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Epigenetic signatures of AD and PART 2 
ABSTRACT 

Primary age-related tauopathy (PART) and Alzheimer’s disease (AD) share hippocampal phospho-tau (p-

tau) pathology but differ in p-tau extent and amyloid presence. As a result, PART uniquely enables investigation 

of amyloid-independent p-tau mechanisms during brain aging. We conducted the first epigenome-wide 

association (EWAS) study of PART, which yielded 13 new and robust p-tau/methylation associations.  We then 

jointly analyzed PART and AD epigenomes to develop “TauAge”, novel epigenetic clocks that predict p-tau 

severity in region-specific, age-, and amyloid-independent manners.  Integrative transcriptomic analyses 

revealed that genes involved in synaptic transmission are related to hippocampal p-tau severity in both PART 

and AD, while neuroinflammatory genes are related to frontal cortex p-tau severity in AD only. Further, a machine 

learning classifier based on PART-vs-AD epigenetic differences discriminates neuropathological diagnoses and 

stratifies indeterminate cases into subgroups with disparity in cognitive impairment. Together, these findings 

demonstrate the brain epigenome’s substantial role in linking tau pathology to cognitive outcomes in aging and 

AD.  
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Epigenetic signatures of AD and PART 3 
Neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau (p-tau) are a ubiquitous feature of aging 

present in nearly every human brain older than 50 years of age1-5.  However, the spatial distribution and within-

region severity of p-tau, as well as the associated degree of cognitive impairment, vary widely across individuals, 

even after accounting for age and co-pathology6,7. In Alzheimer’s disease (AD), p-tau originates in a temporo-

limbic distribution before spreading to neocortex in concert with the diffuse deposition of amyloid-associated 

neuritic plaques2,8. However, primary age-related tauopathy (PART) represents a distinct aging condition in 

which p-tau aggregation remains relatively confined to temporo-limbic distribution in the absence of amyloid 

plaques6,9-13.  P-tau is molecularly similar in PART and AD and involves hippocampal CA1 and CA3 subfields at 

early stages6. Moreover, genetic studies have revealed a partial overlap of Braak NFT stage in PART and risk 

for AD14.  However, PART is unlike AD in that p-tau only rarely spreads to midfrontal or more distant neocortex, 

and we previously identified a novel locus in the JADE1 gene as a unique risk determinant of Braak NFT stage 

in PART15.  As a result, PART represents a distinct form of brain aging that carries some degree of resistance to 

AD pathophysiology while still exhibiting some interindividual variation in p-tau severity despite the absence of 

amyloid. Given these similarities and differences, PART and AD provide a unique human model for interrogating 

the mechanisms that contribute to p-tau severity and spread in aging.  Knowledge gained from these extremes 

of spectrum of p-tau spread and amyloid presence, or its absence, can additionally be informative for 

understanding mechanisms underlying indeterminate cases that fall between AD and PART with both relatively 

sparse plaque burden and limbic-predominant p-tau12,16,17.  

 Aging is the strongest risk factor for p-tau.  The epigenome provides an important window into modifiers 

of the PART-vs-AD spectrum and the indeterminate cases between them given that DNA methylation (DNAm) 

changes widely across the lifespan.  While DNAm patterns have been characterized in AD18-23, prior studies have 

been limited in several ways.  First, blood-derived DNAm epigenetic clocks have linked accelerated epigenetic 

aging to AD severity24,25, but the biological basis of these clocks remain obscure and lack brain-specific 

associations26. Second, while studies of cortical brain DNAm have identified CpGs associated with AD 

neuropathologic change, such as Braak stage NFT distribution19 and senile plaques18, they have been performed 

without regard to within-region severity or the complex interaction of p-tau and amyloid. Therefore, it remains 
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Epigenetic signatures of AD and PART 4 
unclear whether these epigenetic changes are a feature of normal brain aging or if they are a consequence of 

AD pathophysiology.  

Here, we hypothesized that an epigenetic program drives variation in hippocampal p-tau pathology in 

PART. To understand the epigenetic contributions to p-tau in the aging brain we use several computational 

approaches to analyze frontal cortex DNAm to disentangle associations between p-tau, amyloid, and aging 

across the pathological spectrum of PART and AD.  This includes the first epigenome-wide association (EWAS) 

study of PART, the generation of a p-tau clock, “TauAge”, that is predictive of age-independent p-tau severity in 

hippocampus and frontal cortex, and a comparative multivariate classifier of PART and AD that distills the shared 

biological programs contributing to both conditions from those uniquely protective in PART. 

RESULTS 

Description of cohorts. 

Given that PART differs from AD in that it does not involve amyloid or widespread neocortical 

dissemination of tau, we generated DNA methylation profiles for 260 individuals in the PART working group 

(PWG) cohort comprised of autopsy-confirmed definite PART cases (Braak NFT stage I-IV, CERAD = None) 

and examined hippocampal p-tau by digital histopathology of neurofibrillary p-tau (NFT) density in AT8-stained 

tissue sections. All PWG samples were interrogated using the Illumina EPIC Human Methylation array for ~850K 

CpGs (Methods: DNAm data generation). We also performed secondary analyses using public data available 

from 707 individuals from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort18, which 

includes 176 cases with definite PART (24%; CERAD = None, Braak NFT Stage I-IV) and 157 (22%) cases with 

definite AD (CERAD = Frequent, Braak NFT Stage V-VI; Supplemental Table 1). The ROSMAP cohort includes 

an additional 365 “Indeterminate” cases with low or intermediate AD neuropathologic change, some of which 

overlap with a neuropathological diagnosis of probable PART (BRAAK NFT stage I-IV, CERAD = Sparse).  All 

ROSMAP samples were interrogated for DNAm using the Illumina Human Methylation 450 beadchip array and 

a subset had matched gene expression data generated by the Illumina TruSeq method with modifications as 

previously described27. The unsupervised clustering of DNA methylomes for each cohort was primarily driven by 

sex and sample plate and did not reveal any patterns relating to hippocampal p-tau load, Braak stage, or CERAD 
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Epigenetic signatures of AD and PART 5 
score (Extended Data Figure 1A). Similarly, DNAm-based cellular deconvolution using a reference atlas of 

neuronal and glial subtypes yielded largely comparable distributions between the PWG and ROSMAP cohorts, 

with a slight enrichment of superficial cortical layer cell types in the latter (Extended Data Figure 1B-C). 

Nonetheless, cell-type proportion principal components and individual cell-type proportions did not associate 

with hippocampal p-tau burden in either cohort (Extended Data Figure 1D-E). 

An EWAS and novel epigenetic clock, “TauAge”, captures hippocampal tau variation in PART.  

 To identify biological processes that may account for inter-individual variation in hippocampal p-tau 

pathology, we first performed an epigenome-wide association study (EWAS) in the PWG cohort comprised of 

260 PART cases, controlling for age, sex, and sample plate effects. We identified thirteen CpG sites that were 

associated with hippocampal p-tau (FDR < .05), two of which (cg04905912, cg17649772) also exceeded the 

Bonferroni-corrected significance threshold (Figure 1A). Methylations of these CpGs were positively correlated 

with one another (Extended Data Figure 2A), suggesting they may be downstream of a common effector or 

that they may operate in tandem as part of a concerted epigenetic program. To our knowledge, methylation 

variation at these 13 loci has not been previously associated with tau pathology in aging or AD across a survey 

of brain methylation studies18-23. 

 Given that DNAm often regulates local gene expression programs28, we directly evaluated the  correlation 

between each of the 13 significant CpGs with RNA-Seq gene expression of all annotated genes within 10kB of 

the CpG probe coordinates using matched DNAm:RNA-Seq expression data set from the ROSMAP cohort27 

(Methods: PART Epigenome Wide Association Study, Figure 1B). From the 13 CpGs, we identified three 

significant CpG:gene associations: cg03815683:CDH8, cg04522898:R3HDM1, and cg19212949:PEG3. 

Downregulation of CDH8 and R3HDM1, but not PEG3, further correlated with hippocampal p-tau (Figure 1B). 

One additional pair (cg03595123:RTN3) also had a significant association of gene expression with both CpG 

methylation and hippocampal p-tau but did not survive multiple comparison correction using a false discovery 

rate (FDR) of 0.05. Thus, p-tau-associated methylation at these newly identified loci correlates with the 

expression of genes that, in turn, are associated with tau pathology in an independent data set.  
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Epigenetic signatures of AD and PART 6 
  CpG methylation can also have trans-regulatory effects on gene expression29. We therefore expanded 

our analyses to test the correlation of all genes with methylation of the loci identified in our EWAS (Methods: 

Differential gene expression analysis) which identified a total of 198 additional genes that were correlated with 

CpG methylation.  Enrichment analysis revealed that these genes were primarily enriched in ontology terms 

related to ion transport, synaptic transmission, and neuron architecture (Extended Data Figure 2B). Most of the 

significant CpG:gene pairs involved cg04522898 (Figure 1C), suggesting that methylation at this locus may 

impact large downstream transcriptional networks related to synaptic biology. Together, these findings suggest 

that p-tau aggregation in the hippocampus is associated with changes in frontal cortical network properties in 

PART, even in the absence of cortical amyloid deposition.  

 To further investigate the epigenetic correlates of p-tau pathology independent of amyloid pathology in 

the PWG cohort, we trained a penalized elastic net (EN) regression model, or “clock”, to predict age-adjusted 

hippocampal p-tau residuals (Methods). The resultant hippocampal clock model, “TauAge”, consists of 223 

CpGs, including cg18762422, one of the CpGs identified by our EWAS. Our model learned the training data with 

near certainty and closely predicted hippocampal p-tau residuals in testing data (Figure 1D). As expected given 

prior adjustments for age, none of these identified CpGs correlated with chronological age (Extended Data 

Figure 2C). Notably, in contrast to TauAge, existing epigenetic clocks including pan-tissue Horvath30,31 or brain-

specific Cortical25 clocks were not predictive of age-adjusted residual or unadjusted hippocampal p-tau 

(Extended Data Figure 2D). These results demonstrate that our novel clock of cortical DNAm contains robust 

signatures indicative of hippocampal p-tau pathological burden in PART, which are separate from known age-

related epimutational processes 32.  

Distinct TauAge clocks capture p-tau variation in AD cortex and hippocampus 

 Given the precise predictions using this approach, we next sought to determine if we could accurately 

calculate TauAge in cases from the ROSMAP cohort, which enriches for the other extreme of the p-tau spectrum, 

one that is also afflicted by amyloid pathology. In AD, NFTs develop earliest in the entorhinal cortex and 

hippocampus before spreading to the frontal cortex.8 As a result, NFT burden in the hippocampus and midfrontal 

cortex are separate but related measures of p-tau severity that vary between individuals. We leveraged the 

ROSMAP cohort18, which exhibits a full spectrum of p-tau and amyloid pathologies ranging from PART to AD, to 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.07.24316933doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.07.24316933


Epigenetic signatures of AD and PART 7 
train TauAge models for each region. As before, frontal cortical DNA methylomes were used to predict p-tau 

burden in hippocampus and midfrontal cortex in ROSMAP after adjusting for age. We observed highly accurate 

predictions for hippocampal TauAge (model size: 461 CpGs) and midfrontal TauAge (model size: 467 CpGs) 

(Figure 2A), while cortical and Horvath epigenetic clocks lacked predictive accuracy (Extended Data Figure 

3A). Neither TauAge model was enriched in aging-associated CpGs within the ROSMAP cohort (Extended Data 

Figure 3B).  

We observed only 8 overlapping CpGs between the hippocampus and midfrontal TauAge models. 

Indeed, while these TauAge models are moderately correlated (Extended Data Figure 3C), hippocampal 

TauAge is less accurate at predicting midfrontal p-tau burden and similarly midfrontal TauAge is less accurate 

at predicting hippocampus p-tau burden (Figure 2B). This suggests that there are distinct epigenetic traits in 

cortex that account for regional variation in p-tau burden within an individual. Thus, TauAge does not measure 

a global property of the brain but rather reflects separate biologies that contribute to similar pathology in different 

brain regions. 

To account for amyloid-dependent processes that may exacerbate p-tau pathology or confound p-tau-

specific epigenetic signatures, we re-trained hippocampus and midfrontal TauAge models that, in addition to 

age, also adjust for total neuritic plaque load (Methods: TauAge model development). The amyloid-adjusted 

models are additionally accurate and predicting p-tau burden in respective regions (Extended Data Figure 3D), 

have comparable performance to models that adjust for age alone, and have substantial overlap in constituent 

feature CpGs in a region-specific fashion (Figure 2C, Supplemental Table 2). Taken together, this suggests 

that TauAge CpGs represent an amyloid-independent and regionally-specific epigenetic program. 

Hippocampal TauAge relates to synaptic signaling in PART and AD, whereas midfrontal TauAge relates to 

inflammation in AD only.  

To elucidate the separate underlying biology contributing to each of the PWG and the hippocampus and 

midfrontal ROSMAP TauAge models, we again leveraged paired DNAm:RNA-Seq data from ROSMAP to identify 

CpG:Gene pairs with each model (Methods). The gene set correlated with hippocampal TauAge were largely 

distinct from the midfrontal gene set, mirroring the regional CpG features selected (Figure 2D, Extended Data 
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Epigenetic signatures of AD and PART 8 
Figure 3E, and Supplemental Table 3). Strikingly, despite differences in histopathological and DNAm 

techniques, a highly overlapping gene profile emerged for the hippocampal TauAge models trained separately 

on PART cases from the PWG cohort, PART cases from the ROSMAP cohort, or all cases from the ROSMAP 

cohort. The gene ontological profile related to all hippocampal TauAge models was enriched for terms related to 

synaptic transmission, axon biology, and oxidative phosphorylation (Figure 2E). Therefore, hippocampal p-tau 

accumulation in AD and PART appears to be driven by similar epigenetic and genetic features.   

In contrast, consistent with spread of p-tau to frontal cortex that occurs uniquely in AD, the CpG:Gene 

correlations for midfrontal TauAge revealed genes enriched in inflammatory signaling and cytokine production. 

After corrections for multiple comparisons, we identified that hippocampal TauAge is most strongly related to the 

altered expression of two genes related to synaptic transmission, and midfrontal TauAge is most strongly related 

to the upregulation of five genes related to inflammation (Extended Data Figure 3F). Interestingly, one gene, 

kinesin family member 5B (KIF5B), was common to both midfrontal and hippocampal analyses. Together, these 

data suggest that hippocampal p-tau severity is associated with altered cortical synaptic activity and connectivity 

in an amyloid-independent manner both in PART and in AD, while midfrontal p-tau severity may be precipitated 

by increased inflammation in the cortex in AD only.  

Frontal cortex methylations distinguish PART from early AD.  

Our EWAS and TauAge models suggest a common epigenomic program related to synaptic transmission 

contributing to p-tau burden in hippocampus of AD and PART, independent of amyloid, and a disparate 

epigenomic program in AD related to inflammation.  Thus, these observations do not resolve the controversy 

regarding whether PART simply represents an early pathological prodrome of AD that would eventually manifest 

with cortical p-tau and amyloid33 or whether PART represents a distinct neuropathological entity6. In an effort to 

address this, we next evaluated whether an epigenetic classification model could be trained to discern subtle 

PART or AD propensities. To accomplish this, we first compared TauAge in cases at the extremes of the PART-

AD neuropathological spectrum. Additionally, we evaluated the remaining “Indeterminate” cases that fall 

ambiguously between probable PART and low/intermediate ADNC (CERAD = Sparse, and Braak NFT Stage 0-

VI; or CERAD = Moderate-Frequent, and Braak NFT Stage 0-IV). Cases with “No Pathology” (CERAD = “None”, 
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Epigenetic signatures of AD and PART 9 
Braak NFT Stage = 0) were excluded due to their limited number (N = 9), which coincidently further highlights 

the pervasiveness of p-tau pathology in aging adults.  

As expected, given the pervasive involvement of hippocampus in both diseases, hippocampal TauAge 

was greater in AD compared to both PART and Indeterminate cases (Extended Data Figure 4A) and was not 

distinguishable between PART and Indeterminate cases. In contrast, midfrontal TauAge showed a progressive 

increase along the PART-AD continuum, suggesting a direct relationship between inflammation and AD 

neuropathologic change. Despite significant mean differences, the pathology groups had substantial overlap in 

TauAge which limited our ability to discriminate pathology using these methylation models alone.  

We hypothesized that Indeterminate cases may reflect a heterogeneous group in which a subset of cases 

are epigenetically more similar to PART while others may be more similar to AD.  To investigate this possibility, 

we developed a classifier (PART-AD classifier) to directly stratify Indeterminate cases as Predicted-PART or 

Predicted-AD from frontal cortical DNAm (Figure 3A). To identify CpG features that best distinguish PART from 

AD, we first performed an EWAS comparing PART to AD individuals with age and sex as covariates and 

excluded indeterminate cases. Using an FDR of 0.05, we identified 1,214 differentially methylated CpGs between 

PART and AD (Extended Data Figure 4B). Of these, 37 CpGs meet the more stringent experiment-wide level 

of significance. Only one of these probes (cg02683408) has not been previously identified in an AD-related 

EWAS and emphasizes the similarity of PART with normal aging.   

Using only DNAm at these 1,214 CpGs from 100 PART and 89 AD cases, we trained a support vector 

machine to classify cases as Predicted-PART or Predicted AD. As expected, the resultant PART-AD classifier 

predicts the pathology of the remaining PART and AD cases from the ROSMAP cohort with 93% sensitivity and 

89% specificity (Figure 3B). To further validate the classifier, we applied it to cortical DNAm data from 142 

individuals defined as Controls (Braak NFT Stage 0-II) or Late Stage AD (Braak NFT Stage V/VI) in an external 

cohort maintained by the Mt. Sinai Brain Bank (Extended Data Figure 4C-D).  As expected, the majority of 

Control cases were classified as Predicted-PART, and the majority of Late Stage AD cases were classified as 

Predicted-AD, thus validating the classifier’s performance and the reproducibility of its underlying epigenetic AD 

signature.   
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Epigenetic signatures of AD and PART 10 
We then applied the PART-AD classifier to stratify indeterminate cases from the ROSMAP cohort as 

Predicted-AD or Predicted-PART. Predicted-AD and Predicted-PART cases could not be distinguished clearly 

from each other directly by their p-tau burden (Extended Data Figure 4E), though Predicted-AD cases exhibited 

modestly more neuritic plaques than Predicted-PART cases on average. Moreover, our TauAge models could 

not resolve Predicted-AD and Predicted-PART cases (Figure 3C), suggesting that the PART-AD classifier 

measures a tau-independent epigenetic signature.  

To further interrogate this additional epigenetic signature, we identified differential methylation at 956 of 

the 1,214 classifier feature CpGs (Figure 3D, Supplemental Table 4) in Indeterminate cases that were classified 

as Predicted-AD or Predicted-PART. The effect sizes observed were highly concordant with the effect sizes of 

methylation on diagnosis in PART-AD EWAS conducted during the classifier development (Extended Data 

Figure 3F). Thus, cases of indeterminate pathologic change that do not yet differ substantially in their p-tau 

burden may have different epigenomes resembling either PART or AD. This distinguishing DNAm signature may 

relate to different degrees of amyloid burden or different susceptibility to amyloid-associated changes on p-tau.  

Further, we directly compared gene expression of the Predicted-PART and the Predicted-AD cases 

(Methods). 5,895 genes were differentially expressed (Extended Data Figure 5A, Supplemental Table 5), and 

the expression of 81.7% of these genes was also associated with methylation at a feature CpG of the PART-AD 

classifier (not shown). PART and AD cases and had concordant effect sizes (Extended Data Figure 5B). Genes 

downregulated in Predicted-AD compared to Predicted-PART were highly enriched in oxidative phosphorylation 

and cellular respiration (Extended Data Figure 5C). This may suggest that the cortical spread of tau pathology 

is preceded by, or may require, cellular metabolic dysfunction. Moreover, genes downregulated in Predicted-

PART compared to Predicted-AD were enriched in processes of differentiation and migration (Extended Data 

Figure 5D). This may reflect the decreased abundance of infiltrating immune cells or decreased migration of 

resident CNS immune cells in PART compared to AD. In summary, the PART-AD classifier uses cortical 

methylation to resolve Indeterminate cases into higher-risk/AD-like and lower-risk/PART-like subgroups with 

distinct transcriptomic profiles.   

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.07.24316933doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.07.24316933


Epigenetic signatures of AD and PART 11 
Methylation models complement in predicting cognitive impairment.   

Tau pathology is tightly correlated with both age-related and AD-related cognitive impairment4,34-37. We, 

therefore, assessed whether methylation signatures measured by TauAge and the PART-AD classifier were 

related to cognitive impairment in the ROSMAP cohort, measured by mini-mental status examination ante-

mortem a median of 1.14 (interquartile range: 0.56 - 4.25) years from brain donation. Both hippocampal and 

midfrontal TauAge were inversely correlated with performance on the MMSE (Figure 4A). Interestingly, 

hippocampal TauAge could distinguish individuals with mild cognitive impairment (MCI; MMSE 21-23) from those 

with no cognitive impairment (MMSE ≥ 24) but not from those with dementia-level impairment (MMSE ≤ 20), 

whereas a prior epigenetic clock could not24. On the other hand, midfrontal TauAge differentiated MCI from 

demented individuals, but not from those who have a lesser degree of cognitive impairment. Together, the two 

TauAge models can separate individuals along the spectrum of cognitive impairment, likely reflecting their close 

association with underlying regional p-tau severity.   

Despite similarities in p-tau burden in predicted groups identified by the PART-AD classifier, Predicted-

PART individuals scored higher on the MMSE than Predicted-AD individuals (Figure 4B). Interestingly, the effect 

of hippocampal TauAge on MMSE is more pronounced in the Predicted-AD individuals than in Predicted-PART 

individuals (Figure 4C). Therefore, while PART and AD share similar hippocampal p-tau, susceptibility to 

metabolic dysfunction and immune cell infiltration may result in more dramatic cognitive impairment in AD.  As a 

corollary, PART resistance to metabolic dysfunction and lack of inflammation may mediate more resilient 

cognitive aging.  

Finally, to quantify the relative contributions of the TauAge and the PART-AD classifier signatures in 

predicting cognitive resilience, we constructed several multiple regression models and evaluated the variance 

explained in MMSE (Figure 4D). While age alone explained only about 2% of the overall variance in MMSE 

performance, adding the methylation-based models above increased the adjusted R-squared to 32%. 

Hippocampal TauAge, midfrontal TauAge, and the PART classifier additively improved the summative model’s 

performance, suggesting that each may measure a distinct aspect of pathophysiology that contributes to 

cognitive impairment in aging and AD.  
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Epigenetic signatures of AD and PART 12 
DISCUSSION 

This study provides the first characterization of the epigenetic landscape of PART. By carefully disentangling 

correlations between p-tau, amyloid, and DNAm, across a neuropathological spectrum of PART and AD we 

define for the first time an amyloid-independent epigenetic clock linked with regional p-tau pathology. Two key 

processes – synaptic signaling and neuroinflammation – differentially associate with early hippocampal p-tau 

and its later spread to the frontal cortex, respectively.  Critically, these findings highlight important molecular 

insights into age- and AD-associated tau biology that we discuss below in detail. 

TauAge is a novel methylation-based measure of within-region p-tau severity.  

To differ from generalized measures of epigenetic age, we rationalized that we could determine a more 

precise and relevant set of CpGs biologically relevant to a specific age-related pathology by regressing DNAm 

directly onto the target variable. We, therefore, developed TauAge, a novel bioinformatic strategy to identify a 

robust pattern of DNAm associated with p-tau variation. Indeed, TauAge predicted hippocampal p-tau variation 

in PART from cortical DNA from aged individuals in our new cohort, whereas two previously developed epigenetic 

clocks, one tissue-type independent and one cortex-specific, failed to model both hippocampal p-tau burden and 

variation. We were able to replicate our approach in a second cohort, both in the subset of individuals with PART 

and in the entire cohort exhibiting the full spectrum of AD neuropathologic change. Given these findings, TauAge 

may be a useful tool to apply to interrogate additional datasets and to further probe the underlying biology of tau 

aggregation and spread.  

TauAge has several key properties that distinguish it from more nonspecific measures of epigenetic aging.  

First, by modeling an age-adjusted residual of p-tau burden, TauAge reflects brain-specific biological processes 

that are age-independent. Indeed, no TauAge model was enriched for known age-associated CpGs, and 

therefore, the feature CpGs are more likely key mediators in the pathophysiology of tauopathies at every stage 

of life.   

Second, previous studies have largely related DNAm with Braak NFT stage, a measure of the anatomic 

distribution of p-tau and severity of global cognitive impairment.  In contrast, TauAge measures the within-region 

severity in p-tau burden which is more closely related to a specific cognitive symptom, such as memory 
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Epigenetic signatures of AD and PART 13 
difficulties.  One prior report has linked two measures of epigenetic age acceleration to presence of dementia 

but failed to separate individuals with no or mild cognitive impairment.24  TauAge, however, is continuously 

correlated with mini-mental status examination, and hippocampal TauAge is the first epigenetic measure that 

can distinguish MCI from cognitively unimpaired individuals. 

Third, TauAge has the property that its region specific. Unlike other epigenetic models which lump different 

pathologies, attributing them to a single age-related biological process, our TauAge method yielded different 

feature CpGs related to hippocampal and midfrontal p-tau burden. Critically, this is the first demonstration that 

subsets of cortical DNAm can differ with regards to local and remote pathology, and that both can be measured 

simultaneously.  All hippocampal TauAge models demonstrated substantial overlap in associated differential 

gene expression and gene ontological profiles, suggesting that technical differences in DNAm platforms or 

histopathological strategies may account for differences in the strongest-associated feature CpGs in each model. 

Additional studies that similarly combine DNAm with careful quantitative histopathology are needed to evaluate 

the generalizability of the TauAge approach, and such studies have the potential to better elucidate region 

specific age- or pathology-related brain changes. 

Lastly, TauAge is modifiable by features beyond age.  Because of the complex and synergistic interactions 

between amyloid and p-tau, we calculated an amyloid-adjusted TauAge which similarly predicted regional p-tau 

burden.  Interrogating the similarities between the unadjusted and amyloid-adjusted models allowed us to filter 

for CpGs that are more likely to be amyloid-independent modifiers of tau pathophysiology.  In light of this 

innovative approach, we focused on these amyloid-independent CpGs in subsequent analyses.  

Hippocampal and midfrontal tau implicate distinct epigenetic programs. 

PART and AD both exhibit p-tau neuropathology in the hippocampus, and our evidence suggests that the 

epigenetic and transcriptomic features related to hippocampal p-tau are similar in both neuropathological 

conditions. However, a key difference between PART and AD is the relative sparing of p-tau inclusions in the 

frontal cortex for PART. Midfrontal TauAge could distinguish individuals with dementia from those with mild 

cognitive impairment, likely leveraging an AD-specific epigenetic signature related to a T-cell and macrophage-

mediated axis of inflammation.   
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We identified an additional epigenetic signature that was unique to AD and was detected by the PART-AD 

classifier, which was trained on differential methylation from cases at the extremes of the PART-AD 

neuropathological spectrum.  The classifier was agnostic to neuropathological traits yet its performance was 

highly accurate in classifying independent cases within the ROSMAP and Mt Sinai Brain Bank (MSBB) cohorts38.   

Critically, our evidence of an inflammatory pathway relating to AD midfrontal p-tau and our classifier 

observation of distinct epigenetic profiles in PART and AD add to the growing evidence that these 

neuropathological conditions may have distinct molecular bases. Based on the current findings and our prior 

genetic studies14,15, we posit that PART may reflect a model of resistance to p-tau spread that is moderated 

through both epigenetic and genetic factors. 

DNAm can be associated with hippocampal tau pathology in aging independently of amyloid. 

In support of the hypothesis that PART is a non-AD biological processes that affects hippocampal p-tau, we 

used a traditional EWAS approach to identify 13 novel CpG sites that have not previously been implicated in 

brain aging, AD, or other tauopathies.  Through an integrative analysis of DNAm with bulk transcriptomics, we 

further characterized three candidate genes (CDH8, R3HDM1, and PEG3) as potential cis mediators of tau-

associated differential DNAm.  Each of these genes has previously been associated altered neuronal 

connectivity.39-42 Of note, the R3HDM1 gene has been linked with age with DNAm at cg04522898 in whole blood 

and an increase in R3HDM1 expression in pediatric populations.43 Further studies are required to validate the 

association of DNAm with gene expression from these adjacent loci or hippocampal p-tau burden.  

While R3HDM1 has not been well-characterized its locus harbors the pri-miR-128-1 gene44, and miR-128 

has been implicated in synaptic plasticity and cellular survival by additional epigenetic mechanisms.45-47 Indeed, 

when we expanded our study to assess for additional CpG-gene expression relationships, we found 198 genes 

that were differentially expressed in relation to differential methylation of at least one of the 13 CpG sites. A 

majority of these transgene expression effects, including on MAPT, were related to methylation at cg04522898 

which lies within the R3HDM1 locus and may relate to miR-128 function. While functional validation is required 

to directly investigate the potential mechanistic role of these genes in tau biology, this study points to several 

novel genomic loci that may contribute mechanistically to p-tau aggregation in hippocampus.  
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Epigenetic signatures of AD and PART 15 
Synaptic signaling is a shared determinant of hippocampal p-tau burden in both PART and AD.  

Age is the greatest risk factor for PART and AD. Numerous age-related biological changes, such as telomere 

shortening, genomic instability, mitochondrial dysfunction, loss of proteostasis, and epigenetic changes, have 

been implicated in AD pathology48.  In this study, we demonstrate that variation in gene expression related to 

synaptic transmission and plasticity associates strongly with severity of hippocampal tau pathology. Our data 

suggest that an age-related epigenetic program related to synaptic transmission and plasticity drives 

hippocampal tau pathology in both PART and AD. Notably, this occurs in the absence of amyloid.  

Synapse dysfunction is a key early hallmark of AD49,50. Similarly, synaptic dysregulation may occur in aging 

and in PART, though there is less consensus on specific molecular etiologies51-55.  We observed that greater 

age-related hippocampal p-tau burden is associated largely with the downregulation of synaptic transcripts such 

as neuroligin 4 Y-linked (NLGN4Y), a poorly studied gene believed to interact with neurexins and be essential 

for synapse formation56-58. Interestingly, we also find that increased expression of kinesin family member 5B 

(KIF5B), a microtubule motor associated with lysosomal function and mitochondrial localization, positively 

correlates with hippocampal and midfrontal p-tau59,60.  Strikingly, this finding from our human tissue study 

independently validates a similar observation in the P301S murine model of tauopathy61. Therefore, abnormal 

cytoskeletal trafficking may link with the transcriptomic signature for dysregulated oxidative phosphorylation 

detected by our multiple methylation models and may synergistically connect to abnormal tau pathology.   

Our findings independently corroborate but are unique from prior transcriptomic studies in AD brain, which 

have similarly implicated synaptic dysregulation in AD62-65. We first identify DNAm differences associated with 

hippocampal p-tau and then relate differential methylation to differential gene expression. Moreover, in our study, 

we focused on the subset of CpGs and associated genes that are likely to be amyloid-independent p-tau 

modifiers. Lastly, ours is the only study to specifically analyze individuals with PART, and we find that differential 

methylation converged on overlapping synapse-related genes in both the PWG and ROSMAP cohorts.   

We initially computed age-expected values for hippocampal tau pathology for PART cases alone to minimize 

any confounding effect of pathology-associated DNAm in the model. To our surprise, there was not significant 

overlap in the CpG features of EN models trained separately on PART cases from either the PWG or ROSMAP 

cohort. Nonetheless, while unable to directly cross-validate methylation models across cohorts, there was 
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substantial intersection of the differentially expressed genes regulated by the respective feature CpGs of the two 

models. There are also several notable methodological differences across PWG and ROSMAP cohorts that may 

account for observed differences between them. First, the two studies ascertain DNAm using two similar but 

distinct array chips, which include nonoverlapping sets of CpG sites. Therefore, a model trained on one cohort 

DNAm may not be directly applied to another dataset unless unique CpGs are excluded, in turn reducing the 

depth of genomic coverage and biological insight.  Second, the two studies using different immunohistochemistry 

methods that vary in their sensitivity to p-tau affinity.  Specifically, in ROSMAP, NFTs were identified by silver 

stain, which is more sensitive to mature NFTs, whereas in PWG, NFTs were identified by AT8 antibody, which 

detects both mature and immature p-tau assemblies. Despite these technical differences at the level microarray 

and histopathology, the convergence of the models at the gene expression level suggests that they are two 

convergent views of the same underlying biology. 

Importantly, DNAm and gene expression data are obtained in the frontal cortex, remotely from the site of 

hippocampal pathology. A limitation of our study the casual relationship between of cortical DNAm and 

neuropathology cannot be ascertained directly.  DNAm may change due to hippocampal interruption of cortical 

afferent input or via direct molecular effects of p-tau that spreads in an anterograde trans-synaptic fashion from 

the hippocampus to the cortex. Indeed, cortical DNAm changes may mirror similar changes that occur within the 

hippocampus during the earliest phases of or even prior to p-tau aggregation. These possibilities may be 

resolved in subsequent studies through the use of animal tau seeding models and by concomitant measurement 

of DNAm and gene expression in both brain regions. 

PART represents a cognitively resilient form of aging. 

Our machine learning-based analyses of DNA methylation suggest that AD and PART both involve 

dysregulation of synaptic transmission and plasticity, raising the possibility that PART can set the stage for the 

development of AD. Individuals with lower p-tau burden than expected for their age exhibit an epigenetic 

signature indicative of preserved synaptic function, which may confer protection at the onset of amyloid 

aggregation. In other words, we suspect that a component of the age-associated AD risk is due to underlying 
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PART. Further research is required to determine whether amyloid-independent brain DNA methylation 

differences consistently predict susceptibility to hippocampal tau pathology in additional datasets. 

Importantly, our PART-AD classifier uses an epigenetic signature distinct from the TauAge models to stratify 

cases with indeterminate pathology. Gene ontology analysis identified a role for increased metabolic capacity in 

Predicted PART cases and increased cell migration and transcription in Predicted AD. Given numerous other 

reports of inflammation-associated transcriptomic changes in brain66-70, The latter may represent an effect of 

infiltrating inflammatory cells, and this can be evaluated in more detailed studies using single-cell RNA 

sequencing or spatial transcriptomics.   

There was a weak association with neuritic plaque burden, but p-tau burden was similar in both predicted 

PART and predicted AD cases. Strikingly, those predicted as PART exhibited uniformly better cognitive 

performance. Within predicted PART cases there still was an appreciable decline in cognitive performance 

associated with higher TauAge; however this effect was far more pronounced in predicted AD cases. This 

suggests a potential additive effect of synaptic dysregulation and inflammation on cognition in AD.  

Importantly, our three novel methylation models relate to distinct underlying biology and synergistically 

measure cognitive impairment, as evidenced by the increased performance of a summative model of MMSE that 

includes all three models.   Hippocampal TauAge can distinguish MCI from the cognitively unimpaired, and it 

appears to model synaptic pathophysiology shared by PART and AD. Together, these findings lend credence to 

the hypothesis that age-associated cognitive impairment due to hippocampal dysfunction may precede and be 

requisite for typical AD.  

From here, despite similarities in pathological burden, individuals with early AD begin to diverge from PART 

in a manner detectable by our PART-AD classifier and related to an epigenetic signature of decreased brain 

metabolic failure. Finally, as p-tau disseminates widely through the neocortex, mid frontal TauAge increases, 

distinguishing MCI from dementia-level of impairment and relating to NK- and T-cell-mediated inflammation. This 

absence of an inflammatory signature in PART cases is very likely neuroprotective and indicates a new 

pathophysiological axis differentiating PART from AD. 
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Taken together, these models further clarify the molecular similarities and differences between AD and 

PART and highlight a role for amyloid-independent interindividual variation in hippocampal p-tau severity as a 

separate modifiable risk factor for AD and age-associated cognitive changes more broadly. 
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Epigenetic signatures of AD and PART 19 
LEGENDS 

 
Figure 1: Hippocampal p-tau burden in PART associates with a DNAm signature related to synaptic 
signaling and cytoskeletal architecture.  

(A) Epigenome-wide association study (EWAS) of hippocampal p-tau, covarying for age, sex, and batch, 
reveals 13 novel CpGs (red).  Dashed line indicates level of significance after correction for multiple 
comparisons: False Discovery Rate (FDR) < 0.05 (Black) and Bonferroni-adjusted p-value < 0.05 
(Blue).  

(B) Table of EWAS CpGs and adjacent genes, along with effect size of hippocampal p-tau burden on CpG 
methylation (blue outline) in PWG cohort, Pearson correlation coefficients of CpG methylation and gene 
expression (green outline) in ROSMAP cohort, and effect size of hippocampal p-tau burden on gene 
expression (red outline) in ROSMAP cohort. Not all CpG:gene pairs could be tested in both cohorts due 
to lack of detectable RNA expression or absence of a CpG probe on the Human Methylation450 
(HM450) beadchip array. n = number of cases. kb = kilobase.  

(C) Compared to other EWAS CpGs, methylation at cg04522898 correlates with the expression of a large 
network of genes related to synaptic transmission, neuron projection, and ion transport. Red edges = 
positive correlation, blue edges = negative correlation.  

(D) TauAge predicts age-adjusted hippocampal p-tau residuals with high accuracy in the PWG cohort. 
[Training] n = 174, Pearson’s Cor = 0.9997 and P < 2.2e-16; [Testing] n = 86, Cor=0.77 and P < 2.2e-
16. F = female, M = male.  

 
Figure 2: TauAge predicts p-tau severity in a region-specific manner.  

(A) TauAge predicts both hippocampal (left) and midfrontal (right) age-adjusted p-tau residuals with high 
accuracy in the ROSMAP cohort. For hippocampal TauAge, one outlier is not displayed due to axes 
limits but was included in statistical testing. [hippocampus, training] n = 416, Pearson Cor = 0.9997 and 
P = 0; [hippocampus, testing] n = 291, Pearson Cor = 0.66, P = 1.342e-37; [midfrontal, training] n = 
416, Cor = 0.9996 and P = 0; [midfrontal, testing] n = 291, Pearson Cor = 0.69 and P = 1.68e-42. F = 
female, M = male.  

(B) In contrast to TauAge, region-discordant models fail to predict p-tau residuals. Models trained to predict 
hippocampal age-adjusted p-tau residual from midfrontal p-tau EWAS CpGs (left) do not learn or 
perform as well as the region-concordant hippocampal TauAge model.  The same is true for the 
converse condition (right [hippocampus, training] n = 416,  Pearson’s Cor = 0.66 and P = 1.19e-54; 
[hippocampus, testing] n = 291, Pearson’s Cor = 0.197 and P = 0.0007;  [midfrontal, training] n = 416, 
Pearson’s Cor = 0.64 and P = 8.4e=-49; [midfrontal, testing] n = 291, Pearson’s Cor = 0.305 and P = 
1.09e-7. F = female, M = male.  

(C) Upset plot demonstrating number of disparate and overlapping final feature CpGs in each TauAge 
model. The overlapping CpGs from the unadjusted and amyloid-adjusted TauAge models are 
suspected to be amyloid-independent epigenetic modifiers of p-tau in hippocampus (purple) and 
midfrontal cortex (orange).  

(D) Heatmap demonstrates substantial overlap of methylation-associated gene expression in hippocampal 
TauAge models developed from PART cases in two independent cohorts. This overlap is shared with 
the amyloid-adjusted hippocampal TauAge model from all cases in the ROSMAP cohort, but distinct 
from the amyloid-adjusted midfrontal TauAge model genes from the same set of individuals. 

(E) The feature CpGs of each hippocampal TauAge model are associated with expression of genes 
enriched for gene ontology (GO) terms related to synaptic transmission, oxidative phosphorylation, and 
cytoskeletal architecture. In contrast, the feature CpGs of the midfrontal TauAge model are associated 
with expression of genes enriched for GO terms related to inflammation. Statistical testing is detailed in 
Methods.  
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Figure 3: The PART-AD classifier measures an additional epigenetic signature that distinguishes PART 
from AD. 

(A) Schematic of training and application of the PART-AD classifier.  DNAm from cases meeting definition 
for PART (n=100) or AD (n=89) from the ROSMAP were used to train a support vector machine, which 
was in turn tested on for accuracy on the remaining ROSMAP and on an external validation cohort (as 
in Supplemental Figure 4C. The PART-AD classifier was then used to segregate Indeterminate cases 
(n = 365) from the ROSMAP cohort into Predicted-PART and Predicted-AD cases for subsequent 
analyses. 

(B) Confusion matrix demonstrates highly accurate performance of the PART-AD classifier on test cases 
from the ROSMAP cohort. Binomial Test n= 105 and P=4.67e-06.. 

(C) Predicted-AD and Predicted-PART in the ROSMAP cohort cases could not be distinguished by either 
unadjusted or amyloid-adjusted TauAge models. For hippocampal TauAge, one outlier is not displayed 
due to axes limits but was included in statistical testing. Pairwise t-tests: n = 366. n.s. = not significant. 

(D) Volcano plot of differentially methylated CpGs between Predicted-PART and Predicted-AD cases from 
the ROSMAP cohort (CpG methylation ~ age + sex + sample_plate + prediction group): n = 366. 
Highlighted are 956 significant CpGs after correction with an FDR < 0.05 (red line). 

 
Figure 4: TauAge and the PART-AD classifier estimate cognitive impairment better than age or 
neuropathologic change alone. 

(A) Increasing hippocampal (left) and midfrontal (right) TauAge in the ROSMAP cohort are associated with 
decreasing performance on the mini-mental status examination (MMSE) and, therefore, increasing 
cognitive impairment. For hippocampal TauAge, one outlier is not displayed due to axes limits but was 
included in statistical testing. Statistical test was a one-way ANOVA followed by Tukey’s range test: n = 
707. 

(B) Predicted-AD cases exhibit lower MMSE score and, therefore, greater cognitive impairment compared 
to Predicted-PART cases in the ROSMAP cohort. Statistical test was a two-tailed t-test: n = 366. 

(C) There is an inverse correlation of hippocampal TauAge and MMSE score. The slope of the effect is 
greater in Predicted-AD cases compared to Predicted-PART cases. For hippocampal TauAge, one 
outlier is not displayed due to axes limits but was included in statistical testing. [Predicted-PART] n= 
392, Cor = -0.102, and P = 0.045; [Predicted-AD] n= 315, Cor = -0.33, and P = 4.58e-05.  

(D) Hippocampal TauAge, midfrontal TauAge, and the PART-AD classifer better correlate with cognitive 
impairment compared to either age or AD neuropathologic change (ADNC) alone. 
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Supplemental Table 1: Individual characteristics for the PART Working Group (PWG) and Religious Orders 
Study and Memory and Aging Project (ROSMAP) cohorts separated by neuropathological case definitions 
(Methods). 
Supplemental Table 2: TauAge feature CpGs. 
Supplemental Table 3: TauAge-associated differentially-expressed genes. 
Supplemental Table 4: PART-AD classifier feature CpGs.  
Supplemental Table 5: PART-associated differentially expressed genes. 
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Extended Data Figure S1: Methylation structure.  

(A) T-distributed stochastic neighbor embedding (t-SNE) clustering of DNAm in both cohorts shows 
organization of data by sex and sample plate, but not hippocampal p-tau burden, Braak NFT stage, or 
CERAD score.  

(B) Cell type proportion estimates for 20 major brain cell types from methylation-based deconvolution in 
PWG and ROSMAP.  

(C) Principal component analysis of DNAm demonstrates mild differences in cell type composition between 
two cohorts.  

(D) Regressing hippocampal p-tau burden on cell type proportion principal components demonstrates that 
p-tau is not significantly associated with an individual sample’s cell type composition in either cohort.   

(E) Regressing hippocampal p-tau on cell type proportions, covarying for age and sex, did not reveal an 
association for any cell type in PWG cases. FDR = False Discovery Rate 

 
Extended Data Figure 2: Characterization of PART EWAS and Hippocampal TauAge CpGs.  

(A) Heatmap demonstrates that EWAS CpGs are correlated with one another (Pearson’s correlation).  
(B) EWAS CpG methylation is correlated with expression of genes enriched for gene ontology (GO) terms 

related to synaptic transmission, ion transport, and cytoskeletal architecture. Statistical testing is 
detailed in Methods.  

(C) Volcano plot showing effects sizes of aging on CpG methylation in the PWG cohort. Hippocampal 
TauAge feature CpGs are age-independent.  

(D) Epigenetic age acceleration residuals (horizontal axis) calculated by the Horvath pan-tissue clock or 
Cortical brain-specific clock do not correlate with the actual hippocampal p-tau burden nor the age-
adjusted p-tau residual.  Statistical test was Pearson correlation. n = 260. 

 
Extended Data Figure 3: Characterization of ROSMAP hippocampal and midfrontal TauAge CpGs.  

(A) Epigenetic age acceleration (horizontal axis) calculated by the Horvath pan-tissue clock (left) and 
Cortical brain-specific clock (right) do not correlate with hippocampal age-adjusted p-tau in the 
ROSMAP cohort.  Statistical test was Pearson correlation: n = 707 [Horvath], 707 [Cortical].  

(B) Volcano plot demonstrating that hippocampal (purple) and midfrontal (orange) TauAge feature CpGs 
are largely age-independent in the ROSMAP cohort. 

(C) Hippocampal and midfrontal TauAge are moderately correlated (Pearson’s cor = 0.366, P = 1.3e-10. 
One outlier is not displayed due to axes limits but was included in statistical testing. n = 291 TauAge 
testing cases. 

(D) Amyloid-adjusted TauAge predicts both hippocampal (left) and midfrontal (right) age- and amyloid-
adjusted p-tau residuals with high accuracy in the ROSMAP cohort. [hippocampus, training] n = 416, 
Pearson Cor = 0.9992 and P = 0; [hippocampus,testing] n = 291, Pearson Cor = 0.75, P = 5.35e-54; 
[midfrontal, training] n = 416, Cor = 0.9995 and P = 0; [midfrontal, testing] n = 291, Pearson Cor = 0.69 
and P = 5.02e-43. F = female, M = male. For hippocampal TauAge, one outlier is not displayed due to 
axes limits but was included in statistical testing. 

(E) Upset plot demonstrating number of overlapping and distinct genes for different TauAge model CpG 
sets. Genes were identified for correlation with the model CpGs. “Amyloid independent” corresponds to 
the CpG sets from figure 2C shared between amyloid and non-amyloid adjust models. R = ROSMAP, 
P = PWG. Figure is truncated to highlight overlap. Complete listing of genes in Supplemental Table 3.  

(F) Violin plots illustrating the effect size of regional p-tau severity on gene expression for synaptic 
transmission genes identified from hippocampal TauAge models (left) and inflammation related genes 
from TauAge midfrontal models (right). Significant genes (FDR<.05) highlighted. Statistical testing is 
detailed in Methods. 
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Extended Data Figure 4: DNAm distinguishes indeterminate cases along the PART-AD continuum. 

(A) Hippocampal (left) and midfrontal (right) TauAge increase along the PART-AD continuum. Midfrontal 
TauAge more strongly distinguishes indeterminate cases from PART. For hippocampal TauAge, one 
outlier is not displayed due to axes limits but was included in statistical testing. n= 290 TauAge test 
cases. 

(B) EWAS comparing PART and AD cases, covarying for age, sex, and batch, reveals 1,214 differentially 
methylated CpGs, one of which (red) has not been previously reported in a prior study. Dashed line 
indicates level of significance after correction for multiple comparisons: False Discovery Rate (FDR) < 
0.05 (Black) and Bonferroni-adjusted p-value < 0.05 (Blue).  

(C) Schematic of training and testing of the PART-AD classifier.  DNAm from ROSMAP cases meeting 
definition for PART (n=100) or AD (n=89) were used to train a support vector machine, which was 
tested for accuracy on the remaining PART (n=76) or AD (n=29) cases in the ROSMAP cohort, and on 
an external validation cohort from the Mt. Sinai Brain Bank (MSBB), where cases are classified as 
Control (Braak NFT Stage 0-II), or Late Stage AD (Braak NFT Stage V-VI). 

(D) Confusion matrix demonstrates accurate performance of the PART-AD classifier on cases from an 
external validation cohort. Note that in this cohort, cases are predicted as Late Stage AD (Braak NFT 
stage V-VI) or control (Braak NFT stage 0-II), without regard to amyloid status. Therefore, some cases 
that meet our definition of PART are present in both groups. Binomial test, P = 1.48e-05, n= 142. 

(E) Hippocampal and midfrontal p-tau neurofibrillary tangles (NFTs) were similar between Predicted-PART 
and Predicted-AD cases, whereas Predicted-AD cases exhibited modestly increased neuritic plaques in 
both regions. Pairwise t-tests n = 366. n.s. = not significant.  

(F) Correlation of differential methylation effect size between PART and AD cases (horizontal axis) and 
Predicted-PART and Predicted-AD cases (vertical axis) for all significant CpGs in Figure 3D. Effect 
sizes are largely concordant and mildly attenuated. Pearson’s correlation: n = 956. 

 
Extended Data Figure 5: Predicted-PART and Predicted-AD have a distinct transcriptomic signature. 

(A) Analysis of ROSMAP RNA-sequencing data reveals 5,895 differentially expressed genes between 
Predicted-PART and Predicted-AD.. Expression of 4,814 of these genes are also associated with 
differential-methylation at a feature CpG of the PART-AD classifier. 

(B) Correlation of differential gene expression effect size between PART and AD cases (horizontal axis) 
and Predicted-PART and Predicted-AD cases (vertical axis) for all significant genes in (A) Pearson Cor 
= 0.935 and P < 2.2e-16.  

(C) Genes downregulated in Predicted-AD compared to Predicted-PART are enriched for gene ontology 
(GO) terms related to oxidative phosphorylation and cellular respiration. Statistical testing is detailed in 
Methods.  

(D) Genes downregulated in Predicted-PART compared to Predicted-AD are enriched for gene ontology 
(GO) terms related to cell differentiation and migration. Statistical testing is detailed in Methods.  
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ONLINE METHODS 
Patient Selection and Cohorts. Fresh-frozen brain tissue was obtained from the contributing centers in the 
PART Working Group (PWG) as previously described15. All tissue was used in accordance with the relevant 
guidelines and regulations of the respective institutions. Inclusion criteria were individuals with normal cognition, 
mild cognitive impairment (any type) and dementia. Cognitive status was determined either premortem or 
postmortem by a clinical chart review, mini-mental score, or clinical dementia rating71,72. Neuropathological 
assessments were performed at the respective centers using standardized criteria including Consortium to 
Establish a Registry for Alzheimer’s Disease (CERAD) neuritic plaque assessment and Braak neurofibrillary 
tangle staging.8,73 In addition, formalin fixed paraffin-embedded tissue sections were obtained and reevaluated 
by the study investigators to confirm the lack of Aβ and degree of PART tau pathology as previously described74. 
Clinical exclusion criteria were motor neuron disease, parkinsonism, and frontotemporal dementia. 
Neuropathological exclusion criteria were other degenerative diseases associated with NFTs (i.e., AD, 
progressive supranuclear palsy [PSP], corticobasal degeneration [CBD], chronic traumatic encephalopathy 
[CTE], frontotemporal lobar degeneration-tau [FTLD-tau], Pick disease (PiD), Guam amyotrophic lateral 
sclerosis/parkinsonism–dementia, subacute sclerosing panencephalitis, globular glial tauopathy). Individuals 
with aging-related tau astrogliopathy (ARTAG) were not excluded75. Characteristics and procedures of the 
Religious Orders Study and Memory and Aging Project (ROSMAP) were as previously described76.  
Characteristics and procedures of the Mount Sinai Brain Bank (MSBB) cohort were as previously described38.  
Case definitions and histopathology. To allow for comparisons between cohorts and to minimize confounding 
due to overlapping pathologies, we limited our analyses using the following case definitions, using variables 
common across PWG and ROSMAP cohorts.  We conserve our definition of PART to “definite PART” defined 
as Braak NFT stage I-IV and CERAD = None6.  For AD, we restrict to cases that meet Braak NFT stage VI-V 
and CERAD = Frequent16.  Remaining cases were termed Indeterminate. Digital histopathology in the PWG 
cohort was performed as previously described77. Briefly, stains were performed on 4 µm-thick formalin-fixed 
paraffin-embedded (FFPE) sections stained with AT8 antibody. Sections from the body of the hippocampus were 
targeted, but this neuroanatomical landmark was not represented in all sections, and there was some variability 
noted with regard to representation along the anterior–posterior axis. Whole slice images were scanned using 
an Aperio CS2 (Leica Biosystems, Wetzlar Germany) digital slide scanner at 20 × magnification, and 
neurofibrillary tangle density was calculated via a SegNet model architecture as previously detailed78. Manual 
histopathology assessment in the ROSMAP cohort was performed by independent neuropathological 
assessment of silver-stained tissue, as previously described79. To validate the PART-AD classifier, we tested it 
it on cases from the MSBB cohort, which the investigators previously defined as Control (Braak NFT Stage 0-II), 
or Late Stage AD (Braak NFT Stave V-VI).  
DNAm data generation. In the PWG cohort, DNA was extracted from the frontal cortex. Bisulfite converted DNA 
was profiled using the Illumina Infinium MethylationEPIC bead chip array at the Center for Applied Genomics 
core at the Children’s Hospital of Philadelphia.  In the ROSMAP cohort, DNA extraction and methylation profiling 
using the Illumina Infinium Human Methylation450 bead chip assay was performed as previously described18.  
Raw data from both cohorts was used and subjected to the same standard manufacture recommended 
preprocessing and quality control pipeline using the SeSAMe R package (version 1.22.0). Beta values were 
extracted using the openSesame function with default parameters as previously described80. 
Unsupervised clustering analysis: CpGs with >50% missingness across all samples were removed and 
remaining missing values were imputed using the beta value mean from non-missing samples. tSNE analysis 
was performed using the Rtsne package (version 0.16) with a perplexity of 30.  
Cell type deconvolution:  Beta matrices for PWG and ROSMAP cohorts were filtered for common CpGs with 
coverage across 75% or more of samples in both cohorts. A reference matrix for 20 major brain cell types was 
constructed by performing one vs. all non-parametric analyses of pseudobulk methylomes obtained from publicly 
availably single cell WGBS data81-83. Reference-based cellular deconvolution was performed using the EpiDISH 
R package (version 2.16.0) with the robust partial correlations (RPC) method. Principal component analysis was 
performed with the prcomp function from the stats package (version 4.4.0) using the cell type proportions as 
input features.  
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PART Epigenome Wide Association Study (EWAS): CpG methylation (CpGm) was regressed on 
logarithmically-transformed hippocampal p-tau (hip_p-tau) with age, sex and sample plate added as covariates. 
[Model: CpGm ~ age + sex + sample plate + log(hip_p-tau + 1)] Modelling was performed using the DML() 
function from the SeSAMe R package (version 1.22.0). P values for each modelled CpG were corrected for 
multiple comparisons by the false discovery rate (FDR) method, and only those with FDR < .05 were considered 
for further analysis. Gene annotations were retrieved using the sesameData_txnToGeneGRanges function from 
the sesameData package (version 1.21.9) and intersected with EWAS hit CpGs (expanded by 10KB) using the 
subsetByOverlaps function from the GenomicRanges package (version 1.57.1).  
TauAge model development: TauAge is a novel statistical model that uses methylation at a distinct set of 
feature CpGs to predict an age-adjusted regional p-tau residual.  To calculate the age-adjusted p-tau residual, 
logarithmically-transformed hippocampal or midfrontal p-tau was regressed on age [log(p-tau + 1) ~ age]. 
Amyloid-adjusted TauAge similarly predicts an age- and amyloid-adjusted p-tau residual.  To calculate age- and 
amyloid-adjusted residuals, logarithmically-transformed total brain neuritic plaques were added as a covariate [ 
log(p-tau + 1) ~ age + log(plaque + 1)]. For each model, training data were balanced to include equal numbers 
of male and female samples (80% of lesser-represented sex), and remaining samples were used for testing. For 
any given cohort and region, an elastic net (EN) regression of p-tau residuals on CpGm was performed using 
the cv.glmnet function from the glmnet package (version 4.1.8) with an alpha parameter of 0.5 and 10-fold cross 
validation. For each p-tau residual target, CpG features were rank ordered according to the unadjusted P-value 
from running a univariate EWAS [Model: CpGm ~ age + sex + sample plate + log(variable + 1)]. Feature sizes 
were scanned from the top 2,000- to top 30,000-ranked CpGs, and models with the most highly correlated 
predictions to actual values on testing data were selected for further analysis. For hippocampal TauAge, there 
was one outlier in the ROSMAP cohort was 6 standard deviations below the cohort mean.  This outlier was 
excluded from visualization but was included in all statistical analyses. To confirm the within-region specificity of 
TauAge models in the ROSMAP cohort, separate models were trained to predict one region’s p-tau residual 
using the opposite region’s feature CpGs. 
Epigenetic age analysis: Missing values from processed beta matrices were imputed using the row mean from 
non-missing samples, and epigenetic age estimates (mAge) were computed using the methyAge function from 
the dnaMethyAge package (version 0.2.0)84. Age acceleration was computed by calculating the residual of 
epigenetic age regressed onto the chronological age [mAge ~ Age]. Pearson correlations were computed 
between the age acceleration residuals and p-tau load or p-tau residual.  
PART-AD classifier development: For feature selection, CpG methylation was regressed on pathology group 
(PART vs. High pathologic change AD) with age, sex and sample plate added as covariates (CpGm ~ age + sex 
+ sample plate + pathology).. PART cases were those with Braak staging I-IV and a Cerad score of 0, while high 
pathologic change AD were cases with Braak stage III-VI, Cerad 2-3. Modelling was performed using the DML 
function from the SeSAMe R package (version 1.22.0). P values for modelled CpGs were FDR adjusted and 
those with FDR < .05 were used as features (1,214 total). For CpGs with missing values, the mean over all other 
samples was used for imputation. 100 PART and 89 AD cases were used to train a support vector machine 
classifier using the svm function (kernel=”linear”) from the e1071 package (version 1.7-14). The model was 
tested on an additional 29 AD samples and 76 PART samples not seen during the training process. Performance 
statistics were computed using the Caret library (version 6.0-94)85. 
Differential gene expression analysis: Fragments per kilobase of transcript per million mapped reads (FPKM)-
normalized gene expression data from the ROSMAP cohort was log transformed and tested for correlation with 
methylation of PART EWAS CpG, TauAge feature CpGs, or PART-AD Classifier feature CpGs. Correlations 
were FDR-adjusted and CpG methylation:gene expression pairs with an absolute effect size value >= .2 and 
FDR < .0001 were filtered for further analysis. Only cases where both DNAm and RNA-sequencing data were 
available were included. To identify genes differentially expressed between AD-PART or Predicted AD-Predicted 
PART, linear Linearmodels were fit for each gene using the lmFit function from the Limma R package (3.58.1). 
The variance of a gene was stabilized using the eBayes function. DEGs were identified with a moderated t-test 
using the decideTests function with default parameters. To identify genes associated with p-tau pathology, gene 
expression for each gene was regressed on log transformed p-tau using the lm() function and genes with an 
FDR<.05 were considered for further analyses. All gene ontology analyses were performed using Enrichr86-88. 
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Statistical testing (Predicted PART vs. Predicted AD): Standard t-tests were performed using the t.test 
function (stats 4.4.0) between Predicted PART and Predicted AD to compare mean TauAge, NFTs (hippocampal 
and midfrontal), neuritic plaques (midfrontal, total) and MMSE. Multiple testing was corrected using the FDR 
method. 
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PWG ROSMAP
PART Total No Pathology PART Indeterminate AD

Total 260 707 9 176 365 157
Sex (%)

Female 152 (58%) 448 (63%) 3 (33%) 101 (57%) 228 (62%) 116 (74%)
Male 108 (42%) 259 (37%) 6 (67%) 75 (43%) 137 (38%) 41 (26%)

Age (%)
51-60 4 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
61-70 9 (3%) 5 (1%) 1 (11%) 3 (2%) 1 (0%) 0 (0%)
71-80 45 (17%) 78 (11%) 4 (44%) 30 (17%) 38 (10%) 6 (4%)
81-90 99 (38%) 351 (50%) 4 (44%) 94 (53%) 179 (49%) 74 (47%)
>90 103 (40%) 273 (39%) 0 (0%) 49 (28%) 147 (40%) 77 (49%)

Anil Wadhwani
SUPPLEMENTAL TABLE 1
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Model: Log (Hippocampal p-tau + 1) ~ Age + Sex + Cell Type Proportion
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