
1 
 

 

Diverse ancestry GWAS for advanced age-related macular degeneration in 

TOPMed-imputed and Ophthalmologically-confirmed 16,108 cases and 18,038 controls 

 

Mathias Gorski1*, Michelle Grunin2,3*, Janina M. Herold1, Benedikt Fröhlich1,4, Merle Behr4, 

Nicholas Wheeler2, William S. Bush2, Yeunjoo E. Song2, Xiaofeng Zhu2, Susan H. Blanton5,6, 

Margaret A. Pericak-Vance5,6, Iris M. Heid1+, Jonathan L. Haines2+, International Age-related 

Macular Degeneration Genomics Consortium 

 
1Department of Genetic Epidemiology, University of Regensburg, Regensburg, Bavaria, 

Germany  
2Department of Population and Quantitative Health Sciences, Case Western Reserve 

University, Cleveland, OH.  
3Braun School of Public Health and Community Medicine, Hebrew University of Jerusalem, 

Israel 
4Faculty of Informatics and Data Science, University of Regensburg 
5The John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, 

Miami FL, USA 
6Dr John T. Macdonald Department of Human Genetics, University of Miami School of Medicine, 

Miami FL, USA  

*/+authors contributed equally 

 

Corresponding authors: Jonathan Haines, jlh213@case.edu, and Iris M. Heid, iris.heid@ukr.de 

 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.08.24316962doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.11.08.24316962


2 
 

ABSTRACT 

Age-related macular degeneration (AMD) is a leading cause of blindness with $344 billion 

dollars global costs. In 2016, the International Age-related Macular Degeneration Genomics 

Consortium devised genomic data on ~50,000 individuals (IAMDGC 1.0) and identified 52 

variants across 34 loci associated with advanced AMD in European ancestry. We have now 

analyzed a more densely imputed version (IAMDGC 2.0) and performed cross-ancestry GWAS 

in 16,108 advanced AMD cases and 18,038 AMD-free controls. This identified 28 loci at 

P<5x10-8, including two additional AMD loci compared to IAMDGC 1.0 (SERPINA1 and CPN1). 

Fine-mapping supported one ancestry-shared signal around HTRA1/ARMS2 and nine signals 

around CFH without African ancestry contribution. The 52-variant genetic risk score with and the 

44-variant score without CFH-variants predicted advanced AMD not only in EUR, but also in 

AFR and ASN (AUC=0.80/0.75, 0.65/0.64, 0.80/0.79, respectively). Our results indicate that the 

genetic underpinning of advanced AMD is mostly shared between ancestries.  
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Advanced AMD is characterized by the growth of abnormal pathological blood vessels into 

the retina, known as neovascular AMD (nvAMD), or the destruction of cells in specific areas 

as the retinal pigment epithelium ceases to function, known as geographic atrophy (GA). At 

present, the only available therapies target nvAMD to slow the growth of new blood vessels 

into the retina1 or GA via cell therapy to try replacing dead RPE cells. However, a permanent 

cure and a full understanding of the pathogenesis of AMD is lacking.  

In 2016, the International Age-related Macular Degeneration (AMD) Genomics 

Consortium (IAMDGC) devised a large 1000 Genomes imputed dataset including >50,000 

individuals of multiple ancestries (IAMDGC1.0, hg37) and their GWAS of 16,144 advanced 

AMD cases and 17,832 AMD-free controls of European ancestry (EUR) identified 52 

independent variants across 34 loci. The IAMDGC 1.0 dataset and its GWAS summary 

statistics in EUR are have been an important resource for many meta-analyses2–4, Mendelian 

Randomization studies5–8 and comparisons of advanced AMD with related traits9–12. By this, 

IAMDGC 1.0 has fostered the understanding of genetic and non-genetic causes for 

advanced AMD. The IAMDGC dataset had to be updated due to study termination of a 

subset of individuals and the denser imputation reference panel from TOPMed and hg38 

becoming state-of-the-art. Importantly, the previous GWAS did not include the African 

American (AFR), Asian American (ASN) or other ancestry individuals recruited by IAMDGC. 

Diverse ancestry GWAS are sparse for AMD. One GWAS meta-analyzing the multi-ancestry 

Million Veterans Project (MVP) and the previous EUR-based IAMDGC GWAS results 

identified the first loci for advanced AMD in AFR and Hispanic Americans4. Since only 9% of 

the MVP dataset are women, it remains important to evaluate the contribution of both men 

and women in the cross-ancestry genetic underpinning of AMD. Therefore, we set out to re-

impute the IAMDGC dataset using the TOPMed reference panel based on hg38 (IAMDGC 

2.0), to re-analyze the EUR-part of the dataset, and to conduct new GWAS in AFR, ASN, 

and other ancestry individuals.  

We utilized the centralized genotyped data from IAMDGC as described previously13 

removing individuals from the Beaver Dam Eye Study (study termination) or with Whole 

Genome Amplification (potential disruption of imputation14, Methods). This reduced the 

dataset from 52,189 to 44,401 individuals. After TOPMed-imputation and quality control 

(Methods), we compared the TOPMed-imputed dataset (IAMDGC 2.0) with the previous 

1000G-imputed dataset (IAMDGC 1.0). Among the 292,027,721 initially imputed autosomal 

variants (Supplementary Table 1), the number of high-quality imputed variants (RSQ≥0.3 

for MAF≥1%, RSQ≥0.8 for MAF<1%) is now 33,661,604 versus 11,602,234 previously 

(Table 1). Restricting analyses to genetic variants that were robustly analyzable in at least 

one ancestry (minor allele count, MAC, ≥2015, Methods) yielded 19,299,720 well-imputed 

autosomal variants compared to 10,231,250 such variants previously (for rare variants, 
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MAF<1%: 5,824,879 versus 1,368,338 previously; Table 1). Thus, IAMDGC 2.0 versus 

IAMDGC 1.0 improved coverage of autosomal genetic variants for GWAS by nearly 100% 

(400% for rare variants). Imputation quality was similar for variants with MAF≥1% (median 

RSQ=0.97 versus 0.94, respectively), but substantially improved for rare variants (median 

RSQ=0.97 versus 0.88, respectively; among 9,485,579 well-imputed variants analyzable in 

both IAMDGC 2.0 and 1.0, including 439,459 rare variants). This underscores the gain in 

genome coverage and imputation quality for GWAS, particularly for rare variants.  

We conducted ancestry-specific GWAS (cases/controls=15,616/16,723 EUR, 50/357 

AFR, 207/322 ASN, and 235/636 Other; Table 1) using Firth test logistic regression 

implemented in regenie16 adjusted for two ancestry-specific PCs and their meta-analysis in a 

total of 16,108 advanced AMD cases and 18,038 AMD-free controls (Methods, Table 1). 

Despite adding non-EUR ancestry and related individuals, this cross-ancestry IAMDGC 2.0 

GWAS resulted in a similar sample size as the IAMDGC 1.0 GWAS due to removing the 

Beaver Dam Eye Study and individuals with Whole Genome Amplification (i.e. power slightly 

lower now due to related individuals). Per-ancestry GWAS was GC-corrected where 

applicable (lambda =1.11, 0.99, 0.98, and 1.08 in EUR, AFR, ASN, Other, respectively; 

Supplementary Figure 1), resulting in lambda=0.99 in the cross-ancestry GWAS meta-

analysis (Figure 1A&B). When querying the 13,474,841 variants with MAF≥1% at P<5x10-8 

in cross-ancestry GWAS results, we found 28 loci (±500kb around each lead variant; merging 

overlapping loci; Methods): 26 of the 34 loci previously identified and two new loci compared 

to IAMDGC 1.0 (Supplementary Table 2). The 26 locus lead variants identified here were 

mostly the same or correlated (r≥0.8) to the lead variants from Fritsche et al. (except for three 

loci, Supplementary Figure 2A-F). The other 8 of the 34 previous AMD loci were not 

identified genome-wide (likely due to lower power), but detectable at P<1x10-4 

(Supplementary Table 2; same/correlated lead variants here as before except for 4 loci, 

Supplementary Figure 2G-N). Extending GWAS to rare variants (adding 5.3 million variants 

with MAF<1%) did not detect additional loci at P<1x10-9. The 36 AMD locus lead variants 

showed similar ORs and standard errors cross-ancestry versus EUR-only (IAMDGC 2.0) and 

similar EUR-based ORs, standard errors, and risk-increasing allele frequencies (RAF) in 

controls (proxy for population) in IAMDGC 2.0 versus IAMDGC 1.0 (Supplementary Figure 

3; Supplementary Data 1). Sensitivity analyses with alternative adjustments showed similar 

lambda and same ORs (Supplementary Data 2). Overall, the cross-ancestry GWAS 

indicated that the 34 known AMD loci generalize across ancestries and identified two 

additional loci in this dataset.  

The two additional loci identified in the IAMDGC 2.0 cross-ancestry GWAS compared 

to the EUR-only IAMDGC 1.0 resided around CPN1 and SERPINA (P=8.32x10-9, OR=1.28, 

RAF=0.045 and P=2.95x10-8, OR=0.1.54, EAF=0.016; respectively, Figure 2A&B; previous 
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P=2.55x10-7 and 1.50x10-6, respectively). Although new to the IAMDGC analysis, both have 

been recently reported: (i) the locus around CPN1 was reported3 from a meta-analysis of two 

EUR-only datasets of this consortium: from 201613 (IAMDGC 1.0, centralized genotyping) 

and an older dataset from 201317 (federated genotyping) with largely overlapping individuals. 

(ii) The SERPINA locus was reported by Gorman et al.4 meta-analyzing MVP and IAMDGC 

1.0 (total of 61,248 cases and 364,472 controls). The lead variant for SERPINA here, 

rs28929474, is highly correlated to the locus lead variant in Gorman et al. (rs112635299, 

r=0.99) and a missense variant predicted to change protein folding (VEP consequence 

score=7; Missense3D, UniProt Consortium 202318. Thus, this IAMDGC 2.0 dataset more 

firmly identified the CPN1 locus compared to Han et al. and the SERPINA locus now with 

~50% women compared to Gorman et al. prioritizing the variant that changes SERPINA1 

protein structure.  

The most prominent AMD loci in this cross-ancestry GWAS are, again, around 

HTRA1/ARMS2 and CFH, and their large effects on AMD allow for cross-ancestry 

comparison. Their lead variants showed significant between-ancestry heterogeneity 

(Phet=0.01 and 0.001; I²=70.8 and 84.3, respectively). We evaluated between-ancestry 

similarity or difference by examining the 95%-CIs of ORs: for the HTRA1/ARMS2 locus lead 

variant, rs61871747, ancestry-specific 95%-CIs excluded unity and overlapped each other, 

which indicates no effect difference between ancestries (ORs for risk-increasing allele 

between 2.03 to 2.92; Figure 3A). For the CFH locus lead variant, rs3766405, 95%-CIs 

excluded unity in EUR, ASN and Other (OR for risk-increasing allele between 1.76 and 2.67), 

but not in AFR (P=0.36; OR [95%CI] = 1.23 [0.79, 1.90]; Figure 3A). The 95%-CIs of EUR 

and AFR or ASN did not overlap, which indicates between-ancestries differences. The 

observed lack of association in AFR could be indicative of truly no effect, but it could also 

result from lack of power in AFR (50 cases, 357 controls). However, the non-AFR OR is 

similar for the CFH variant and the HTRA1/ARMS2 variant, OR~2.0, and the HTRA1/ARMS2 

variant association was detectable in AFR at P<0.05. This suggests that we had power to 

detect a CFH variant effect as large as OR~2.0. Ancestry-differential allele frequency, f, 

could result in lower genotype variance (varG = 2*f*(1-f)) in AFR and thus comprised power. 

However, the genotype variance of the CFH lead variant was similar in EUR and AFR 

(varG=0.49 and 0.50 based on RAF=0.58 and 0.46, respectively; Figure 3B), which rules out 

lower power in AFR due to lower genotype variance. Differential effects across ancestries 

can also indicate that the studied variant is not causal. More likely causal might be the eight 

independent variants in the CFH locus identified by sequential forward selection previously13, 

of which three variants were analyzable in each ancestry (MAC≥20; rs10922109, rs570618, 

and rs61818925), but again none of these variants showed association in AFR (Figure 3C). 

Overall, our results suggest that, in individuals of AFR ancestry, there is no effect of CFH or 
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a substantially lower effect than in EUR, which is in line with previous reports4. Our results 

also indicate a similar effect of HTRA1/ARMS across ancestries, while results from MVP4 

suggested substantially lower effects in AFR compared to EUR. 

Multi-ancestry fine-mapping can provide information whether the signals, which 

consist of many partly correlated variants, and not only the index variants, are ancestry-

shared or ancestry-specific. We thus conducted multi-ancestry fine-mapping in the 

HTRA1/ARMS2 and CFH loci for EUR and AFR individuals using MESusiE19 based on 

variants analyzable in both ancestries (Methods): (i) for HTRA1/ARMS2, we found one 

signal that was ancestry-shared (posterior inclusion probability of shared, EUR-specific, or 

AFR-specific: 86%, 14%, 0%, respectively; Supplementary Data 3). The 95% credible set 

contained ten variants with approximately equal probabilities to be the likely association-

driving variant (all in/near ARMS2). (ii) For CFH, we found nine signals that were most likely 

EUR-specific (posterior inclusion probability: 25-39%, 61-76% or 0%, respectively; 

Supplementary Data 3). Since MESusiE requires variants to be analyzable in both EUR and 

AFR, which impedes analyses of less frequent variants due to the smaller AFR sample size, 

we repeated fine-mapping in EUR-only via SuSiE20 adding the less frequent variants 

analyzable variants in EUR (Methods). We found (i) the same number of signals in the CFH 

locus and (ii) now two signals in HTRA1/ARMS2, including one additional rather rare single-

variant signal residing in HTRA1 (rs13322423 with posterior inclusion probability=1, 

RAF=1.1% in EUR controls). Thus, our multi-ancestry fine-mapping results supported an 

ancestry-shared signal around ARMS2 together with a rare variant in HTRA1 that was not 

analyzable in AFR and little or no effect of CFH signals in AFR.  

The 52 variants and their beta-estimates identified previously in IAMDGC 1.0 EUR-

only13 are widely used for genetic risk score (GRS) analyses (e.g. Gorman et al.4, Grunin et 

al.21, Hesteerbeek et al.22, Yu et al.23). We were thus interested in whether the results for 

these 52 variants still hold in the updated IAMDGC 2.0 dataset and whether the 52-variant 

GRS predicted advanced AMD in AFR and ASN. First, we explored the 52 variants regarding 

association and frequency: when comparing results from a logistic regression model 

containing all 52 variants in EUR-only IAMDGC 2.0 versus IAMDGC 1.0, conditional ORs, 

standard errors and RAFs were very similar (Figure 4A-C, Supplementary Data 4). 

Ancestry-specific RAFs were, for some variants, substantially diverging between ancestry, 

which was not due to statistical sampling error (i.e. non-overlapping 95%-CIs; 

Supplementary Figure 4A-C) and thus in line with ancestry-differential genetic architecture. 

Second, we generated the 52-variant GRS in this IAMDGC 2.0 dataset with the weights from 

Fritsche et al. (Methods). The GRS clearly differentiated cases and controls in the cross-

ancestry data (Figure 4D). In EUR individuals, the GRS was associated with advanced AMD 

at P<0.001 and predicted advanced AMD (OR=1.46, AUC=0.80; Table 2), as expected since 
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the variants were identified in EUR individuals from IAMDGC 1.0. Importantly, the GRS was 

also associated with advanced AMD in other ancestries (P<0.001; ORs=1.21 to 1.34 per 

average risk allele) and predicted advanced AMD in AFR, ASN and Other (AUC=0.65, 0.80, 

0.78, respectively; Table 2). This pattern was similar with a 42-variant GRS focusing on 

variants analyzable in each ancestry (risk-increasing allele count, ancestry-specific RAC≥20 

and 2*n–RAC ≥20; 42-variant GRS; Table 2). A GRS focusing on the three of the eight 

independent CFH variants analyzable in each ancestry showed no significant association in 

AFR but in all other ancestries (OR [95%-CI] =1.11 [0.90, 1.36]). However, the GRS 

excluding the CFH variants (44-variant GRS) performed similar as the 52-variant GRS in 

AFR and better in all other ancestries (Table 2). Thus, the 52-variant GRS performs best to 

predict advanced AMD across ancestries.  

We here provide IAMDGC 2.0 as updated data repository with denser genomic 

coverage. Our cross-ancestry GWAS identified two AMD loci that were new compared to 

IAMDGC 1.0, which more firmly establish the CPN1 locus in cross-ancestry data compared 

to Han et al.3 and SERPINA1 in data of both sexes4. Compared to other work using MVP or 

UK Biobank4, the IAMDGC dataset is distinguished by the ophthalmological ascertainment 

not only for advanced AMD cases, but also for AMD-free controls. This contrasts to 

diagnostic records for cases and a lack of it for controls (MVP) or self-reported AMD yes or 

no (UK Biobank as used by Gorman et al.). IAMDGC cases were ascertained for clear signs 

of advanced AMD differentiated from early or intermediate AMD, while AMD diagnostic 

records might include such earlier AMD stages, and UK Biobank AMD self-report has been 

shown to be subject to misclassification24. IAMDGC controls were ascertained for having no 

AMD, while individuals without AMD diagnosis might include individuals with early signs of 

AMD, which has been shown to deflate AMD association estimates25. Generally, 

misclassification in cases and/or controls is known to bias OR estimates towards unity26 and 

the larger ORs for most AMD variants in IAMDGC (1.0 or 2.0) versus observed ORs by 

Gorman et al. might be explained, at least in part, by less misclassification in cases and 

controls. It was particularly important to bridge the gap between EUR-centered GWAS to 

cross-ancestry analyses. While we need to acknowledge limited sample sizes for AFR and 

ASN, our ancestry-comparative results on the top two AMD loci suggest no or lower CFH risk 

in AFR compared to EUR in line with other work4. Our conclusion for the HTRA1/ARMS2 

locus was different from Gorman et al., as our data and analyses suggest an ancestry-

shared signal around ARMS2 with similar genetic risk across ancestries accompanied by a 

second rare-variant-signal residing in HTRA1. Importantly, our results validate the 52-variant 

GRS to predict advanced AMD in AFR and ASN and thus establish this GRS for prediction 

cross-ancestries. 
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METHODS 

 

Ethics Statement  

All data was collected according to Declaration of Helsinki principles. Study participants 

provided informed consent, and protocols were reviewed and approved by local ethics 

committees. 

 

Dataset, reference panel, and method for imputation 

The IAMDGC genomic data was genotyped and quality controlled centrally as described 

previously13. The same variant selection before imputation was applied here as previously 

(i.e. genotype call rate <0.985, HWE P<1x10-6, or mapping to multiple locations). We lifted 

the genomic data from build 37 to build 38 for imputation, including full mapping to the build 

for the TOPMed Michigan Imputation Server. Of the 52,189 individuals used previously for 

imputation in IAMDGC 1.0, we excluded individuals from Beaver Dam Eye Study (study 

termination) and individuals with whole genome amplified (WGA) DNA (shown to potentially 

comprise imputation quality14). This resulted in 46,401 individuals included in the IAMDGC 

2.0 imputation using TOPMed r2 as reference panel and server (as of January 2023, 

BioCatalyst imputation server27). This TOPMed r2 reference panel consisted of 97,256 

reference individuals and 308,107,085 genetic variants distributed across 22 autosomes and 

the X chromosome. To accommodate maximum sample size requirements of the TOPMed 

imputation server, we split the IAMDGC data into 2 sets of 23,200 and 23,201 individuals for 

two imputation batches and merged the data post imputation. The TOPMed imputation 

server phased genomic data using Eagle v2.4 and imputed untyped variants using minimac4. 

We evaluated MAF and RSQ from each of the two imputation batches and used mean MAF 

and mean RSQ for further references of MAF and RSQ.  

After imputation, we derived the imputed variant yield by categories of RSQ and MAF 

and defined well-imputed variants as done previously13 (i.e. RSQ≥ 0.3 for MAF≥1%; 

RSQ≥0.8 for MAF<1%). IAMDGC 2.0 refers to this TOPMed-imputed dataset.  

 

Ancestry-specific GWAS in IAMDGC 2.0.  

An individual’s ancestry was defined as before13 using data from the Human Genome 

Diversity Project (EUR, ASN, AFR, and unspecified other ancestry, OTH). Ten ancestry-

specific PCs were generated using the SNPRelate R-package28 with independent (ld-

threshold=0.5) autosomal TOPMed variants shared with Human Genome Diversity Project 

genotypes. 

For ancestry-specific GWAS, we utilized regenie16. Regenie conducts ridge 

regression based on directly genotyped variants to account for relatedness and then, for 
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each genetic variant, derives association of allele dosages with case-control status using 

logistic ridge regression. We applied regenie using the Firth test option for each well-imputed 

variant that had a per-ancestry MAC≥20. Such a MAC cut-off is necessary to yield stable 

statistics for Firth test in balanced case-control comparisons according to Ma et al.15. GWAS 

were adjusted for 2 PCs followed by sensitivity analyses for identified variants adjusting 

additionally for sex and age or 10 PCs as done previously13, and for adjusting for imputation 

batch. Per ancestry, genomic control lambda was computed based on all analyzed variants 

and used for GC-correction if lambda>1.0.  

 

Cross-ancestry meta-analysis GWAS 

Ancestry-specific GWAS results were meta-analyzed using the inverse-variance weighted 

fixed-effect method implement in METAL. Of note, the fixed-effect method is valid for meta-

analyses even when ancestry specific effects are not the same; the meta-analyzed effect 

size reflects the average effect size across ancestries. We computed the lambda of the 

meta-analyzed variants and applied GC-correction, again, if lambda>1.0.  

 

Locus identification 

First, we screened meta-analyzed GWAS results focused on genetic variants with MAF≥ 1%, 

since AFR or ASN individuals did not contribute to variants with MAF<1% due to the 

ancestry-specific MAC≥20 requirement. For this, we judged variants as genome-wide 

significant if P< 5x10-8. For locus identification, we selected the variant with the smallest P-

value genome-wide, extracted the locus region (lead variant ±500kb), and then searched the 

remaining genome, until no further variant reached P<5x10-8. We merged overlapping 

regions. We extended this search to also include rare variants, acknowledging that most rare 

variants were analyzable only in EUR, and judged variants at P<1x10-9 to account for the 

increased multiple testing burden. 

 

Comparison of per-ancestry association and per-ancestry allele frequency for the loci 

near HTRA1/ARMS2 and CFH 

We compared per-ancestry ORs by deriving 95%-CIs (based on standard error from Firth 

test logistic regression adjusted for 2 PCs) and evaluating whether 95%-CIs overlapped 

across ancestries (no difference, at P<0.05) and with unity (no association, at P<0.05). We 

compared per-ancestry AF (for risk-increasing alleles) by deriving the standard error via 

SQRT((AF)*(1-AF)/2n) and evaluating the overlap of 95%-CIs. Heterogeneity between 

ancestry-specific ORs across multiple ancestries was tested by Q-test and quantified by I²29.  
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Statistical fine-mapping using SuSiE and MESuSiE 

Based on the well-imputed (RSQ≥ 0.3 for MAF≥ 1%; RSQ≥0.8 for MAF<1%) genetic variants 

that were analyzable in both EUR and AFR (MAC≥20 per ancestry), we applied MESuSiE for 

multi-ancestry fine-mapping19. In contrast to the default MESuSiE implementation, we kept 

A/T and C/G SNPs and indels. Since MESuSiE requires sufficient power in each ancestry, 

we focused on the two top AMD loci. Based on a minimal absolute correlation threshold of 

0.5, 95% credible sets were constructed. MESuSiE computes, for each genetic variant, both 

ancestry-specific posterior inclusion probabilities (PIPs) and shared-ancestry PIPs. For each 

signal, a posterior probability for the signal to be of shared, EUR-specific, or AFR-specific 

was computed based on summing up variant-specific PIPs. We also applied SuSiE for 

single-ancestry fine-mapping in EUR20 to compare results. Setting the maximal number of 

signals per locus to 10 (L=10), the method was executed as implemented in the MESuSiE 

and susieR R-packages. 

 

GRS analyses 

The GRS was generated by using the individual’s allele dosage for each variant (risk-

increasing allele as per Fritsche et al.13, multiplying it by the variant’s weight (i.e. beta-

estimates from Fritsche et al.), and then deriving the sum across all variants. The GRS was 

then scaled by dividing through the average weight (sum of weights divided by number of 

variants in the score), which results in a GRS unit to reflect one risk allele of average effect. 

We calculated the GRS based on four sets of variants: (i) comprising all 52 variants identified 

previously13 (52-variant-GRS), (ii) using variants outside the CFH locus (44-variant-GRS), (ii) 

including only variants usable to sum up alleles in each ancestry (i.e. RAC ≥20 and 2*n – 

RAC ≥20 in EUR, AFR, ASN, and Other; 42-variant GRS), (iii) using only variants within the 

CFH locus that usable to sum up alleles per ancestry. Based on each of these variant sets, 

we derived the ORs per ancestry and judged ancestry-specific 95%-CIs for overlapping 

across ancestries (no difference) or with unity (no association). To compare the performance 

of ancestry-specific GRS regarding prediction of advanced AMD, we derived the area under 

the receiver-operating-characteristics (ROC) curve (AUC). Predicted probabilities used for 

ROC analysis were derived from logistic regression analyses conducted per ancestry 

(advanced AMD ~ GRS + PC1 + PC2).  

 

Data availability 

GWAS summary statistics will be made available (upon publication) on the websites of the 

IAMDGC data holders in the United States (Cleveland; http://amdgenetics.org/) and 

Germany (Regensburg; https://www.genepi-regensburg.de/gwas-summary-statistics). Data 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.08.24316962doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.08.24316962


14 
 

permitted for sharing by respective institutional review boards have been deposited in the 

database of Genotypes and Phenotypes (dbGaP) under accession phs001039.v1.p1. 

 

Code availability 

Genetic data were analyzed using regenie (v3.2.8) available at 

https://rgcgithub.github.io/regenie/. Meta-analyses were performed using METAL (version 

released on 2018-02-12) available at https://csg.sph.umich.edu/ abecasis/metal/download/. 

Genotypes were imputed on the BioData CATALYST TOPMed Imputation Server 

(https://imputation.biodatacatalyst.nhlbi.nih.gov/). Manhattan and QQ-Plots were generated 

with EasyQC available at https://www.genepi-regensburg.de/easyqc. Regional association 

plots were generated with Locuszoom (v1.4) (http://locuszoom.org/). Genetic Risk Score 

analyses were performed with R (v4.4.2) available at https://www.r-project.org/.   
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Figure 1: Cross-ancestry GWAS in IAMDGC 2.0 identifies 26 known AMD loci and two 
additional loci. 
 
We conducted ancestry-specific GWAS in the IAMDGC 2.0 data (Firth test based logistic 
regression adjusted for ancestry-specific PCs, using regenie16) and cross-ancestry GWAS 
meta-analysis (16,108 advanced AMD cases, 18,038 controls; ~20 million autosomal 
TOPMed-imputed variants, hg38). Shown are (A) P-values for association, highlighting the 
26 known loci identified at P<5x10-8 in green, the two loci new in IAMDGC 2.0 at P<5x10-8 
versus IAMDGC 1.0 in red (near CPN1, chr10; SERPINA1, chr14), and the other 8 of the 34 
known AMD identified at P<1x10-4 in blue. Also shown is (B) the QQ plot illustrating observed 
versus expected p-values (lambda=0.99). 
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Figure 2: Two additional loci in the IAMDGC 2.0 cross-ancestry GWAS not identified in 
the previous IAMDGC 1.0 GWAS. 
 
We compared the association signals of the two loci identified newly in IAMDGC 2.0 (16,108 
advanced AMD cases, 18,038 controls). Shown are regional association P-values in (A) the 
CPN1 locus and (B) the SERPINA1 locus. The variant with the smallest P-value (lead 
variant) is highlighted as violet diamond.  
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Figure 3: Ancestry-specific association for variants in ARM2-HTRA1 and CFH locus. 
 
We compared ancestry-specific association results for variants in the ARMS2-HTRA and 
CFH loci (European, EUR, African, AFR, Asian, ASN, and other ancestries; cases/controls = 
15,616/16,723, 50/357, 207/322, 235/636 respectively). Risk allele frequency (RAF) in 
controls as proxy for population frequency was calculated in each ancestry separately. 
Shown are (left) ancestry-specific and cross-ancestry meta-analyzed odds ratios and 95%-
CIs and (right) RAF of (A) the lead variant rs61871747 in the ARMS2-HTRA1, (B) the lead 
variant rs3766405 in the CFH locus, and (C) for three of the eight independent CFH variants 
identified previously13 that were analyzable in each ancestry (MAC≥20, rs61818925, 
rs570618 and rs10922109).  
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Figure 4: Revisiting the 52 variants identified previously and the 52-variant GRS here 
in IAMDGC 2.0 cross-ancestry analysis.  
 
Previously, 52 independent variants were identified for association with advanced AMD risk 
and their joint effect is a known GRS for advanced AMD. We derived their association 
conditional on each other in the IAMDGC 2.0 EUR-only dataset (logistic regression adjusted 
for ancestry-specific PCs, all 52 variants in one model) and compared their association from 
IAMDGC 1.0 (EUR-only, Supplementary Data 4). Shown are (A) conditional odds ratios, (B) 
the respective standard errors (SE) and (C) the frequency of the risk-increasing allele (RAF) 
derived from IAMDGC 1.0 analysis (X-axis) compared to the IAMDGC 2.0 EUR-only (Y-
axis). We derived the GRS with weights from Fritsche et al.13 counting risk-increasing alleles 
in IAMDGC 2.0 (divided by average weight) and show (D) the distribution of the 52-variant 
GRS in individuals across ancestries (cases in red and controls in blue).  
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Table 1: Analyzed individuals and well-imputed autosomal genetic variants.  
 
We imputed the 46,601 individuals with centrally measured genotypes with the TOPMed 
references data (Biocatalyst imputation server, hg38) comprising the IAMDGC 2.0 dataset. 
We here show the number of individuals by case-control status and overall, of well-imputed 
autosomal variants, and of well-imputed (MAF≤0.01 and RSQ≥0.8 or MAF>0.01 and 
RSQ≥0.3) and well-imputed and analyzable variants (additionally requiring MAC≥20 per 
ancestry) in the IAMDGC 2.0 dataset. Shown are absolute numbers by ancestry 
(EUR=European, AFR=African, ASN=Asian and OTH=other ancestry), in the cross-ancestry 
dataset of IAMDGC 2.0 and for IAMDGC 1.013.  
 

 IAMDGC 2.0  

IAMDGC 1.0   EUR AFR ASN OTH 
Cross-

ancestry 
 

Analyzed Individuals   
Overall 32,339 407 529 871 34,146  33,976 
Cases 15,616 50 207 235 16,108  16,144 
Controls 16,723 357 322 636 18,038  17,832 
Well imputed genetic variants   
Overall 24,453,272 17,779,590 8,491,777 18,824,278 33,661,608  11,602,234 
MAF≥1% 8,890,336 15,486,439 8,027,043 13,347,013 25,447,456  8,880,799 
MAF<1% 15,562,936 2,293,151 464,734 5,477,265 8,214,152  2,721,435 
Well imputed and analyzable in at least one ancestry (MAC≥20)   
Overall 16,251,760 10,984,978 6,998,030 12,380,946 19,299,720  10,231,250 
MAF≥1% 8,887,558 10,984,978 6,998,030 12,380,946 13,474,841  8,862,912 
MAF<1% 7,364,202  0  0 0  5,824,879  1,368,338 
Among the 9,485,579 variants in both IAMDGC 2.0 and IAMDGC 1.0 imputation, there were 6,722,468 
common, 2,323,652 less frequent and 439,459 rare analyzable variants. 
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Table 2. The 52-variant GRS predicts advanced AMD across ancestries. 
  
We built the GRS based on 52 variants identified in Fritsche et al.13, and their beta-estimates 
as weights. The weighted GRS was calculated in the IAMDGC 2.0 data for EUR, AFR, ASN, 
and Other (ncases/ncontrols = 15,616/16,723, 50/357, 207/322, 235/636, respectively). We also 
used different subsets of variants to calculate a GRS: (i) a 42-variant GRS including only 
variants analyzable in each ancestry (“shared variants”; risk allele count, RAC, ≥20 and 2*n – 
RAC ≥20 in EUR, AFR, ASN, and Other), (ii) a 3-variant GRS using only variants in the CFH 
locus that were analyzable in each ancestry and (iii)  a 44-variant GRS excluding CFH 
variants. For each ancestry and each GRS, we applied a logistic regression model 
(advanced AMD ~ GRS, 2 PCs). Shown are Odds Ratios with 95% CIs and association p-
values. Also shown is the area-under-the-curve (AUC) for the model´s ability to separate 
cases from controls using predicted probabilities from the respective logistic regression 
models. 
 
GRS EUR AFR ASN OTHER 
GRS_52 (52)     
OR [95% CI] 1.46 [1.45, 1.48] 1.21 [1.08, 1.34] 1.32 [1.22, 1.43] 1.34 [1.26, 1.42] 
p-value <1.0x10-320 1.0x10-3 1.9x10-12 2.2x10-22 
AUC 0.80 0.65 0.80 0.78 
GRS shared (42)     
OR [95% CI] 1.27 [1.26, 1.27] 1.12 [1.05, 1.20] 1.19 [1.13, 1.25] 1.21 [1.17, 1.26] 
p-value <1.0x10-320 1.1x10-3 2.3x10-12 3.8x10-23 
AUC 0.79 0.63 0.80 0.78 
GRS_CFH_only (3)     
OR [95% CI] 1.45 [1.43, 1.47] 1.11 [0.90, 1.36] 1.32 [1.13, 1.55] 1.46 [1.33, 1.62] 
p-value <1.0x10-320 0.34 4.8x10-04 2.6x10-14 
AUC 0.68 0.53 0.74 0.74 
GRS no CFH (44)     
OR [95% CI] 1.34 [1.33, 1.35] 1.17 [1.07, 1.29] 1.24 [1.22, 1.43] 1.23 [1.16, 1.29] 
p-value <1.0x10-320 7.0x10-4 1.2x10-10 3.8x10-14 
AUC 0.75 0.64 0.79 0.73 
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