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ABSTRACT

Increasing the number of organ donations after circulatory death (DCD) has been identified as one of the most important
ways of addressing the ongoing organ shortage. While recent technological advances in organ transplantation have increased
their success rate, a substantial challenge in increasing the number of DCD donations resides in the uncertainty regarding
the timing of cardiac death after terminal extubation, impacting the risk of prolonged ischemic organ injury, and negatively
affecting post-transplant outcomes. In this study, we trained and externally validated an ODE-RNN model, which combines
recurrent neural network with neural ordinary equations and excels in processing irregularly-sampled time series data. The
model is designed to predict time-to-death following terminal extubation in the intensive care unit (ICU) using the last 24 hours
of clinical observations. Our model was trained on a cohort of 3,238 patients from Yale New Haven Hospital, and validated on
an external cohort of 1,908 patients from six hospitals across Connecticut. The model achieved accuracies of 95.3 ± 1.0%
and 95.4 ± 0.7% for predicting whether death would occur in the first 30 and 60 minutes, respectively, with a calibration error
of 0.024 ± 0.009. Heart rate, respiratory rate, mean arterial blood pressure (MAP), oxygen saturation (SpO2), and Glasgow
Coma Scale (GCS) scores were identified as the most important predictors. Surpassing existing clinical scores, our model sets
the stage for reduced organ acquisition costs and improved post-transplant outcomes.

Introduction
Organ donation plays a critical role in saving lives and improving the quality of life for individuals suffering from end-organ
failure. Historically, organs from donation after brain death (DBD) donors have constituted the predominant source of
transplantable organs, with donation after circulatory death (DCD) contributing to a comparatively smaller, albeit recently
increasing, fraction1. A major reason for this disparity is the lower organ-yield from DCD donors, due to the reduced quality
and longevity of allografts2. However, in the last 5 years, technological explosion of normothermic machine perfusion (NMP)
and normothermic regional perfusion (NRP) have improved organ quality from DCD donors, highlighting the unrecognized
potential of DCD donors in the transplant community3, 4. Given these recent advances, there is now a growing consensus that
augmenting DCD practice represents the largest and underutilized opportunity for expanding the organ donor pool5.

Although NMP and NRP work to improve the quality of organs procured from a DCD, the critical challenge limiting
the volume of DCD practice is the unpredictability regarding whether, or when, a patient after terminal extubation (TE) will
progress to meet the Uniform Declaration of Death Act (UDDA)6 criteria for organ donation. This uncertainty limits the ability
of Organ Procurement Organizations (OPOs) to evaluate a potential DCD donor for organ donation and thus negatively impacts
the organ yield from DCD donors. Indeed, while conventional guidelines stipulate that circulatory death must occur within a
narrow time-frame following the cessation of life-sustaining treatment, only 59-72% of potential DCD donors die within the
first hour1, 7. The goal of this study is to investigate the potential of advanced machine learning models to accurately predict
time-to-death (TTD) after extubation.

Recognizing the complexities inherent in DCD, we trained and externally validated an ODE-RNN model, which combines
recurrent neural network with neural ordinary equations and excels in processing irregularly-sampled time series data. The
model is designed to predict the time-to-death (TTD) of a patient following terminal extubation in the intensive care unit (ICU),
leveraging the last 24 hours of clinical observations. Our model shows remarkable accuracy and calibration, underscoring its
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Figure 1. Description of the problem setup and model architecture. A. Problem setup. Based on the static variables of a
specific patient (e.g. age, sex) and the last 24 hours of clinical follow-up prior to extubation (e.g. SpO2, MAP), our model
predicts 4 probabilities: the probability that the time-to-death (TTD) is shorter than 30 minutes, between 30 and 60 minutes,
between 60 and 120 minutes, and longer than 120 minutes. The sum of these probabilities equals to 1 by design. BMI stands
for body mass index, SpO2 for oxygen saturation, MAP for mean arterial blood pressure, Hgb for hemoglobin, and NE for
norepinephrine. Note that we consider 5 static variables and 25 longitudinal variables, and only some are shown for illustration
purposes. B. Architecture of our ODE-RNN. The set of variables fed to the model consists of a concatenation of the
longitudinal variables available at that observation time and a mask specifying which longitudinal variables are observed. Each
clinical observation is sequentially processed by a gated recurrent unit (GRU) that incorporates the observation into the hidden
state representation from the previous samples in the time series. Between observations, an ordinary differential
equation (ODE) models the evolution of the patient’s hidden state continuously over time, which enables processing of variable
temporal intervals between subsequent observations. The hidden state obtained after the whole time series is then
complemented with the static variables to form the latent phenotype, a vector representation that summarizes the whole
available information about the patient. The end classification is performed by using a multi-layer perceptron classifier (MLP)
that predicts the TTD probabilities from the latent phenotype.

ability to accurately and reliably identify viable DCD organ donors, and enables a nuanced balance between the risks and
benefits of a specific organ donation procedure.

A key challenge of modeling ICU data for TTD prediction is that the data consist of both static variables and a multidimen-
sional time series of longitudinal variables, are measured at irregularly-spaced time points, and contain missing measurements
in many variables. Previous efforts in predicting circulatory death within specified time frames include clinical risk scores
such as the United Organ Sharing (UNOS) criteria8, and machine learning models such as XGBoost9, RNN10, LSTM11,
GRU12, GRU-D13. However, these studies are predominantly based on conventional statistical models or basic machine learning
architectures designed for regularly-sampled fixed-dimensional data. As a result, they cannot take full advantage of the data
available, leading to insufficient performance and lower clinical reliability7, 14–17. The UNOS criteria and XGBoost, a tree-based
machine learning model, only consider static variables and cannot use the rich history of longitudinal variables. Recurrent
neural network models and their extensions (RNN, LSTM, GRU and GRU-D) are able to model the time series of longitudinal
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variables, but they are primarily designed for data regularly-measured in time and perform badly on irregularly-sampled data.
In contrast, we recommend using ODE-RNN, an architecture that builds upon recent advances in longitudinal modeling through
the use of neural ordinary differential equations18–20, which specifically address the challenges posed by the irregularly-sampled
data. The proposed model also allows one to form patient phenoscape visualizations for a better understanding of the cohort’s
structure and heterogeneity. By leveraging state-of-the-art deep learning and representation learning methodologies, our
approach surpasses the limitations of previous models and sets the stage for a more accurate and clinically relevant prediction
of time-to-death following extubation, thereby promising an increase in the DCD donor pool.

Results
Modeling Longitudinal Clinical Variables Acquired at Irregular Time Intervals
Our model uses the last 24 hours of clinical observations of a patient prior to terminal extubation, which contains both static
and longitudinal variables. The latter pose challenges for statistical analysis and machine learning methods due to their irregular
measurements over time and the presence of missing values. We therefore used an Ordinary Differential Equation Recurrent
Neural Network (ODE-RNN)18, a recent state-of-the-art deep learning architecture that addresses both issues. ODE-RNN
integrates a recurrent neural network (RNN)10 component tailored for sequential modeling, with a Neural ODE21 component
that interpolates between irregularly-sampled time points.

The model operates by accumulating longitudinal variables with static variables to create a summary of the clinical history of
each patient, that we call the latent phenotype22. The latent phenotype is then used by a classifier to predict patient outcomes (i.e.
TTD). This procedure makes the ODE-RNN particularly effective at processing EHRs containing both static and longitudinal
variables23. A graphical depiction of the architecture is presented in Figure 1. Further details of the model are described in the
Methods section.

Predictive Performance Evaluation
We compared our method with the UNOS criteria, the most widely used clinical score for identifying DCD candidates8, and
existing machine learning models that have been used for the prediction of clinical outcomes, including RNN10, LSTM11,
GRU12, GRU-D12, and XGBoost9.

All machine learning models were trained on the Yale New Haven Hospital (YNHH) cohort using a temporal data split.
Data from patients before 2021 was used for training the models. Patients after 2021 were used for evaluation only to ensure
robustness to distribution shifts over time.

The models were trained to predict time-to-death as a categorical variable, i.e., whether TTD fell within a given time frame
(0-30 min, 30-60 min, 60-120 min, or >120 min). We evaluated the different models according to the overall categorical
accuracy as well as pairwise binary classification for different grouped time frames (e.g., <30 min vs. >30 min). For these
binary groupings, we also computed the area under the positive and negative predicted values (PPV, NPV), the area under
the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR). To assess
the calibration of the models, that is, how well the predicted values represent the true likelihood, we computed the expected
calibration error (ECE)24.

Table 1 displays the comparative performance of various models on the YNHH patient cohort after 2021 and the external
validation cohort. We found that ODE-RNN based model consistently outperformed other methods on all metrics, for TTD
prediction at 30, 60 and 120 minutes. We note the high performance of the model despite the stringent experimental setup
(temporal split and external validation), highlighting the robustness of the method. ODE-RNN also shows the best calibration,
suggesting the probability outputs of the model are very reliable.

The poor performance of XGBoost and UNOS can be explained by (1) the inability of UNOS criteria and XGBoost to
capture the temporality of the patient’s data, i.e. they only use the last observation at the time of extubation; (2) the limited
number of clinical variables used in UNOS (14 variables) compared to our ODE-RNN model (5 static and 25 longitudinal
variables).

In Figure 2 panel B, we report the calibration plot of the ODE-RNN model for the binary prediction (< 30 min vs. > 30
min) on the external validation cohort. Calibration plots for other binary tasks are available in the Supplementary Materials.
The model tended to give a reliable but conservative estimate of the probability of death within 30 minutes. Importantly, the
model appeared well calibrated for low and high predicted probabilities, highlighting its reliability.

Variable Importance Assessment
We assessed the importance and impact of the different clinical variables on the prediction of the models with permutation
importance testing (Figure 2 panel C). For longitudinal variables, we found that heart rate was the most important variable in
the prediction of the ODE-RNN, followed by respiratory rate, mean arterial blood pressure (MAP), oxygen saturation (SpO2),
and the Glasgow Coma Scale (GCS) score. Corneal reflex and gag reflex which are frequently used by transplant surgeons and
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Table 1. Comparison of the performance results of various machine learning models and statistical models on the Yale New
Haven Hospital (YNHH) test cohort and external validation cohort. ROC-AUC stands for area under the receiver operating
characteristic curve, PR-AUC stands for area under the precision-recall curve, ECE stands for expected calibration error.
XGBoost and UNOS have zero standard deviation because there is no stochasticity in the training procedure.

model UNOS XGBoost RNN LSTM GRU GRU-D ODE-RNN

Yale New Haven Hospital Test Cohort (Temporal Split, After 2021)

Accuracy 0.627±0.000 0.831±0.000 0.816±0.014 0.861±0.010 0.862±0.021 0.856±0.014 0.878±0.007
Accuracy (<30 vs. >30) 0.627±0.000 0.900±0.000 0.922±0.020 0.947±0.009 0.948±0.006 0.941±0.005 0.955±0.010
Accuracy (<60 vs. >60) 0.711±0.000 0.928±0.000 0.892±0.012 0.939±0.007 0.946±0.010 0.941±0.006 0.953±0.003
Accuracy (<120 vs. >120) 0.779±0.000 0.934±0.000 0.903±0.004 0.924±0.006 0.930±0.011 0.929±0.012 0.942±0.003
ROC-AUC (<30 vs. >30) 0.584±0.000 0.962±0.000 0.952±0.023 0.978±0.012 0.973±0.010 0.972±0.008 0.987±0.004
ROC-AUC (<60 vs. >60) 0.592±0.000 0.966±0.000 0.932±0.019 0.968±0.012 0.965±0.011 0.963±0.007 0.987±0.003
ROC-AUC (<120 vs. >120) 0.623±0.000 0.975±0.000 0.922±0.018 0.961±0.014 0.957±0.011 0.951±0.006 0.984±0.002
PR-AUC (<30 vs. >30) 0.734±0.000 0.972±0.000 0.953±0.034 0.981±0.014 0.971±0.012 0.975±0.012 0.987±0.003
PR-AUC (<60 vs. >60) 0.799±0.000 0.986±0.000 0.956±0.024 0.982±0.010 0.974±0.010 0.976±0.008 0.995±0.001
PR-AUC (<120 vs. >120) 0.857±0.000 0.993±0.000 0.962±0.019 0.985±0.008 0.977±0.010 0.974±0.009 0.996±0.001
F1 (<30 vs. >30) 0.770±0.000 0.929±0.000 0.940±0.013 0.958±0.007 0.960±0.003 0.954±0.003 0.967±0.007
F1 (<60 vs. >60) 0.831±0.000 0.949±0.000 0.926±0.008 0.957±0.004 0.963±0.006 0.959±0.003 0.968±0.002
F1 (<120 vs. >120) 0.876±0.000 0.957±0.000 0.935±0.006 0.953±0.003 0.957±0.006 0.953±0.009 0.960±0.003
PPV (<30 vs. >30) 0.627±0.000 0.882±0.000 0.930±0.024 0.942±0.010 0.945±0.010 0.935±0.010 0.963±0.010
PPV (<60 vs. >60) 0.711±0.000 0.944±0.000 0.922±0.010 0.945±0.007 0.952±0.013 0.945±0.008 0.967±0.003
PPV (<120 vs. >120) 0.779±0.000 0.966±0.000 0.925±0.015 0.937±0.015 0.935±0.018 0.927±0.019 0.976±0.010
NPV (<30 vs. >30) 0.000±0.000 0.960±0.000 0.915±0.030 0.955±0.018 0.956±0.008 0.954±0.009 0.953±0.013
NPV (<60 vs. >60) 0.000±0.000 0.886±0.000 0.826±0.023 0.922±0.025 0.935±0.006 0.928±0.011 0.922±0.011
NPV (<120 vs. >120) 0.000±0.000 0.829±0.000 0.797±0.039 0.885±0.042 0.919±0.048 0.914±0.025 0.827±0.018
ECE 0.054±0.000 0.092±0.000 0.051±0.004 0.048±0.007 0.055±0.014 0.055±0.008 0.033±0.008

External Validation Cohort

Accuracy 0.641±0.000 0.785±0.000 0.791±0.015 0.800±0.015 0.821±0.010 0.809±0.012 0.866±0.010
Accuracy (<30 vs. >30) 0.641±0.000 0.884±0.000 0.923±0.017 0.930±0.003 0.942±0.001 0.934±0.003 0.953±0.012
Accuracy (<60 vs. >60) 0.713±0.000 0.898±0.000 0.892±0.014 0.913±0.009 0.932±0.005 0.919±0.008 0.954±0.007
Accuracy (<120 vs. >120) 0.786±0.000 0.883±0.000 0.865±0.004 0.877±0.012 0.892±0.008 0.884±0.011 0.934±0.005
ROC-AUC (<30 vs. >30) 0.508±0.000 0.943±0.000 0.946±0.012 0.964±0.003 0.966±0.004 0.965±0.003 0.989±0.005
ROC-AUC (<60 vs. >60) 0.506±0.000 0.952±0.000 0.928±0.007 0.950±0.005 0.955±0.004 0.952±0.003 0.987±0.003
ROC-AUC (<120 vs. >120) 0.534±0.000 0.945±0.000 0.896±0.005 0.915±0.006 0.926±0.004 0.923±0.004 0.971±0.004
PR-AUC (<30 vs. >30) 0.695±0.000 0.961±0.000 0.950±0.018 0.971±0.005 0.956±0.015 0.967±0.008 0.994±0.003
PR-AUC (<60 vs. >60) 0.752±0.000 0.978±0.000 0.951±0.012 0.972±0.004 0.959±0.012 0.967±0.006 0.995±0.001
PR-AUC (<120 vs. >120) 0.824±0.000 0.985±0.000 0.946±0.007 0.968±0.005 0.960±0.004 0.963±0.004 0.993±0.001
F1 (<30 vs. >30) 0.781±0.000 0.918±0.000 0.937±0.013 0.946±0.002 0.955±0.001 0.949±0.003 0.966±0.010
F1 (<60 vs. >60) 0.833±0.000 0.932±0.000 0.926±0.007 0.941±0.005 0.954±0.003 0.945±0.004 0.967±0.004
F1 (<120 vs. >120) 0.880±0.000 0.926±0.000 0.913±0.005 0.924±0.006 0.933±0.004 0.929±0.007 0.955±0.003
PPV (<30 vs. >30) 0.641±0.000 0.871±0.000 0.947±0.013 0.937±0.009 0.949±0.005 0.937±0.007 0.961±0.009
PPV (<60 vs. >60) 0.713±0.000 0.903±0.000 0.925±0.017 0.925±0.018 0.938±0.007 0.922±0.010 0.958±0.010
PPV (<120 vs. >120) 0.786±0.000 0.905±0.000 0.892±0.016 0.891±0.022 0.902±0.016 0.890±0.016 0.966±0.011
NPV (<30 vs. >30) 0.000±0.000 0.932±0.000 0.876±0.032 0.917±0.013 0.928±0.010 0.928±0.015 0.949±0.025
NPV (<60 vs. >60) 0.000±0.000 0.889±0.000 0.820±0.015 0.886±0.019 0.919±0.008 0.910±0.015 0.939±0.010
NPV (<120 vs. >120) 0.000±0.000 0.769±0.000 0.713±0.027 0.794±0.020 0.836±0.032 0.839±0.013 0.815±0.015
ECE 0.032±0.000 0.111±0.000 0.035±0.008 0.085±0.020 0.074±0.007 0.074±0.007 0.024±0.009

OPOs, appear to have the least impact on the prediction. Notably, static variables were found significantly less important than
longitudinal variables, by an order of magnitude. We also found a strong consistency in the variable importance across different
binary tasks.

Patient Phenoscape Analysis
The patient phenotypes learned by our model enable accurate TTD predictions because they faithfully represent the patients’
condition and past clinical history. As such, these phenotypes provide richer information about the patients, compared to the
single numerical value of TTD prediction. These phenotypes form a continuous landscape of the patient cohort, which we
refer to as the phenoscape. Within the phenoscape, we can observe clusters of patients with similar conditions and continuous
transitions from one condition to another, thereby uncovering the underlying dynamics of circulatory death. We used PHATE25,
a dimensionality reduction method that preserves the underlyding data geometry26–29, to visualize the phenoscape and provide
examples of new insights drawn from such analysis.

Our patient phenoscape visualizations in Figure 3 revealed that patients reside on a continuous spectrum of phenotype
that goes beyond the TTD categorization. Patients were organized along an axis that corresponded with TTD but also with
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Figure 2. Model performances and analyses. A. Graphical representation of performance assessment for the UNOS score,
XGBoost, LSTM, and ODE-RNN across different binary tasks. Left: TTD<30 min vs. TTD>30 min; Middle: TTD<60 min
vs. TTD>60 min. Right: TTD<120 min vs TTD>120 min. We report the binary accuracy, the area under the receiver
operating characteristic curve (ROC AUC), and the precision recall curve (PR AUC). ODE-RNN outperforms all other models
for all tasks and all evaluation metrics. B. Calibration plot for the binary classification task TTD <30 min vs. TTD >30 min on
the external validation cohort, computed with the R package val.prob.ci.2. The predicted probabilities come from the output of
our model and plotted against the fraction of positives observed in the data. The histogram shows the prevalence of patients for
different ranges of predicted probabilities. C. Variable importance for the predictions of the ODE-RNN model in the binary
classification (left: <30 vs >30 minutes, middle: <60 vs >60 minutes, right: <120 vs >120 minutes). Variable importance
was computed using permutation importance testing. The input variables were split into static variables (that do not change
over time) and longitudinal variables. ROC-AUC stands for area under the receiver operating characteristic curves.

heart rate, SpO2, or GCS, among others. Finer investigation allowed us to identify the dynamical patterns most correlated
with TTD, complementing the variable importance analysis above. For instance, in Figure 3 panel A, patients were colored
according to their average heart rate and to their range of heart rate measurements (defined as the difference between highest
and lowest values). While the range correlated with TTD, the average value did not, suggesting the variation in the heart rate is
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Figure 3. Visualization of the patient phenoscape. The latent phenotype is visualized in two dimensions using PHATE. In
this plot each point represents a patient and the coloring is based on the value of different clinical variables. A. All patients in
the Yale cohort are plotted and colored according to TTD label (top-left), TTD (log-transformed, top-right), heart rate (middle),
SpO2 (bottom-left), and GCS (bottom-right). Each point represents a patient. These plots uncover the continuous structure of
the patients’ latent phenotype and highlight the correlation between different clinical variables and the time-to-death. The
longitudinal variables were transformed into scalar variables using different transformations. (range) computes the average of
the five highest observations minus the average of the five lowest observations in the clinical history of the patient. (last)
computes the average of the last five observations in the clinical history of the patient. (min) computes the average of the five
lowest observations. Different transformations extract different patterns from the time series, enabling a finer interpretation of
the dynamical patterns for a given clinical variable. For instance, we observed that heart rate (range) correlates with the TTD
label, unlike heart rate (mean), suggesting the variation in heart rate is more important than the average value. The visualization
of the whole cohort suggests two distincts groups of patients, characterized by high or low TTD. B. Focus visualization of the
identified cluster of patients with TTD<120 min. This uncovers a finer grained structure in this specific cohort of patients. We
colored the patients by TTD (log-transformed, top-left), range of heart rate (middle-left), minimum SpO2 (middle-right),
average GCS (bottom-left), and BMI (bottom-right). C. We clustered the patients in the zoomed-in group of patients according
to the similarity of their latent phenotype. We obtained three clusters: A, B, and C. Guided by the visualization of panel B, we
examined the specific phenotype of patients from cluster A, which appear to have higher TTD than the rest of the patients. We
show boxplots and corresponding independent t-tests p-values for difference of means between clusters, for various clinical
variables. This analysis characterizes cluster A as a subgroup of patients with high TTD, high range of heart rate, low minimum
SpO2, high GCS, as well as low BMI.
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more important than the average.
Our phenoscape visualization also showed a clear distinction between patients with TTD<120 minutes and another group

with TTD>120 minutes (categories 0,1,2 vs. 3 in top-left of Figure 3 panel A). This separation suggests an obvious clinical
difference between patients with TTD<120 min and TTD>120 min. We performed a fine-grained analysis of the former cluster,
to identify clinical drivers that make the difference between short-range (≈30min) and medium-range (≈60min) TTD. Panels B
and C in Figure 3 show a visualization of the identified group of patients with TTD<120min. From this zoomed-in analysis, we
identified three clusters (A, B, and C). Guided by our visualization, we examined the specific phenotype of patients from cluster
A, which appear to have higher TTD than rest of the patients. We found that patients from cluster A were characterized by
higher TTD, higher range of heart rate, lower minimum SpO2, higher GCS, higher MAP and lower body mass index (BMI).
This reveals that, over the last 24 hours before TE, range of heart rate, minimum SpO2, average GCS, and the maximum MAP
observed are all predictive of TTD.

Discussion
Augmenting the number of donations after circulatory death has been recognized as a crucial factor in mitigating the ongoing
organ shortage, with the potential to increase the organ donor pool by as much as 30% in the United States30. However, a
major factor hindering the rapid increase of DCD is the unpredictability regarding the time of circulatory death after extubation,
leading to an unmanageable risk of prolonged warm ischemic injury. In the United Kingdom, it is estimated that 40% of
donation teams mobilized for potential DCD donations are unsuccessful due to unpredictably long ischemic injury31. In the
United States, only 59-72% of potential DCD donors die within the first hour after terminal extubation1, 7. Similarly, in our
cohort, only 73.8% of the patients died within the first hour.

This low success rate worsened by total unpredictability results in the waste of essential and valuable health-care resources
and increased distress for families. Therefore, the average cost per DCD organ is estimated to be 63% higher than a DBD organ,
mostly attributable to the unpredictability of DCDs from these “dry runs”32, 33. The recent introduction of NMP and NRP,
which have significantly improved the quality of organs from DCD by resuscitation of DCD organs prior to transplant; but that
added expense has also contributed in making “dry runs” even more costly as the resources spent in mobilizing the NMP and
NRP teams are still wasted on an unpredictable and thus failed DCD attempt34, 35. Unsuccessful DCD donations also result in
wasted human effort, and an avoidable environmental cost linked to the inherent logistics (air/ground transport) of a failed DCD
attempt; and of an immeasurable psychological burden on grieving families hoping to make sense of their tragedy with the
hope of a successful organ donation36.

These considerations highlight the importance and value of an accurate TTD prediction and have motivated the introduction
of clinical scores, such as the UNOS criteria8 or the University of Wisconsin Donation after Circulatory Death evaluation
tool (UW-DCD)37. However, these statistical methods show poor discrimination performance. For the UNOS criteria, PPV and
NPV are reported to be 75.8% and 73%38. The UW-DCD, shows even worse performance (57.6% PPV and 61.8% NPV)38,
and requires disconnecting the patient from ventilator for 10 minutes37. In contrast, our model achieved a PPV of 95.8%, a
NPV of 93.9% and an accuracy of 95.4% for predicting whether the donor would die within the first hour on the external
validation cohort, thereby only misclassifying 4.6% of the patients. Our model also does not require disconnecting the patient
from ventilator, as seen in UW-DCD.

Predicting time to circulatory death has been previously attempted in the literature8, 14–17, 37. Nevertheless, previous studies
predominantly have relied on conventional statistics and machine learning architectures such as logistic regression7 or long
short term memory (LSTM)11, 14. These models showed promising performance, but their simple architecture failed to fully
capture the signal in data. Winter et al.16 proposed a model including only pediatric patients, with an AUC-ROC of 0.85, which
is significantly lower than our model (AUC-ROC of 98.7±0.3 for ODE-RNN). It is noteworthy that pediatric patients (<18
years) only conforms to 5% of total deceased organ donations in United States, whereas our model is applicable for the 95%
organ donors in U.S.39. Furthermore, the performance evaluation in these studies was often limited and without calibration,
preventing a thorough assessment of the maturity of models for a potential clinical use.

Our study aims at addressing these shortcomings by leveraging the most recent advances in machine learning and providing
the most robust clinical evaluation possible. The ODE-RNN architecture is specifically designed to handle specific challenges
of clinical time series, such as irregular sampling or missing data, which enables capturing all the relevant information in
patient’s data. To evaluate the models as closely as possible to a realistic clinical practice scenario, we used temporal splitting,
removing bias induced by a change of clinical practices over time. Notably, such an evaluation strategy was absent from
previous works on TTD prediction. We also used an external validation cohort to remove the bias linked to the clinical practices
at different hospitals.

In clinical setting, it is important that predictive models give a notion of certainty regarding their predictions. Indeed, having
access to a probability of death within a timeframe is crucial in balancing the expected benefits and costs of a planned organ
donation. Remarkably, we found that our model showed excellent calibration, suggesting that the predicted probabilities could
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be directly interpreted at face-value. Furthermore, we note that our model jointly predicts probabilities for all four time-frames
(<30 min, 30∼60 min, 60∼120 min, >120 min), which enables a fine-grained evaluation. This facilitates work of OPOs and
transplant centers, who plan procurement of particular organs based on their warm ischemia time acceptance criteria for that
particular donor as standard or extended criteria.

Our variable importance analysis was generally consistent with the UNOS criteria variables with respiratory rate, heart rate,
SpO2, PEEP, and norepinephrine ranking high. However, only dopamine, a variable in the UNOS model, was found to be one
of the least important variables in our model. We also found that MAP and GCS, although absent from the UNOS criteria, were
very important variables for the predictive accuracy in our model. It is noteworthy that, although UNOS model excludes both
MAP and GCS, they have been previously identified as important predictors of death after TE8, 16.

Deep learning architecture like, ODE-RNN, bring added value with ability to handle irregular time series of arbitrary length
and to provide a hidden state representation of the patient: a latent phenotype. Our experimental results showed, the ability to
process the whole available time-series, and handle irregular sampling, resulted in better predictive performance. We further
showed that our model enables a fine-grained analysis of the patient cohort by producing a latent phenotype for each patient,
put together visualized as a phenoscape. The phenoscape identifies and separates the specific subgroups of patients with higher
TTD and could potentially support clinical discovery essential to the prediction and identification for a DCD donor.

While the model developed in this study represents an important proof-of-concept, showing compelling predictive perfor-
mance, our study still suffers from several limitations. First, our patient cohorts were from various hospital records and not
from the OPOs, therefore it is quite possible that some patients in our cohorts were ineligible for organ donation. Second,
our model uses the last 24 hours before extubation of the patient and predicts TTD up to the time of extubation. This results
from many patients in our cohort having a short follow-up time, preventing us from training a model that predicts TTD with
more than 24 hours before extubation. We hope the exceptional performance of the model developed in this study will enable
us to extend our work to a specific cohort of organ donors, which will enable us to have a longer follow-up and irrevocably
demonstrate the utility of machine learning models for improving the success rate of DCD.

Conclusions
The result of this study suggests that, dedicated state-of-the-art deep learning models can accurately and reliably predict
time-to-death after terminal extubation, thereby overcoming a significant obstacle to increasing the number of successful DCDs.
In addition, including the longitudinal clinical history of the patient was found to be crucial in achieving good performance.
Future prospective studies will be needed to assess the exact gains in real-world clinical practice.

Methods

Patient cohort and data preparation
We used two separate cohorts of patients to develop and validate the model. The first cohort contained 3,238 patients at Yale
New Haven hospital (YNHH) older than 18 years old, with a recorded TE in the ICU between 2014 and 2023. For unbiased
validation, using same inclusion criteria, we formed an external cohort from six different hospitals with 1,908 patients. The
hospitals from the external cohort are the Bridgeport hospital, Greenwich hospital, Lawrence and Memorial hospital, Saint
Raphael hospital, Westerly hospital and the Yale New Haven Children’s hospital. The median time from extubation to death
was 7.15 minutes in the first cohort and 8.28 minutes in the external cohort. The two cohorts are summarized in Table 2.

For each patient, we extracted 5 static variables and 25 longitudinal variables, collected up to 24 hours before extubation.
Longitudinal variables were observed at a range of frequencies – from a single observation in 24 hours to one/minute. Missing
values in the longitudinal records were imputed by performing a combination of forward-fill, backward-fill and mean-fill
imputation40. In addition to imputation, presence of missing values was fed to the model by creating binary missingness
indicators. TTD was defined as the time from terminal extubation to circulatory death. TTD was converted into an ordinal
variable with 4 categories (0: 0∼30 minutes, 1: 30∼60 minutes, 2: 60∼120 minutes, and 3: longer than 120 minutes), that were
used as target labels in the machine learning model. We chose these time frames as most transplant centers use 0-60 minutes as
“standard criteria” for kidney DCD donation and 60∼120 minutes as an “extended spectrum”41; similarly, 0∼30 minutes as
“standard criteria” for liver DCD donation and 30∼60 minutes as an “extended spectrum”42.

List of clinical variables used in the models
The following longitudinal and clinical variables were extracted for each patient.

Longitudinal variables B-type natriuretic peptide (BNP), carboxyhemoglobin, corneal reflex, fraction of inspired oxy-
gen FiO2, gag reflex, Glasgow Coma Scale (GCS), hemoglobin, lactate, mean arterial blood pressure (MAP), methemoglobin,
O2-Hemoglobin, partial pressure of carbon dioxide (pCO2), positive end-expiratory pressure (PEEP), blood potential of
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hydrogen (pH), partial pressure of oxygen (pO2), pulse, respirations, oxygen saturation (SpO2), Troponin-I, Troponin-T,
Dopamine, Epinephrine, Levothyroxine, Lidocaine, Norepinephrine.

Static variables Age, Body Mass Index (BMI), Dialysis, Sex, Weight.

Model description
To capture the impact of longitudinal variables on the target while accommodating for the irregular sampling of clinical
trajectories, we used an Ordinary Differential Equation Recurrent Neural Network (ODE-RNN)18. ODE-RNNs combine two
powerful architectures, recurrent neural networks (RNN) and neural ordinary differential equations (Neural ODE), making them
exceptionally apt at processing clinical time series19, 23. RNNs are neural networks specialized for processing sequences. At
each time step, they maintain a hidden state which represents the whole previous information in the time series. Upon reading a
clinical record, the RNN updates its hidden state by combining the previous hidden state with the new observation, using an
update unit (here a gated recurrent unit (GRU)). However, RNNs assume continuous time intervals between observations, an
assumption typically not met in clinical time series. To address this limitation, ODE-RNN uses a Neural ODE, that describes
dynamics in continuous time, to model the dynamics of the hidden state between observations. This uniquely allows the model
to capture the full span of the clinical records of each patient, correctly accounting for the time interval between observations,
and improving upon previous methods such as logistic regression, XGBoost, or the UNOS criteria, among others.

The model accumulates the last 24 hours before extubation of the patient’s vitals, medications used (e.g. vasopressors),
neurological assessments, and lab results, together with their demographic records, and produces a representation of the patient,
which we refer to as the patient’s latent phenotype. This latent phenotype can be understood as a learnt compact clinical
summary of a particular patient. This representation is then used as an input to a multi-layer perceptron classifier that predicts
the probability of each label category (0, 1, 2, or 3, corresponding to the 4 time ranges). Figure 1 depicts our model pipeline.

Our model contains the following neural networks:

• fstatic: a multi-layer perceptron (MLP) that processes the static variables.

• fODE: an MLP that predicts the derivative of the hidden state dynamics between observations.

• fGRU: a gated recurrent unit (GRU) that updates the hidden states at each observation point.

• flongitudinal: an MLP that processes the final hidden state of the longitudinal variables.

• ffusion: an MLP that fuses the latent states derived from static and longitudinal variables, producing a latent variable
called the latent phenotype.

• fclassifier: an MLP that performs classification using the latent phenotype.

Table 2. Statistics of the two cohorts. BMI stands for body mass index, and TTD for time-to-death.

Demographic Information YNHH Cohort External Hospitals Cohort
(n = 3,238) (n = 1,908)

Median Age, years 68 74

Sex, No. (%)
Male 1,899 (58.1) 1,081 (56.3)
Female 1,372 (42.0) 839 (43.7)

Median BMI 28.44 28.50

TTD, minutes
Median 7.15 8.28
Mean 134.75 110.93
Standard Deviation 449.31 346.57

Patients with TTD in range, No. (%)
0∼30 min 2,156 (66.6) 1,223 (64.1)
30∼60 min 226 (7.0) 138 (7.2)
60∼120 min 217 (6.7) 139 (7.3)
>120 min 639 (19.7) 408 (21.4)
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Algorithm 1 describes how the model predicts outcomes for a single patient. The model takes as input static variables s ∈ Rℓ,
longitudinal variables x1, . . . ,xn ∈ Rk, observation times t1, . . . , tn ∈ R, and boolean observation masks m1, . . . ,mn ∈ Rk, where
mi = (mi1, . . . ,mik). The value mi j = true if xi j, the jth variable at time i, is observed, and mi j = false otherwise. Including
these observation masks enables the model to utilize "informative missingness," which is correlated with the patient’s condition.
For instance, a patient is unlikely to be suspected of heart failure if B-type Natriuretic Peptide (BNP) is not frequently measured.
The model iterates through the observation time points, updating the hidden state h of the longitudinal variables using fODE and
fGRU. Between observation points, fODE is integrated to continuously update h, while at observation times, fGRU updates h
using xi,mi, ti. The final h contains accumulated information from the entire history of the longitudinal variables, which is then
processed by flongitudinal and fused with the processed static variables s (via fstatic) using ffusion. This results in a latent variable
representing the patient’s condition, referred to as the latent phenotype. fclassifier uses the latent phenotype to make the final
classification prediction.

Algorithm 1 ODE-RNN using GRU cell update (using one patient for illustration)

Require: Static variable s, time series {xi}n
i=1, observation mask {mi}n

i=1, times {ti}n
i=1

Ensure: Patient phenotype z, classification c
1: h← 0 ▷ Initialize hidden state
2: j← 0 ▷ Initialize last observed time index
3: for i = 1 to n do
4: if any element of mi is true then ▷ Update hidden state only if any feature is observed
5: h′← h+

∫ ti
t j

fODE(h(t), t)dt ▷ Update via ODE from last observed time
6: h← fGRU(CONCAT(xi,mi, ti),h′) ▷ Update hidden space using longitudinal variables, missingness, and time
7: j← i ▷ Update last observed time index
8: end if
9: end for

10: zd ← flongitudinal(h) ▷ Dynamic feature extraction from hidden state
11: zs← fstatic(s) ▷ Static feature extraction
12: z← ffusion(zs + zd) ▷ Fuse the latent variables to get latent phenotype
13: c← fclassifier(z) ▷ Final classification

Evaluation of model performance
We compared the performance of our approach with machine learning methods and clinical scores such as the UNOS criteria8.
Machine learning methods directly learn associations from the available data while clinical scores consist of clinical criteria
designed by experts. Within the machine learning methods, we distinguish between static methods and longitudinal methods.
Unlike longitudinal methods, static methods cannot process a time series of clinical information. They are therefore trained on
the last available clinical observation at the time of extubation only.

Static machine learning methods

1. XGBoost XGBoost9 is an effective and widely used tree-based machine learning algorithm for predictive modeling.
Utilizing an ensemble of decision trees, XGBoost improves model accuracy by combining weak learners into a strong
one. It is designed with sparsity awareness, which renders it helpful in clinical health data. However, being a static
method, XGBoost cannot process longitudinal data.

Longitudinal machine learning methods

1. RNN Recurrent Neural Networks (RNNs)10 are a class of neural networks specialized for processing sequences, designed
for handling time-series data or sequential information. A vanilla RNN processes sequences by iterating through elements,
using its internal state to retain information from previous inputs.

2. LSTM Long Short-Term Memory (LSTM)11, an extension of vanilla RNNs, is designed to overcome the vanishing
gradient problem by incorporating memory cells. These cells enable LSTMs to retain information over extended
sequences, making them adept at tasks requiring longer-term dependencies.

3. GRU Gated Recurrent Units (GRUs)12 are a streamlined variant of LSTMs. Compared to the LSTM architecture, a GRU
replaces the input, forget and output gates with the reset and update gates for higher efficiency.

4. GRU-D GRU-D, an extension of GRUs13, integrates decay mechanisms to handle missing data in time-series. It modifies
the GRU architecture to accommodate irregularly-sampled data, enhancing prediction accuracy in such scenarios.
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Clinical scores Besides the machine learning models above, we also compared our approach to the most widely used clinical
score for DCD candidates identification: the UNOS criteria8.

1. UNOS UNOS criteria consisted of fourteen clinical variables developed by the UNOS DCD consensus committee, based
on expert opinion8. Criteria include physiological measurements (e.g. heart rate <30) and respiratory characteristics (e.g.
FiO2 >0.5). A final score was computed by adding up the number of UNOS criteria present in the patient at the time of
extubation.

For comparison, we trained these various models on the YNHH cohort using a temporal data split. Data from patients
before 2021 was used for training the models. Patients after 2021 were used for evaluation only. This ensured that our results
were robust to distribution shifts over time43. Standard errors were computed by training five different models with different
initializations.

The models were trained to predict TTD as a categorical variable within a given time frame (0∼30 min, 30∼60 min,
60∼120 min, or >120 min). We evaluated the different models according to the overall categorical accuracy as well as pairwise
binary classification for different grouped time-frames (e.g., <30 min vs. >30 min). For these binary groupings, we also
computed the positive predictive values (PPV), negative predicted values (NPV), area under the receiver operating characteristic
curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR). The ROC curve measures the trade-off between
sensitivity and specificity, while the PR curve measures the trade-off between precision and recall. To assess the calibration of
the models, we computed the expected calibration error (ECE).

Visualizing structures in high-dimensional patient phenoscape with PHATE
To predict TTD, our ODE-RNN model produces a latent phenotype for each patient, which can be intuitively understood as a
learnt summary of the clinical history of the patient20. We explored the space of latent phenotypes of all patients in the cohort,
the patient phenoscape, showing its potential to provide new clinical insights.

The latent phenotype of each patient is high-dimensional, and thus cannot be directly visualized. Therefore, we first
produced a two-dimensional representation of the phenotype using PHATE25, a non-linear dimensionality reduction and
visualization method that stays faithful to the geometry of the data and retains the inherent similarity between patients. In this
visualization, each patient is represented as a point in a two-dimensional phenotypic space. The patient phenoscape is the set of
the representations of all patients in the cohort. We colored each point according to their TTD and the value of certain clinical
variables, enabling a fine-grained exploration of the impact of different clinical factors on the TTD.
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Figure 4. Calibration plot for the binary classification task TTD <60 min vs. TTD >60 min on the external validation cohort,
computed with the R package val.prob.ci.2. The predicted probabilities come from the output of our model and plotted against
the fraction of positives observed in the data. The histogram shows the prevalence of patients for different ranges of predicted
probabilities.
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Figure 5. Calibration plot for the binary classification task TTD <120 min vs. TTD >120 min on the external validation
cohort, computed with the R package val.prob.ci.2. The predicted probabilities come from the output of our model and plotted
against the fraction of positives observed in the data. The histogram shows the prevalence of patients for different ranges of
predicted probabilities.
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