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ABSTRACT 69 

Background: Independent of endometrial timing, there are molecular causes of 70 

implantation failure that disrupt the endometrial transcriptome in the mid-71 

secretory phase. However, the molecular mechanisms disrupting the window of 72 

implantation (WOI) remain poorly understood. The molecular heterogeneity of 73 

this endometrial disruption must be characterized to develop personalized and 74 

more accurate diagnostic tools for preventive medicine, particularly for patients 75 

with a high risk of endometrial failure. 76 

Objective(s): This study aimed to stratify and characterize the disrupted WOI 77 

patterns using endometrial timing-corrected whole gene expression and artificial 78 

intelligence (AI) models in in vitro fertilization (IVF) patients undergoing 79 

hormone replacement therapy (HRT). 80 

Study design: This multicenter prospective study was conducted between 81 

January 2019 and August 2022. Endometrial biopsies were collected during the 82 

mid-secretory phase for whole endometrial transcriptome analysis using RNA-83 

Sequencing. To identify disruptions in the WOI, the transcriptomic variation due 84 

to cyclic endometrial tissue changes was removed. Out of 195 biopsies 85 

sequenced, 131 were derived from patients that met the clinical criteria to be 86 

classified as having a poor prognosis (≥3 implantation failures, n=32) or good 87 

prognosis (<3 implantation failures, n=99). The 131 patients were randomly 88 

allocated to training (n=105) and test (n=26) sets for biomarker signature 89 

discovery and assessment of predictive performance, respectively. The 90 

reproductive outcomes of the single embryo transfer immediately after biopsy 91 

collection were analyzed. Differential gene expression and functional analyses 92 

were performed to characterize molecular profiles. Finally, a quantitative 93 
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polymerase chain reaction (qPCR) assay was used to corroborate the 94 

differential expression of six potential biomarkers. 95 

Results: With the dichotomous clinical classification of poor or good 96 

reproductive prognosis, there was no transcriptomic distinction between 97 

patients with a history of implantation failures during HRT endometrial 98 

preparation. Alternatively, using an AI model to stratify IVF patients based on 99 

the probability of endometrial disruption revealed molecular and clinical 100 

differences between profiles. Patients were stratified into four reproductive 101 

prognosis-related profiles, p1 (n=24), p2 (n=14), c2 (n=32) and c1 (n=61). The 102 

highest pregnancy rate (PR) was associated with c1 (91%) and the highest 103 

ongoing pregnancy rate (OPR) was associated with c2 (78%), linking these 104 

profiles to good reproductive prognoses. On the other hand, p1 had the highest 105 

biochemical miscarriage rate (BMR; 43%) while p2 had the highest clinical 106 

miscarriage rate (CMR; 43%). Notably, both p1 and p2 were related to lower PR 107 

and OPR, supporting that these profiles were associated with poor prognoses. 108 

Regarding the functional characterization in the poor prognosis profiles that 109 

were linked to miscarriages, p1 was associated with an excessive immune 110 

response against the embryo during early pregnancy stages, while p2 was 111 

initially immune-tolerant but rejected the fetus in later stages due to the lack of 112 

metabolic response. 113 

Conclusion(s): This new AI-based prognostic stratification of IVF patients is 114 

promising for the clinical management of endometrial-factor infertility in 115 

precision medicine. 116 
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Keywords: gene expression signature, endometrial disruption, endometrial 117 

function, artificial intelligence, transcriptomic stratification, infertility, precision 118 

medicine. 119 

INTRODUCTION 120 

Maternal endometrial status is a key factor in successful embryo implantation 121 

and development in assisted reproductive technologies (ARTs).1 Cyclical 122 

physiological changes occur in the endometrium during the luteal phase to 123 

facilitate embryo implantation. Maximum uterine receptivity occurs during the 124 

window of implantation (WOI) in the mid-secretory phase.2–5 To ensure 125 

endometrial factor success, the endometrium must synchronize with the embryo 126 

during the WOI,6–9 and endometrial function must be undisrupted.10–12 After 127 

successful embryo implantation, the endometrium must support placentation 128 

and provide an optimal equilibrium of embryo-maternal interactions as well as 129 

adequate vascularization for fetal growth.13 130 

Despite the development of ARTs, approximately 35% of transferred euploid 131 

embryos do not implant in anatomically normal uteri at the first attempt.14 132 

Patients experiencing successive implantation failures are clinically classified as 133 

having recurrent implantation failure (RIF), however, there is a lack of 134 

consensus on the definition of RIF.14,15 The heterogeneous etiology and clinical 135 

symptoms of RIF do not provide sufficient criteria to stratify patients.10,16 Indeed, 136 

the molecular heterogeneity of RIF patients highlights opportunities to 137 

characterize the molecular profiles that contribute to the interpatient variability, 138 

discover new biomarkers and develop tailored treatments. 139 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2024. ; https://doi.org/10.1101/2024.11.08.24316907doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.08.24316907
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

The combined use of transcriptomics and artificial intelligence (AI) algorithms 140 

has significantly advanced the understanding of endometrial-factor infertility.10–
141 

12,17–19 This work is laying the groundwork for new applications in precision 142 

medicine and ARTs, facilitating the characterization of reproductive diseases, 143 

patient diagnosis and prognosis. In this context, accurate patient stratification is 144 

necessary to match treatment to the right patient.20–22 145 

Leveraging the use of AI algorithms, our group recently proposed a biomarker 146 

signature in luteal-phase endometrial biopsies that stratifies ART patients 147 

undergoing hormone replacement therapy (HRT) into poor or good reproductive 148 

prognosis, independent of endometrial timing.12 In contrast to previous studies 149 

performed in natural cycles,10
 this prospective study included clinical follow-up 150 

to investigate if the prognostic transcriptome-based groups were related to 151 

reproductive outcomes. Despite using a 404-gene panel, dichotomous patient 152 

classification into poor or good prognosis was limited by the molecular 153 

complexity of implantation failure that requires the identification of more 154 

subtypes.12 155 

Hence, the current prospective study was designed to use the whole 156 

transcriptomic profile to reproduce and refine our previous classification in a 157 

new cohort of patients undergoing HRT. Our new prognostic stratification 158 

elucidates the molecular heterogeneity of the endometrial disruptions in the 159 

mid-secretory phase, independent of endometrial timing. 160 

MATERIALS AND METHODS 161 

Ethics statement 162 
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This study was approved by the Ethics Committee of the Instituto Valenciano de 163 

Infertilidad (Valencia, Spain; 1706-FIVI-048-PD). Written informed consent was 164 

obtained from all participants. 165 

Participants and clinical follow-up 166 

Participants (n=291) were recruited for a multicentric, prospective study 167 

between January 2019 and August 2022 at five private fertility clinics in Spain. 168 

Participants were scheduled for endometrial evaluation before embryo transfer 169 

due to medical indications, and met the following inclusion criteria: 18–50 years 170 

old, with a body mass index (BMI) of 19–30 kg/m2, undergoing HRT prior to 171 

single embryo transfer (SET) with a good-quality embryo (euploidy guaranteed 172 

by preimplantation genetic testing or oocytes from donors <35 years old), and 173 

presenting an endometrial thickness >6.5 mm with trilaminar structure in 174 

proliferative phase. Exclusion criteria were male-factor infertility (in cases with 175 

autologous sperm) as the only treatment indication, untreated reproductive 176 

pathologies that may compromise endometrial function, severe pre-menopausal 177 

symptoms, uncontrolled systemic or metabolic disorders, and co-administered 178 

medication that can interfere with ARTs. 179 

Baseline participant characteristics were obtained from internal medical records, 180 

in accordance with data protection laws in Spain. 181 

Study design 182 

IVF patients undergoing HRT were clinically classified according to their history 183 

of implantation failures. Endometrial biopsies were collected during the mid-184 

secretory phase for RNA-Sequencing (RNA-Seq) analysis. An AI probabilistic 185 

model was developed based on the transcriptome independent of endometrial 186 
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timing, avoiding biases in transcriptomic variation due to cyclical changes in the 187 

endometrium (Supplementary Material). The AI-determined probability of a 188 

poor prognosis was used to stratify the population. Finally, the clinical outcomes 189 

and molecular functions of the stratified profiles were studied (Figure 1). 190 

Endometrial biopsy collection, sequencing and data processing 191 

Endometrial biopsies were obtained from the uterine fundus, using a cannula 192 

(Pipelle Cornier, CCD Laboratories, Paris, France) under sterile conditions, after 193 

approximately 120 hours of progesterone treatment in the HRT cycles. 194 

Anonymized samples were stored in RNA-later® (Sigma-Aldrich, Madrid, Spain) 195 

at -80ºC. RNA was extracted using the miRNeasy Mini Kit following 196 

manufacturer’s instructions (Qiagen, Hilden, Germany). RNA quality was 197 

assessed using the NanoDrop™ One (AF-00342, ThermoFisher Scientific, 198 

Valencia, Spain) and 4200 TapeStation System® (Agilent, Valencia, Spain). 199 

Only samples that met the following RNA quality criteria were included in the 200 

study: 260/280 ratio ~2.0, 260/230 ratio=1.8–2.2, RNA integrity number (RIN) 201 

≥3 and RNA fragments with more than 200 nucleotides (DV200) ≥70%. 202 

Samples were sequenced using the AmpliSeq for Illumina® Transcriptome 203 

Human Gene Expression Panel23 in a NextSeq 500/550 system. Raw data were 204 

evaluated using FastQC24. STAR25 was employed to align high-quality data 205 

using GRCh37/hg19 as a reference. Gene counts obtained using 206 

featureCounts26 were normalized using Voom transformation and quantile 207 

normalization in limma.27 Genes with low counts were filtered using EdgeR.28 208 

Outliers and possible batch effects detected using principal component analysis 209 

(PCA) were corrected using limma linear models.27 Finally, the transcriptomic 210 

variation due to endometrial luteal phase timing effects was detected using a 211 
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transcriptomic endometrial dating (TED) model established by our group,19 then 212 

removed using limma as we previously described.12 Additional details about the 213 

TED model are presented in Supplementary Material. 214 

Clinical classification of patients 215 

Patients were initially classified based on their clinical history of implantation 216 

failures. Implantation failure was considered for patients who presented a 217 

negative beta chorionic gonadotropin (β-hCG) value (≤10 IU/L) 14–16 days 218 

following embryo transfer, or a biochemical miscarriage (defined by a positive 219 

serum β-hCG value, but absence of pregnancy within the first 10 weeks of 220 

gestation).14 Patients with at least three implantation failures were initially 221 

classified as having an endometrium with a poor prognosis whereas patients 222 

who achieved implantation success within the first three attempts, were initially 223 

classified as having an endometrium with a good prognosis. Patients with 224 

insufficient attempts were excluded from further analyses (n=62). 225 

Patient stratification based on AI algorithms 226 

A training set (80% of samples) was employed to identify a biomarker signature 227 

for endometrial disruption in the mid-secretory phase, stratify patients and 228 

develop an AI-based prediction model that was externally validated in an 229 

independent testing set (20% of samples). 230 

The training set was used for endometrial gene signature discovery, as 231 

previously described.19 Briefly, genes were listed in decreasing order, based on 232 

an informativity score, using CorrelationAttributeEval29 in Weka.30 To study the 233 

predictive performance of different sets of ordered genes, five-fold cross-234 

validation processes with 100 iterations were performed independently with 235 
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support vector machine (SVM),31 k-nearest neighbors (kNN)32 and random 236 

forest (RF) algorithms33 using RWeka.34 Among all the outputs, the signature 237 

with the highest accuracy and most genes was selected and used to develop a 238 

balanced probabilistic model (Supplementary Material). The probabilistic 239 

model was internally evaluated through cross-validation (5-fold, 10 times) in 100 240 

different balanced models and their performance was evaluated with the test 241 

set. The range of poor prognosis probabilities obtained by running the AI model 242 

in all samples was used to stratify the study cohort into the following good (c) 243 

and poor (p) prognosis profiles: c1 (probability≤0.2), c2 (probability>0.2 & 244 

probability<0.5), p2 (probability≥0.5 & probability<0.8), or p1 (probability≥0.8). 245 

Molecular characterization of the different transcriptomic profiles 246 

The differentially expressed genes (DEGs) [False Discovery Rate (FDR)<0.05] 247 

between profiles were identified using limma. Next, the functional differences 248 

between the profiles were revealed with gene set enrichment analyses (GSEA) 249 

performed using ClusterProfiler35. Biological functions were obtained from Kyoto 250 

Encyclopedia of Genes and Genomes (KEGG; September 2021 version)36 while 251 

experimental annotated terms were obtained from Gene Ontology (GO; 252 

December 2021 version).37 253 

Remeasuring the expression of selected potential biomarkers 254 

The expression of six DEGs was evaluated in 20 samples (five samples per 255 

transcriptomic profile) with quantitative polymerase chain reaction (qPCR) using 256 

beta-actin (ACTB) as a housekeeping gene. RNA was reverse transcribed into 257 

cDNA using the PrimeScript Reagent Kit (Perfect Real Time, Takara, Japan) on 258 

a Thermocycler T3000 (Biometra, Ireland). The qPCR was carried out using 259 
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Power-Up SYBR Green (Thermo Fisher Scientific, MA, USA) on a StepOnePlus 260 

System (Applied Biosystems, CA, USA). The specific primer sequences 261 

(Invitrogen, Thermo Fisher Scientific, MA, USA) are presented in Supplemental 262 

Table 1. Relative gene expression was calculated using the ΔΔCt method38 and 263 

ACTB as a housekeeping gene. 264 

 265 

Statistical analysis 266 

Rates for reproductive outcomes [i.e., pregnancy (PR), cumulative pregnancy 267 

(CPR), live birth (LBR), biochemical miscarriage (BMR) and clinical miscarriage 268 

(CMR)] were calculated as described in the Supplementary Material. 269 

Descriptive statistics were used to ensure homogeny of the patients’ baseline 270 

clinical characteristics. Continuous variables were presented as an overall 271 

mean ± standard deviation, whereas discrete variables were presented as 272 

counts and percentages. Statistical differences between groups were compared 273 

using the Wilcoxon rank-sum test for continuous variables and the Fisher’s 274 

exact test for discrete variables. All statistical analyses were conducted in R 275 

(version 4.0.5, 2021-03-31).39 Graphical results were generated with ggplot2.40 276 

In all cases p<0.05 was considered statistically significant. 277 

 278 

RESULTS 279 

Transcriptomic data and clinical characterization of patients 280 

After quality control and analysis of available clinical information (see 281 

Supplementary Material for details), 131 samples and 14,674 genes qualified 282 
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for evaluation. Patients were clinically classified as having an endometrium 283 

associated with a poor (n=32) or good (n=99) prognosis based on the number 284 

of previous implantation failures. Both groups were homogeneous in terms of 285 

main clinical variables (e.g., number of patients, age, body mass index, infertility 286 

type and duration, endometrial dating) (Supplemental Table 2), ensuring that 287 

there were no potential biases in endometrial-factor transcriptomic differences. 288 

As expected, the number of transfers and implantation failures were significantly 289 

different between groups (p-value=2.20e-16) due to the clinical classification 290 

criteria used for this study. However, pairwise comparison revealed there were 291 

no significant differences between the good prognosis groups (c1 and c2). 292 

Batch effects were corrected to ensure the transcriptomic differences were 293 

related to endometrial disruption independent of endometrial timing (see 294 

Supplementary Material). 295 

Four new prognostic stratification groups for endometrial function 296 

Participants were stratified into four profiles using a 236-gene signature and a 297 

probabilistic model that predicts endometrial profiles with 77% accuracy, 67% 298 

sensitivity and 80% specificity (see Supplementary Material for more details). 299 

The four profiles were established as poor (p) or good (c) according to the 300 

probability of presenting an endometrium associated with a poor prognosis: p1 301 

(n=24) and p2 (n=14), c2 (n=32) and c1 (n=61). Clinical variables were 302 

homogenous for all stratified profiles (Table 1). 303 

As expected, the number of transfers and implantation failures were significantly 304 

different between the four profiles. Profiles associated with a poor prognosis 305 
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showed lower PR (29.17%) and LBR (50.00%) coupled with higher CMR 306 

(42.86%) and BMR (42.68%) compared to the good prognosis profiles (Figure 307 

2A). These differences were statistically significant (p-value≤0.05) for all 308 

outcomes except CMR (Figure 2A). Interestingly, the p1 profile was related to a 309 

higher rate of biochemical miscarriages, the p2 profile was related to clinical 310 

miscarriages and the c1 profile was associated with the best reproductive 311 

outcomes. When groups were compared pairwise significant differences were 312 

found between the p1 and c1 groups in terms of PR (p-value=0.0011), LBR (p-313 

value=0.0478) and BMR (p-value=0.0018); between p2 and c1 groups in terms 314 

of LBR (p-value=0.0147) and CMR (p-value=0.0478), and finally, between the 315 

p1 and c2 groups in terms of PR (p-value=0.004) (Figure 2B). Considering all 316 

embryo transfer attempts, the cumulative PR reached 38% for p1, 76% for p2, 317 

81% for c2, and 93% for c1 (Figure 2C). 318 

Molecular characterization of the transcriptomically-defined profiles 319 

With respect to c1, there were 47 DEGs identified in p2, 3 DEGs in p1 and 1 320 

DEG in c2. Only one transcript, mitogen-activated protein kinase 8 interacting 321 

protein 1 pseudogene (LOC644172 or MAPK8IP1P2), was shared between p1 322 

and c1 profiles, as well as c2 and c1 profiles (Table 2). 323 

The p2 and p1 profiles showed the highest number of functional dysregulations 324 

compared to c1 (54 and 38 dysregulations, respectively). The downregulated 325 

functions (30/54, 55.6%) in p2 were mainly related to immune response (n=10) 326 

or metabolism and energy production (n=12). The upregulated functions (24/54, 327 

44.4%) in p2 were mainly related with nervous system and sensory perception 328 
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(n=6), gene expression and protein degradation (n=6). Compared to the c1 329 

profile, the p1 profile had mainly upregulated functions (27/38, 71.1%), which 330 

were related to immune responses (n=9), nervous system and sensory 331 

perception (n=6). Notably, most of the downregulated functions (11/38, 28.9%) 332 

in p1 were related to cellular movement and ciliary processes (n=6) (Table 2). 333 

Both poor-prognosis-related profiles had a noticeable dysregulation of immune 334 

responses compared to the c1 profiles. However, the p1 was characterized by 335 

nine upregulated functions while the p2 was characterized by ten 336 

downregulated functions. The p2 profile also presented 12 downregulated 337 

functions related to metabolism and energy production (Table 2). 338 

There were 22 functional dysregulations between the control profiles, with the 339 

c2 presenting a dysregulated profile similar to p2. Specifically, the c2 profile 340 

presented a downregulation of nine functions related to immune responses and 341 

an upregulation of five functions related to the nervous system and sensory 342 

perception (Table 2). 343 

Remeasuring expression of potential biomarkers of endometrial 344 

disruption 345 

The expression of six DEGs was validated by qPCR. Three of these DEGs were 346 

identified in the p1 vs. c1 comparison [DND microRNA-mediated repression 347 

inhibitor 1 (DND1), synaptotagmin 10 (SYT10) and mitogen-activated protein 348 

kinase 8 interacting protein 1 pseudogene (LOC644172)] or c2 vs. c1 349 

comparison (LOC644172). The remaining three DEGs were selected for having 350 

the highest absolute fold change between p2 and c1 [CF transmembrane 351 
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conductance regulator (CFTR), V-set domain containing T cell activation 352 

inhibitor 1 (VTCN1) and solute carrier family 17 member 8 (SLC17A8)]. Except 353 

for SLC17A8 (Supplemental Figure 4), all genes showed the same gene 354 

expression trends in qPCR and RNA-Seq, reinforcing their role as potential 355 

biomarkers of endometrial disruption. 356 

COMMENT 357 

Principal findings 358 

This study is the first to stratify endometrial function into four transcriptomic 359 

profiles, independent of endometrial timing. The four transcriptomic profiles 360 

corresponded with significantly different reproductive rates, showing a gradient 361 

of prognoses and highlighting the complex nature of endometrial disruption in 362 

the mid-secretory phase. 363 

Results in the context of what is known 364 

Disrupted endometrial function, independent of luteal phase endometrial timing, 365 

was associated with a heterogeneous transcriptomic behavior among IVF 366 

patients undergoing HRT, as previously reported in patients undergoing natural 367 

cycles.10 Our binary prediction model (good vs. poor prognosis) was based on a 368 

signature of 236 genes that characterized the transcriptomic behavior with 67% 369 

sensitivity. Our model’s predictive performance exceeds that of Koot’s binary 370 

model, which was based on a larger signature of 301 genes and reached a 371 

58.3% sensitivity when used to compare control and RIF patients in natural 372 

cycles.10 Although we improved the predictive performance, these results 373 
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showed that using a dichotomous model to identify the gene expression 374 

patterns associated with good or poor prognosis did not achieve sufficient 375 

power. Our last study in patients undergoing HRT showed that stratifying 376 

patients using a 404-gene panel instead of clinical criteria significantly 377 

enhanced the transcriptomic and clinical differences between poor and good 378 

prognosis profiles.12 However, the probabilistic model was not tested in an 379 

independent test set, impeding comparison of the model’s performance. Thus, 380 

in this study, the whole transcriptome was used to stratify patients into four 381 

profiles according to an AI-computed probability of endometrial disruption. 382 

Notably, the resulting gradient of prognoses distinguished two profiles that were 383 

related to different types of miscarriages. 384 

 385 

Clinical and research implications 386 

This work characterized four new prognostic profiles that can be used to predict 387 

reproductive outcomes in IVF patients with a history of implantation failures. 388 

Specifically, the p1 transcriptomic profile was related to the worst prognosis, 389 

characterized by the highest BMR and the lowest PR. On a molecular level, the 390 

p1 was associated with an excessive immune response, suggesting that a poor 391 

feto-maternal tolerance could be driving miscarriages in the early stages of 392 

pregnancy.41 Moreover, the overall downregulation of ciliary processes in this 393 

cohort of patients with RIF reinforces their role in uterine disorders.42 394 

Alternatively, the p2 profile was related to the highest CMR and a lack of 395 

immune and metabolic responses. These findings suggest that implantation is 396 

facilitated by an initial immune tolerance but miscarriage occurs in subsequent 397 

pregnancy stages due to energetic deficiencies. This novel hypothesis about 398 
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the relevance of the endometrial factor in clinical miscarriages requires further 399 

investigation. Finally, there were two good prognosis profiles characterized by 400 

high PRs and LBRs. The c1 profile was related to the highest LBR and lowest 401 

BMR. 402 

Overall, this new taxonomy can help improve the precision of diagnosis and 403 

treatment of infertile women. It lays the groundwork for a new generation of 404 

tools for evaluating patients with suspected endometrial-factor infertility or 405 

stratifying types of miscarriages. Additionally, the molecular and functional 406 

differences between the reproductive prognosis profiles set the foundation for 407 

the discovery of new biomarkers and/or tailored therapeutic targets for each 408 

specific transcriptomic profile. 409 

Strengths and limitations 410 

This study proposed a novel stratification based on four whole-transcriptome-411 

based profiles with a gradient of reproductive prognosis for IVF patients 412 

undergoing HRT, improving the results from the binary classification obtained in 413 

our previous studies.12 Additionally, this approach leverages AI-computed 414 

probabilities which are more objective and robust than traditional approaches to 415 

classify patients with endometrial-factor infertility based on the number of 416 

implantation failures.  417 

However, it is worth mentioning that due to the stratification into four groups and 418 

the limited sample size by group, the AI model needs further optimization. 419 

Further studies with larger patient cohorts are required to boost the statistical 420 
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power of the model for population inference, assess inter-cycle reproducibility, 421 

and conduct rigorous prospective clinical trials prior to clinical implementation.43 422 

 423 

 424 

Conclusions 425 

Regardless of endometrial timing, the heterogeneous endometrial function can 426 

be leveraged to stratify IVF patients undergoing HRT. This study uncovers four 427 

distinct prognostic groups reflecting disrupted molecular profiles related with the 428 

highest BMR and CMR (p1 and p2, respectively) or less disrupted profiles 429 

associated with the highest LBR (c1) and the highest PR (c2). These molecular 430 

findings were linked to functional differences, highlighting overactive immune 431 

responses in p1 and decreased metabolism in p2, and revealing potential 432 

mechanisms of actions underlying the biochemical and clinical miscarriages in 433 

this cohort. Taken together, our results support that good and poor endometrial 434 

prognoses have evident molecular and clinical differences. These findings 435 

advance the research in personalized diagnostic and therapeutic strategies in 436 

reproductive medicine, particularly for patients with endometrial-factor infertility. 437 
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 589 

TABLES 590 

 591 

Table 1. Baseline characteristics and reproductive history of the stratified 592 

groups. Endometrial profiles (c1, c2, p2, and p1) are compared according to 593 

the main clinical variables related to reproductive outcomes. Using the 594 

transcriptomic endometrial dating (TED) model, endometria in early and late 595 

secretory (ESE;LSE) classes were grouped as displaced (Ds) while early and 596 

late mid-secretory (EMSE;LMSE) classes were grouped as on time (Ot). BMI, 597 

body mass index; N/A, not available; No., number of.; P, primary; S, secondary. 598 

***p-value < 0.001; ap-value < 0.05 in p1 vs. c1; bp-value < 0.05 in p1 vs. c2; cp-599 

value < 0.05 in p2 vs. c1; dp-value < 0.05 in p2 vs. c2; ep-value < 0.05 in p2 vs. 600 

p1.  601 
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 c1 c2 p2 p1 p-value 

No. patients 61 32 14 24 N/A 

Age (years) 
40.77 ± 

4.41 
39.84 ± 

4.97 
40.14 ± 

4.44 
42.5 ± 3.56 0.1686 

BMI (kg/m2) 
23.62 ± 

3.97 
22.53 ± 

3.47 
22.53 ± 

3.34 
22.22 ± 

3.68 
0.3324 

Infertility 
type 

P = 48 
(82.8%) 

S = 10 
(17.2%) 

N/A = 3 

P = 23 
(79.3%) 

S = 6 
(20.7%) 

N/A = 3 

P = 12 
(92.3%) 

S = 1 
(7.7%) 

N/A = 1 

P = 18 
(85.7%) 

S = 3 
(14.3%) 

N/A = 3 

0.8501 

Infertility 
duration 
(years) 

2.95 ± 
2.86 

3.31 ± 
3.10 

3.58 ± 1.87 2.8 ± 1.7 0.7943 

Endometrial 
dating (TED) 

Ds = 41 
(67.2%) 

Ot = 20 
(32.8%) 

Ds = 18 
(56.3%) 

Ot = 14 
(43.7%) 

Ds = 7 
(50.0%) 

Ot = 7 
(50.0%) 

Ds = 17 
(70.8%) 

Ot = 7 
(29.2%) 

0.4354 

 

No. embryo 
transfers 

1.75 ± 
0.85 

1.78 ± 
0.91 

2.71 ± 1.44 4.21 ± 1.32 

5E-17 

*** 
a, b, c, d, e 

No. implan-
tation fail-

ures 

0.75 ± 
0.85 

0.81 ± 
1.00 

2.00 ± 1.75 3.79 ± 1.14 

4E-22 

*** 
a, b, c, d, e 
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 605 

Table 2. Molecular regulation and functional differences between 606 

endometrial profiles. The table shows the number of differentially expressed 607 

genes (DEGs) and the corresponding number of significantly up- or 608 

downregulated biological functions [False Discovery Rate (FDR) < 0.05], 609 

identified through a gene set enrichment analysis (GSEA), for each comparison. 610 

The number of biological functions in each functional groups is indicated 611 

between brackets. 612 

p1 vs. c1 p1 vs. c2 p1 vs. p2 p2 vs. c1 p2 vs. c2 c2 vs. c1 

DEGs 3 0 0 47 0 1 

Functional Groups UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN 

Immune response (n=26) 9 0 9 0 7 1 3 10 6 2 0 9 

Nervous system and  
sensory perception (n=6) 6 0 1 1 1 1 6 0 2 0 5 0 

Signal transduction (n=7) 3 2 2 2 0 0 2 0 0 0 1 0 

Metabolism and energy 
production (n=26) 3 2 3 3 0 2 1 12 3 6 0 0 

Cellular movement and ciliary 
processes (n=8) 2 6 0 0 0 0 0 3 0 2 0 1 

Cellular adhesion and 
membranes (n=11) 1 0 0 0 3 2 3 3 3 2 3 0 

Gene expression and protein 
degradation (n=13) 1 0 1 0 2 4 6 2 6 2 0 3 

Proliferation and differentiation 
(n=2) 1 1 1 0 0 0 0 0 0 0 0 0 

Longevity and senescence 
(n=2) 

1 0 0 0 0 0 1 0 0 0 0 0 

Angiogenesis and coagulation 
(n=3) 0 0 0 0 0 2 2 0 1 0 0 0 

TOTAL NUMBER OF 
DYSREGULATED 

FUNCTIONS 

27 11 17 6 13 12 24 30 21 14 9 13 

38 23 25 54 35 22 
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FIGURE CAPTIONS 615 

Figure 1. Study design. In vitro fertilization (IVF) patients undergoing hormone 616 

replacement therapy (HRT) were classified as having good or bad endometrial 617 

prognosis profiles based on their reproductive histories. Endometrial biopsies 618 

were processed for whole-transcriptome RNA-Sequencing. Following RNA-619 

Sequencing data normalization, the effect of endometrial luteal-phase timing 620 

was corrected. Subsequently, an artificial intelligence model was developed to 621 

stratify the population into four groups according to their probability of having a 622 

poor prognosis. Transcriptomic evaluation and functional characterization were 623 

followed by an analysis of clinical reproductive outcomes profiles are clinically 624 

relevant. 625 

Figure 2. Clinical evaluation of transcriptomic profiles. (A) Bar plot showing 626 

the significant differences obtained through pairwise comparisons of different 627 

profiles. PR, Pregnancy rate; LBR, Live birth rate; CMR, Clinical miscarriage 628 

rate; BMR, Biochemical miscarriage rate. (B) Bar plot showing the cumulative 629 

pregnancy rate from multiple embryo transfers. *p-value < 0.05; **p-value < 630 

0.01; ***p-value < 0.001. 631 

 632 

SUPPLEMENTARY MATERIAL 633 

Supplemental Table 1. Specific primers employed for qPCR 634 

remeasurementof endometrial disruption biomarkers. 635 

CFTR, CF transmembrane conductance regulator; DND1, MicroRNA-mediated 636 

repression inhibitor 1; FW, forward; MAPK8IP1P2, mitogen-activated protein 637 
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kinase 8 interacting protein 1 pseudogene 2, also known as LOC644172; 638 

qPCR,  quantitative polymerase chain reaction; RV, reverse; SLC17A8, solute 639 

carrier family 17 member 8; SYT10, synaptotagmin; VTCN1, V-set domain 640 

containing T cell activation inhibitor 1. 641 

Supplemental Table 2. Homogeneity of the baseline characteristics in 642 

poor and good endometrial prognosis groups. 643 

With the transcriptomic endometrial dating (TED) model, early and late 644 

secretory (ESE;LSE) classes were grouped as displaced while early and late 645 

mid-secretory (EMSE;LMSE) classes were grouped as on time. BMI, body 646 

mass index; N/A, not available; No., number of. ***p-value < 0.001. 647 

Supplemental Table 3. Homogeneity of the baseline characteristics in 648 

training and test sets. Baseline characteristics of training and test sets are 649 

shown. With the transcriptomic endometrial dating (TED) model, early and late 650 

secretory (ESE;LSE) classes were grouped as displaced while early and late 651 

mid-secretory (EMSE;LMSE) classes were grouped as on time. BMI, body 652 

mass index; N/A, not available; No., number of. *p-value < 0.05; ***p-value < 653 

0.001. 654 

Supplemental Table 4. Comparison of AI model performance metrics. 655 

The table shows the performance metrics (accuracy, sensitivity, and specificity) 656 

for individual machine learning models (SVM, RF, kNN) and their combinations 657 

(SVM+kNN, SVM+RF, kNN+RF). kNN, k-Nearest neighbors; RF, Random 658 

forest; SVM, Support vector machine. 659 

Supplemental Figure 1. Principal component analysis (PCA) results. (A) 660 

PCA plot identifying two outliers (V10 and Bi16), which were excluded from 661 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2024. ; https://doi.org/10.1101/2024.11.08.24316907doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.08.24316907
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

subsequent analyses. (B) PCA plots depicting the batch effect from the 662 

sequencing run before and after correction. (C) PCA plots depicting the 663 

endometrial timing effect obtained using the 73-gene TED signature before and 664 

after correction. EMSE, early mid-secretory; ESE, early secretory; LMSE, late 665 

mid-secretory; LSE, late secretory; PC, principal component; TED, 666 

transcriptomic endometrial dating. 667 

Supplemental Figure 2. Exploratory analysis of RNA quality parameters. 668 

Principal component analysis (PCA) plots for the (A) 260/230 ratio, (B) 260/280 669 

ratio, (C) RNA fragments with more than 200 nucleotides (DV200), and (D) RNA 670 

integrity number (RIN). No batch effects were observed for these parameters. 671 

Supplemental Figure 3. Selection of the poor endometrial prognosis gene 672 

signature. Graphs highlighting the maximum number of endometrial genes the 673 

(A) Support vector machine (SVM), (B) k-Nearest neighbors (kNN) and (C) 674 

Random Forest (RF) models can process with the highest accuracy. The 675 

orange dotted line represents the percentage obtained with an unbalanced 676 

proportion of good and poor prognosis classes. 677 

Supplemental Figure 4. qPCR validation of endometrial disruption 678 

biomarkers. Comparison of gene expression fold change obtained with RNA-679 

Sequencing (RNA-Seq) and quantitative polymerase chain reaction (qPCR) 680 

assays. Six differentially expressed genes (DEGS) were selected from (A) p1 681 

vs. c1, (B) p2 vs. c1, (C) c2 vs. c1 comparisons. 682 

 683 
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