to demonstrate how 

191 medical staff can use BN to understand (i) the most influential variable to the outcomes (section 

192 3.3), (ii) the strength of influence of different variables (section 3.3), and to (iii) demonstrate 

193 its use with a case scenarios (section 4.2). The paper is structured as follows: Section 2 

194 describes the methodology, including study design and steps to construct a BN; Section 3 

195 describes the results; Section 4 discusses the results and application of the BN in a clinical 

196 setting; Section 5 provides an overall conclusion of the study.



197 2. Method

198 2.1. Study design

199 The study is a retrospective analysis of prospectively collected injury data from the German 

200 professional men’s highest football league (Bundesliga) between 2014/2015 - 2020/2021. 

201 Neither research ethics board approval nor a trial registration was required as all data were 

202 collected from publicly available sources(9, 41). We reported the result with reference to the 

203 Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 

204 Diagnosis (TRIPOD) statement(42).

205 2.2. Participants

206 Players who played in the Bundesliga in the above-mentioned seven seasons were included in 

207 the study. Injured players who did not return to the Bundesliga in the same season and those 

208 without complete data were excluded from the analysis. All participants were identified using 

209 a publicly available database, including Kicker SportmagazinTM, and clubs’ official websites. 

210 Data collection was performed via methods established in previous investigations(9, 43). The 

211 data has been collected according to the Fuller et al. consensus statement for football injury 

212 research and the same definitions have been the same throughout the 7 seasons(44). 3374 player 

213 Bundesliga seasons were registered over the seven seasons from 2014/2015-2020/2021. A total 

214 of 6653 time-loss injuries were recorded. After removing injuries without complete data, 6143 

215 time-loss injuries remained. 

216 2.3. Construction of the Bayesian network

217 The modelling process and validation were performed in GeNIe 2.0 (Bayes Fusion, LLC)(45). 

218 There are four main steps to creating and validating a BN: 

219 1) Identify the variables (nodes) of the BN and the key response variables. In this 

220 study, the key response variables are the (i) severity of the injury (severity) and 

221 (ii) days to RTS (days_rts). They are used to evaluate the performance of the 

222 BN. The nodes and sources of information are outlined in Table 1.

223 2) Learn the graphical structure of the BN and display the relationships between 

224 all the nodes.



225 3) Learn the probability distribution governing the relationships between the nodes.

226 4) Validate the BN to evaluate how well the BN can classify injury based on the 

227 key response variables: (i) severity and (ii) days_rts.

228 2.3.1. Step 1: Identify the main variables

229 This model is intended to capture the conditional probabilistic relationships among personal 

230 characteristics, match and injury information. The variables in this study are commonly 

231 included in epidemiologic studies (46) and we have summarised them in Table 1. 

232 All time-loss injuries that occurred during football competitions and training sessions 

233 were included, and the day of the injury is counted as day zero. A time-loss injury is when a 

234 player cannot fully participate in training or competition due to injury(44). RTS is defined as 

235 when the player has received medical clearance to allow full participation in training and is 

236 available for match selection(2). Details of the injury (type of injury, body region, contact/non-

237 contact injury, training or match) were labelled based on the Fuller et al. consensus of data 

238 collection in football(44). The time of the season was based on an injury epidemiologic study 

239 in European football(47). Personal characteristics and anthropometrics, match information and 

240 the above information are used as the explanatory variables for constructing the model.

241 We are interested in determining the days to RTS, therefore, the two key response 

242 variables in this model are injury severity (severity) and days to RTS (days_rts). Injury severity 

243 (severity) was categorised according to the days of absence in match or training as outlined by 

244 the Fuller et al. consensus statement on football injury studies(44): minimal (1–3 days), mild 

245 (4–7 days), moderate (8–28 days), or severe (>28 days). We further create a new variable based 

246 on days to RTS (days_rts) to evaluate if the model could classify the days to RTS into more 

247 precise categories. There are two additional categories in days_rts as compared to severity: 1-

248 3, 4-7, 8-14, 15-28, 29-60, >60 days. In context, these variables form the nodes in the BN. In 

249 particular, days_rts directly maps to severity, except that severity has fewer states, combining 

250 the last two in days_rts into one (i.e., any injuries taking more than 28 for RTS is classified as 

251 severe). A summary of the variables and source of the data are presented in Table 1.

252 Table 1 Summary of data type and source of information.

Category Variable (node name in the BN) Source



Personal 

characteristics and 

anthropometrics

 Age (age)
 Height (height)
 Weight (weight)
 Main playing position (main_position)

Kicker 

SportmagazinTM and 

clubs’ official website

Match information  Time of the season (time_season)
 Training or match (training_game)

Injury information  Type of injury (type_injury)
 Body region (body_region)
 Contact/non-contact  (contact_noncontact)
 Severity (severity)
 Days to RTS (days_rts)

Ligainsider, official 

team websites, injury 

reports, official team 

press releases and 

professional statistical 

websites. 

253

254 2.3.2. Step 2: Define the graphical structure

255 We incorporated expert knowledge to constrain the search to help ensure graph structures 

256 produced are consistent with clinical science (See Supplementary Information Figure 1). We 

257 first specified the temporal order of the variables, ensuring there were no arcs from variables 

258 that occurred later (e.g., injury) to nodes happening earlier (e.g., main playing position). 

259 Following this, KY helped establish the relationships (arcs) within the graphical structure. 

260 Notably, our key response variable, days_rts, was directly linked to severity in the graphical 

261 structure. This mapping was based on the definition of severity outlined in the Fuller et al. 

262 consensus statement on football injury studies, which defines severity by the duration of 

263 unavailability for full training(44). This mapping was done manually based on clinical 

264 knowledge and could not be learnt from algorithms. Finally, with the constraints in place, we 

265 use the Bayesian Search algorithm in GeNIe 2.0 to find the best-fitted network for the optimal 

266 network configuration that aligns with the collected data and expert knowledge(20, 48). 

267 2.3.3. Step 3: Define the probability distribution

268 There are multiple ways to discretise continuous data, including manual, unsupervised 

269 and supervised. Each method offers distinct advantages, such as improved model performance, 

270 easier interpretation, and computational efficiency(49). Manual discretisation involves 

271 manually defining thresholds or categories to discretise the continuous data. This approach 

272 provides flexibility and allows domain experts to incorporate their knowledge, ensuring that 



273 the categories align with relevant domain-specific consensus statements and the specific needs 

274 of the analysis. Unsupervised discretisation involves using clustering algorithms to identify 

275 natural groupings or patterns in the data. These clusters can then be treated as discrete 

276 categories. This is particularly useful when prior knowledge or predefined categories are 

277 unavailable(50). Supervised discretisation utilises labelled data to guide the discretisation 

278 process. Machine learning algorithms or decision trees can be employed to learn optimal 

279 thresholds or categories that maximise predictive performance. This method can enhance both 

280 model performance and interpretability(50).

281 We manually discretised the continuous data based on domain-specific decision 

282 categories to maximise usability across various practitioner types and clubs. Specifically, the 

283 continuous data are discretised based on categories that are easy to apply practically or with 

284 reference to relevant consensus statements. We discretised age, height, and weight into three 

285 categories that were representative of the typical values observed in the sample, to create 

286 uniform count categories that were both meaningful and easy to interpret. severity was 

287 discretised based on the Fuller et al. consensus of epidemiological data collection into four 

288 categories (minimal, mild, moderate and severe)(44). days_rts was discretised into six 

289 categories: 1-3, 4-7, 8-14, 15-28, 29-60, >60 days, with reference to the Fuller et al. consensus 

290 of epidemiological data collection(44). Descriptions of the nodes and categories are 

291 summarised in Table 2. We used the Expectation Maximisation (EM) algorithm in GeNIe 2.0 

292 to determine the probability distribution (parameter learning) of the dataset(51, 52). 

293

294 Table 2 Description of data set variables.

Node name Description Categories (States)

1 age Age at the start of the season. <24, 24-27, >27

2 height Height at the start of the 

season (cm)

<180,180-186, >186

3 weight Weight at the start of the 

season (kg)

<75, 75-81, >81

4 bmi Body mass index (BMI) <22.8, 22.8-23.8, >23.8

5 main_position Playing location in the field Goalkeeper, defender, midfield 

and attacker



6 body_part The body part which was 

injured

Head/face, neck/cervical spine, 

shoulder/clavicular, upper arm, 

elbow, forearm, wrist, 

hand/finger/thumb, 

sternum/ribs/upper back, 

abdomen, lower back/ pelvis/ 

sacrum, hip /groin, thigh, knee, 

lower leg/Achilles tendon, 

ankle, foot/toe

7 type_injury The type of injury that 

occurred

Fractures and bone stress, joint 

and ligament, muscles and 

tendon, 

haematoma/contusions/bruise, 

laceration and skin lesion, 

central/peripheral nervous 

systems, other injuries1

8 contact_non 

contact

Whether the injury occurred 

was contact or non-contact

Contact, non-contact

9 training_match Whether the injury occurred 

during a competition or 

training session

match, training

10 time_season Part of the season in which 

the injury occurred

Preseason (Jul-Aug), fall (Sep-

Nov), Winter (Dec-Feb), spring 

(Mar-May)

11 days_RTS Days to return to competition 

or training session (days)

1-3, 4-7, 8-14, 15-28, 29-60, >60

12 severity The severity of the injury Minimal (1-3 days), mild (4-7 

days), moderate (8-28 days), 

severe (>28 days)

295

1  Injuries grouped as ‘other’ include bursitis, peritonitis, capsular tears, chondral lesion, with no individual 
category accounting to more than 1% of the injuries. 



296 2.3.4. Step 4: Validation of the BN

297 A crucial element of learning is to validate the model. Validation was performed on the two 

298 target nodes, i.e., severity and days_rts, which are the main outcomes of interest. Ten-fold 

299 cross-validation was performed where the dataset was split into ten parts of equal 

300 probability(53). The model was trained on nine parts and tested on the remaining tenth part of 

301 the unseen data (holdout test sets). The process was repeated ten times, with a different part of 

302 the data being used for testing. The model evaluation technique implemented in GeNIe keeps 

303 the model structure fixed and re-learns the model parameters during each of the folds. We 

304 compiled the results of the test splits to report the producer’s and user’s accuracy(54). The 

305 producer’s accuracy is calculated by dividing the total number of correctly classified injury 

306 severity by the total number of actual occurrences of injury of that severity. Producer's accuracy 

307 is analogous to sensitivity in binary classification, as it represents the true positive rate for each 

308 category.

309 Producer’s accuracy =
True positive

True positive +  False negative

310 The user’s accuracy is calculated by dividing the total number of correctly classified 

311 injury severity by the total classified true occurrences of injury of that severity. Similar to 

312 specificity, it represents the correctness of the model's predictions within each category. User's 

313 accuracy provides insights into the precision of the model's predictions for each category.

314 User’s accuracy =
True positive

True positive +  False positive

315 By considering both the producer's and user's accuracy, we can evaluate the model's 

316 performance in terms of both sensitivity (ability to classify correctly) and specificity (accuracy 

317 of predictions within each category). This is particularly relevant when dealing with models 

318 that have multiple categories, such as our current model’s injury severity classification.



319 3. Results

320 3.1. Demographics

321 The demographics and the main playing positions of injured players are shown in 

322 Supplementary Table 1. The breakdown of injury by nature of injury (contact or non-contact), 

323 event (match or training), body region, and types of injuries are available in Supplementary 

324 Table 2.

325

326 3.2. Bayesian network

327 The network and the probability distribution of each variable are presented in Figure 2. The 

328 model’s producer’s accuracy in classifying days_rts and severity is presented in Table 3. In 

329 terms of categorising days_rts, the producer’s accuracy ranges from 0.24 to 0.97, with the best 

330 performance for shorter days (i.e., below 3 days) and the worst performance for the mid-range 

331 category (i.e., 8-14 days). In classifying the injury’s severity, the producer’s accuracy ranges 

332 from 0.73 to 1.00, with the best performance for severe and the worst for minimal. In terms of 

333 categorising days_rts, the user’s accuracy ranges from 0.52 to 0.83, with the best performance 

334 for days 3-7 and the worst performance for the mid-range category (i.e., 8-14 and 15-28 days). 

335 In classifying the injury’s severity, the producer’s accuracy ranges from 0.67 to 1.00, with 

336 >0.90 in all categories except minimal.

337 In our model, the type of injury and the injured body region are directly connected to 

338 days_rts (Figure 2). The percentages indicate the distribution of values under each variable, 

339 while the blue arrows indicate how factors influence one another (Figure 2). Based on the 

340 sensitivity analysis, the type of injury and the injured body region are most influential to the 

341 days_rts, followed by age, contact or non-contact injury and the nature of the event (training 

342 or match) (see Figure 2). Time of the season, weight, and height only had a minor influence on 

343 the result. The time of the season is also associated with the nature of the event (training or 

344 match) and the type of injury, which is supported by empirical evidence(55). 

345



346 Figure 2 Structure and network probability of the Bayesian network. The percentages indicate 
347 the distribution of values under each variable, while the blue arrows indicate how factors 
348 influence one another.

349

350

351 Table 3 The model’s producer’s and user’s accuracy of classifying days to RTS and severity 
352 of the injuries.

Days to RTS categories Number of 
occurrences

Producer’s 
accuracy

User’s 
accuracy

Below 3 1403 0.97 0.73

Days 3-7 1576 0.67 0.83

Days 8-14 1042 0.24 0.52

Days 15-28 888 0.76 0.52

Days 29-60 686 0.59 0.66

60 and above 548 0.61 0.57

Overall 6143 0.66 0.66



Severity categories
Number of 

Occurrences

Producer’s 

accuracy

Users’ 

accuracy

Minimal 1235 0.73 1.00

Mild 1930 0.85 0.67

Moderate 1773 0.98 0.90

Severe 1205 1.00 0.98

Overall 6143 0.88 0.88

353

354 3.3. Sensitivity analysis, feature selection and strength of influence

355 A sensitivity analysis was performed using built-in functionality in GeNIe to determine the 

356 influence of the individual nodes. Sensitivity analysis helps determine the influence of 

357 observing the states of specific nodes (i.e., prior and conditional probabilities) on the output 

358 variables (i.e., posterior probabilities)(56), which in this case, are the days to RTS and severity 

359 of the injury (Figure 3). This can help to support the selection of key variables to be included 

360 in a model (feature selection). Results of the sensitivity analysis are visually summarised in the 

361 form of tornado charts in Supplementary Information 2.

362

363 Figure 3  Feature selection of the Bayesian network

364 Red-coloured nodes: contain variables important for calculating posterior probability 

365 distributions in days_rts. Key: A darker red colour indicates a higher degree of influence. Grey-

366 coloured nodes: the node has no influence on the posterior probability distributions of days_rts.

367



368  

369 Highly sensitive variables affect the inference results more significantly. Identifying 

370 the highly sensitive variables directs medical staff to specific areas to focus on to affect the 

371 BN's outcome. As an example, in Figure 3, we have set days_rts as the key response variable. 

372 Nodes coloured in red contain variables important for calculating posterior probability 

373 distributions in days_rts. Grey-coloured nodes have no influence on the posterior probability 

374 distributions of days_rts, as determined by data and knowledge. Based on the sensitivity 

375 analysis, body_region, injury_type and contact_noncontact are the most influential to the 

376 outcome in days_rts (Figure 3). A numeric form of the strength of influence of different 

377 variables can be found in Supplementary Information Table 3. 

378



379 4. Discussion
380 This study demonstrates the applicability of a BN in an epidemiological dataset to project 

381 rehabilitation timelines and provides evidence-based support to RTS decisions. We integrated 

382 personal characteristics and anthropometrics, match information and injury information to 

383 construct a BN that may inform the days to RTS and injury severity. 

384 4.1. The BN in the context of RTS

385 In this model, we use a hybrid approach in constructing the BN; that is, we have 

386 combined clinical knowledge and data-driven learning (Bayesian Search algorithm) when 

387 constructing the graphical structure. This is because constructing the BN using pure algorithmic 

388 approaches (i.e., unsupervised learning) can sometimes produce graph structures with 

389 unreasonable arcs, such as the model attempting to explain age with severity. However, if we 

390 use a pure domain approach, we may miss some of the patterns and linkages between variables 

391 that were not observed by clinicians’ eyes. Therefore, we opted to use a hybrid approach when 

392 constructing the BN.

393 The BN model may help medical staff working in the Bundesliga to view athletes and 

394 injuries with a complex systems approach. For example, the model captured the complex 

395 relationships between the time of the season, the injury type and injury occurrence (Figure 2). 

396 Specifically, in our BN model, the time of the season correlates with the weather, which is then 

397 associated with the ground condition (55) and injury occurrence(57, 58). As a key feature of a 

398 complex systems approach, the BN can explicitly model the factor interactions/relationships 

399 and query in multiple ways, such as comparing the outcomes of custom RTS scenarios (section 

400 4.2), understanding the most influential factors (section 3.3) and the strength of influence 

401 (section 3.3).

402 To our knowledge, no study in the Bundesliga has studied the correlations of the above 

403 factors, so we use an example from the English Premier League (EPL) to illustrate the possible 

404 correlations. In the EPL, the ground condition tends to be drier in the preseason. Warm, dry 

405 and hard surfaces may be associated with higher injury occurrence(57, 58), possibly due to a 

406 higher level of shoe-surface traction influence (59) and faster running speed(60). On the 

407 contrary, wet and muddy ground is associated with lower injury occurrence(58), possibly due 

408 to changes in playing style (e.g., more tackles) and reduced shoe-surface traction. While the 



409 time of the season affects the injury occurrence, there has been no direct effect on days to RTS. 

410 Analysing these complex relationships would be difficult without the use of computers and 

411 advanced statistical modelling. 

412 The model is more accurate for classifying injuries into 4 categories under severity 

413 (sensitivity = 0.75 – 1.00), compared to 6 categories days_rts (sensitivity = 0.24 – 0.97). This 

414 is not surprising because the increase in the number of categories challenged the model to 

415 provide a higher accuracy. The model is most accurate in classifying injuries with shorter 

416 days_rts (days below 3, sensitivity = 0.97) and least accurate in classifying mid-range injuries 

417 (days 8-14, sensitivity = 0.24). A possible explanation is that injuries with minimal days of 

418 absence have particular injury patterns, for example, they may be upper body injuries and 

419 hematoma/contusion/bruise injuries. The model is least accurate for classifying mid-range 

420 injuries (8-14 days), possibly because the model lacks information that may differentiate the 

421 prognoses. This information may be the extent of tissue damage (e.g., the sub-classification of 

422 muscle injury) and the specific location of the injury (e.g., involvement of central tendon 

423 injury).

424 4.2. Illustrative application of the BN

425 Here, we use a hypothetical case study to demonstrate the practicability of using the 

426 BN in classifying the days to RTS and the injury severity of a player. We input the player’s 

427 characteristics and anthropometrics, match information and injury information into the BN 

428 constructed earlier. The probability distribution is shown in Figure 4

429 A player (age: 25, weight: 77kg, height: 185cm, attacker) playing in the German professional 

430 football league sprained his ankle ligament in a non-contact injury and pulled out of the 

431 preseason training session. The coach would like to know when the player is available for 

432 selection.



433 Figure 4 Bayesian network of the case study.

434

435 The BN indicates the joint multivariate probability distribution: the likelihood of the 

436 injury to be minimal is 63%, mild 24%, moderate 12% and severe 1% (Figure 4). The 

437 likelihood of RTS below 3 days is 52%, 3-7 days is 33%, 7-14 days is 10%, 14-28 days is 4%, 

438 28-60 days and more than 60 days are less than 1%, respectively. This information, in 

439 combination with clinical assessment, may be used to support coaches and players in predicting 

440 days to RTS and support team planning by assessing the number of players available for 

441 training and competition.

442 In Figure 4, the thickness of the arcs indicates the strength of influence. Medical staff 

443 can use the strength of influence analysis to understand the local relationships among the 

444 variables in a network and how they contribute to the posterior marginal probability (i.e., 

445 outcome) for each node in the network (Figure 4). The strength of influence calculates the 

446 average effect of changing the state of a parent node on the probability distribution of states in 

447 the child node(61). The arcs are normalised, thus the thickest arc indicates the one with the 

448 highest influence. From Figure 4, the nature of the injury (contact or non-contact) is related to 



449 the injury type and the body region. Injury type and body region are directly associated with 

450 the days_rts. Medical staff may use days_rts in conjunction with the clinical knowledge to 

451 project the rehabilitation timeline. 

452 4.3. Practical application and future developments

453 The software we used for constructing the BN, GeNIe 2.0, could be used as a decision 

454 support tool by sports practitioners, including but not limited to coaches, team managers, sports 

455 science and medical staff. Once the BN has been constructed, for example, with the use of 

456 GeNIe 2.0, the end users do not need any machine-learning knowledge or advanced computer 

457 skills to use the BN. Instead, the only input from the sports practitioners is to collect and input 

458 the players’ characteristics into the BN. The new data from every week or season can be input 

459 into the system’s database by data scientists (either in-house or third party) to ensure the model 

460 is up-to-date. As technology continues to advance, the process of constructing and utilising BN 

461 is expected to become easier and more efficient. This increased ease of use may encourage 

462 medical staff to invest their efforts in learning and adopting BNs to support their decision-

463 making processes.

464 When planning for RTS for an athlete, the BN can provide a personalised risk analysis 

465 from broad epidemiological data, as exemplified in section 4.2 “Illustrative application of the 

466 BN”. While the results of the BN for estimating time to RTS align with existing clinical systems 

467 and therefore some practitioners may question the need for a computational decision support 

468 tool, it is important to see the potential benefits of integrating BN into sports medical practice 

469 in future. Conventional clinical guidelines often apply universally to all individuals regardless 

470 of age, sex, sport, or level of play. Consequently, they are not intended to offer an 

471 individualised approach to RTS estimation. Given that athletes’ diverse needs and 

472 circumstances, coupled with the growing emphasis on personalised and precision medicine, a 

473 more tailored approach to estimating RTS becomes essential. In this regard, the incorporation 

474 of BN can serve as a valuable addition to sports medical practice to improve decision making.

475 In our previous example in section 4.2, we explained the use of BN with a return-to-

476 sport (RTS) scenario and estimated the time to RTS based on a player's basic characteristics. 

477 However, it is important to note that this study is a pilot for future studies, and the potential 

478 applications of BN extend beyond this specific use case. They can be leveraged for various 

479 purposes, such as forecasting expected performance or injury risk in a game by considering 



480 factors like personal characteristics, opponent playing style, and recent training and game 

481 performance. While in this study, the BN yield similar results to existing clinical systems, its 

482 true benefits lie in its ease of use, efficiency, and the capacity to incorporate a wider range of 

483 data into the decision-making process. Moreover, BN's ability to identify the strength of 

484 influence allows medical staff to address the variables that significantly impact outcomes, a 

485 task that cannot be adequately addressed by conventional clinical guidelines alone. By 

486 leveraging BN, medical staff may enhance their decision-making processes and provide more 

487 tailored and effective care to athletes.

488 Computational models are more likely to be implemented in applied sports settings if 

489 their accuracy, interpretability and functionality fit with the operation framework of a sports 

490 organisation(62). In this case, BN provides an intuitive visualisation of the complex 

491 relationship of injuries, which medical staff may understand even with little or no experience 

492 in computer analytics. This may increase the model’s transparency and may improve the 

493 medical staff’s trust in the model(63). In terms of practical applicability, medical staff can use 

494 the model to create scenarios that facilitate the evaluation of different management options or 

495 the development of rehabilitation protocols for players with various positions or injuries 

496 occurring at different times during the season. These scenarios enable the assessment of the 

497 combined effects of risk factors(27). This may enable them to proactively manage injury risk, 

498 and in case of injury, make more accurate predictions regarding the days to RTS for individual 

499 athletes based on epidemiological evidence. The BN can be modified to suit the specific context 

500 as determined by the user and updated with new information when available. In summary, BNs 

501 seem promising for modelling the relationships of variables in a complex system and may be 

502 further explored to support clinical decision making.

503 The epidemiological data we used in this study is static; thus, we use a BN to represent 

504 the system as a time-aggregated model. However, most systems, including athletes, have been 

505 well recognised to change over time(4, 64). To capture the change over time and the feedback 

506 loops, a BN can be further extended into a dynamic Bayesian network (DBN)(65). DBN is an 

507 extension of BNs and replicates the BN model at discrete points in time (time slices) and 

508 captures temporal relationships between the variables. DBNs can represent complex questions, 

509 such as how changes in rehabilitation training load affect the time to RTS in athletes with 

510 different demographic and anthropometric characteristics. Modifiable variables, such as 

511 rehabilitation training exposure, can be collected continuously over time as time-series 

512 data(66). Although DBN are more complex than BNs, DBNs have also been applied in medical 



513 diagnosis or prognosis (67-69) and are a promising avenue for further investigation in an injury 

514 modelling context.

515 4.4. Limitations

516 The proposed BN model has limitations that should be considered when interpreting its results. 

517 Firstly, it is important to recognise that the model was constructed using data solely from the 

518 Bundesliga, and therefore, the generalisability of the results to other leagues or levels of play 

519 is limited. Second, the quality of the input variables directly impacts the model's predictive 

520 accuracy. In the case of our BN, it was constructed using basic epidemiological data sourced 

521 from public databases. While this approach maximises the availability of injury events for the 

522 model, it lacks pertinent information related to prognosis, such as diagnosis (e.g., structural 

523 damage or functional disorder) and the precise location of the injury (e.g., involvement of 

524 central tendon in hamstring injury)(70). An accurate diagnosis of an injury plays a vital role in 

525 determining prognosis(11, 71). For instance, the recovery time to RTS can vary significantly 

526 between a minor partial tear in the hamstring muscle (requiring 17 days to RTS) and a moderate 

527 partial tear (requiring a longer time of 36 days to RTS). Therefore, the lack of detailed 

528 diagnostic information can impact the model's graphical structure and prediction accuracy.

529 Further studies may consider including more information into the model, such as quality 

530 and duration of rehabilitation training, RTS performance, reinjury incidence, the importance of 

531 upcoming competition, the remaining contract length, the club's geographical regions and the 

532 players' transfer value. Potentially, depending on the purpose of the model, we can integrate 

533 epidemiological data from other larger datasets into the model to enlarge the database to reduce 

534 the chance of overfitting and improve result transportability. 

535 Comparing the machine-learned BN with the existing scientific understanding of injury 

536 and recovery would also be a valuable future avenue of research. This comparison can provide 

537 insights into the performance and predictive capabilities of a complex model that incorporates 

538 a wide range of variables in contrast to a simpler model, such as an epidemiological one. By 

539 doing so, researchers can evaluate the added value of BN as a decision-support tool.



540 5. Conclusion
541 This discrete BN provides a decision support tool to help medical staff, coaches and players 

542 manage injury. The BN has a high producer accuracy, ranging from 0.73 to 1.00 in predicting 

543 severity and provides a graphical representation of the investigated interdependencies. Medical 

544 staff can use BN to understand the strength of influence of different variables on the outcome 

545 and analyse the outcome based on custom RTS scenarios. This information may help medical 

546 staff evaluate different injury scenarios and better respond to individual player’s rehabilitation 

547 and team planning. BNs seem promising for modelling the relationships of variables from 

548 multiple sources and can be further explored to support clinical decision making.

549
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