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Abstract
Africa’s vast genetic diversity poses challenges for optimising drug treatments in the
continent, which is exacerbated by the fact that drug discovery and development efforts have
historically been performed outside Africa. This has led to suboptimal therapeutic outcomes
in African populations and overall scarcity of relevant pharmacogenetic data, including
characteristic genotypes as well as drugs prescribed in the continent to treat infectious
diseases. Here, we propose a general approach to identify drug-gene pairs with potential
pharmacogenetic interest. Furthermore, we delve deeper into the analysis of malaria and
tuberculosis therapies, many of which remain uncharacterised from a pharmacogenetic
perspective. Our pipeline leverages artificial intelligence and the latest advances in
knowledge embedding techniques to exploit currently available biomedical data and
subsequently prioritise pharmacogenes for each drug. Predicted pharmacogenes are then
incorporated into pharmacometric modelling to hypothesise which ones might be of clinical
interest, and which dose adjustments could be made to provide better treatment outcomes
for the African population.

Introduction
The African continent is the most genetically diverse, displaying a wide range of genetic
variants that may influence patient responses to drug treatment. Such diversity presents
challenges and opportunities in the field of pharmacogenomics (PGx), which seeks to adjust
drug therapies based on genetic information, maximising treatment efficacy and minimising
adverse effects. Unfortunately, widespread application of PGx in Africa is hindered by the
scarcity of available data, particularly in the context of drugs for endemic infectious diseases
and genetic variants prevalent among African populations. As a result, comprehensive PGx
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datasets and subsequent data analysis studies of relevance to Africa are virtually
non-existent.

In other stages of drug discovery and development, computational approaches, including
artificial intelligence (AI) and machine learning (ML) have demonstrated significant value,
providing, among many others, target candidates, predicted inhibitors for these targets,
hit-to-lead optimization suggestions, etc. However, streamlined application of computational
procedures to PGx is lagging behind1, with few anecdotal examples available in the
literature2,3, and a lack of well-established tools freely available to the scientific community,
even for the most seemingly simple tasks such as predicting which ‘pharmacogenes’ might
be relevant to a given drug, much like other tools predict protein-ligand interactions.
Arguably, while conceptually similar, the PGx task is significantly more challenging, with 2-3
orders of magnitude less data available in the public domain, and only related to a fraction of
the approved drugs. Additionally, PGx relationships are not immediately modellable using
physics-based approaches as is the case with molecular docking for protein-ligand
interactions, making it difficult to apply computational techniques when previous evidence or
training data is scarce.

In recent years, AI and ML methods have evolved to operate in low-data scenarios,
increasing their capacity to integrate data from multiple sources and apply it to the task of
interest. Indeed, there is a vast amount of biomedical data related to human genes and
approved drugs that could potentially be leveraged to anticipate PGx interactions. For
example, known physical interactions between drugs and cytochrome enzymes may inform
their PGx profiles, and drugs with similar indications and chemical characteristics may tend
to elicit PGx interactions with the same pharmacogenes. From an ML/AI perspective, these
connections can be systematically explored through large-scale integration of biomedical
knowledge, followed by a mapping between known PGx interactions and this somewhat
orthogonal and more abundant information. Moreover, the advent of large language models
(LLMs), which increasingly demonstrate proficiency in biomedical and pharmaceutical
domains, is opening a whole new range of opportunities in PGx that remain largely
unexplored.

Recently, the Project Africa GRADIENT (Genomic Research Approach for Diversity and
Optimising Therapeutics) initiative was launched with the goal of exploring how genetic
variability across the African continent might influence current therapies, particularly for
malaria and tuberculosis (TB), which continue to impose a high burden in the region4. This
initiative includes our project focussed on exploring the potential of ML/AI in PGx, given the
critical need for ‘hypothesis generation’ in this area and the relatively low capacity to collect
data in the short term. This makes computational predictions provided by ML/AI particularly
impactful and enabling. Current AI strategies focus on mining the existing literature5. Instead,
we set out to prioritise new putative pharmacogenes for over thirty malaria and TB drugs
prescribed in Africa, overlaying information about the abundance of genetic variants found in
those genes among the population. We then used these prioritised genes to adjust and
improve the pharmacometric models related to each of the drugs, demonstrating for the first
time how ML/AI PGx predictions can be systematically integrated into physiologically-based
pharmacokinetics (PBPK) and nonlinear mixed-effects (NLME) models6. Here, we show how
this genuinely novel computational approach could aid the adjustment of dosing regimens for
malaria and tuberculosis drugs in Africa. We demonstrate the cases of artemether and
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rifampicin end-to-end and discuss how the methodology could be applied to other drugs and
diseases areas, both in Africa and elsewhere.

Results
Scarce PGx information in Africa

As a ground truth dataset, we curated PharmGKB7, the largest publicly available database of
pharmacogenetic drug-gene interactions, and obtained a list of 1,111 drugs for which there
is, at least, one PGx association reported. A PGx association is characterised by a
chemical-gene-variant triplet that has been reported in the scientific literature or is part of a
recommendation report, for example, from the CPIC consortium. Importantly, one pair of
chemical-gene can have multiple annotations if several variants from the same gene have
been reported to interact with the given chemical. In addition, the association can influence
the pharmacokinetics (PK) or pharmacodynamics (PD) of the drug, including efficacy,
dosage and toxicity considerations. To provide an overview of the data available in
PharmGKB, at this stage of the analysis we consider both PK/PD effects. Of the annotated
drugs, we found that only 14.2% of them are indicated for communicable diseases (Figure
1A). Moreover, infectious disease-related drugs have on average, less annotations per drug
when compared to non-communicable diseases (Figure 1B). These data highlight the need
to increase PGx studies in infectious diseases.

To gain a global understanding of PharmGKB data, we then decomposed the matrix of
drug-gene interactions into two much more compact drug-signature and signature-gene
matrices, where signatures represent sets of pharmacogenes that tend to co-occur across
drugs. For this part of the analysis, only drugs with at least 5 annotated pharmacogenes
were considered. In Figure 1C, at a high level, it can be seen how drugs can be partitioned
into 10 pharmacogene signatures, with some drugs being very specific to one signature (e.g.
clavulanate and moxifloxacin) and others showing a more varied profile (e.g. ribavirin and
voriconazole) (Figure 1D). Interestingly, seemingly unrelated drugs such as tenofovir,
rifampicin and pyrazinamide, shared association with the same signature (Figure 1D)
defined by pharmacogenes such as CYP2B6 and NAT2 (Figure 1E). Of note, some
signatures were specific to one or a few genes (e.g. signature 0: CYP3A4 and CYP3A5,
which co-occur as expected; signature 1: CYP2D6, signature 2: CYP2C9), while others
encompassed gene families (signature 3: UGTs, signature 7: HLAs).

In addition, we were interested in understanding the distribution of PharmGKB annotations
by gene, in particular comparing ADME vs non-ADME genes. We used a list of 283 ADME
genes curated by the PharmADME working group, defined by their involvement in the
administration, distribution, metabolism or excretion of drugs8. As such, ADME genes are
expected to be more frequently associated with PGx effects. Indeed, we observed that in our
curated data ADME genes harbour a much higher proportion of significant annotations in
PharmGKB when compared to non-ADME genes (Figure 1E).

In parallel to the curation of PharmGKB data, we also focused on the identification of genes
that will be more relevant to downstream applications of our study because they carry
variants that are prevalent in Africa. To that end, we used the 1000 Genomes Project data9
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realigned to GRC38 (1kGPhg38), which contains whole genome sequencing (WGS) and
deep whole exome sequencing (WES) of 2,504 individuals from 26 different populations.
The populations are grouped into the following categories: Africa (AFR), Europe (EUR),
America (AMR), South Asia (SAS), East Asia (EAS). First, we analysed the distribution of
variants between ADME and non-ADME genes, demonstrating that, despite ADME gene
variants being annotated much more frequently in PharmGKB, both ADME and non-ADME
genes harbour a similar number of genetic variants (Figure 1F). Next, we set out to classify
the variants as non-African (i.e. variants that are present in less than 20% of the African
samples), Africa-abundant (i.e. variants that are present at a higher proportion in African
populations, but are also common to others; AFR-abundant) or Africa-specific (i.e. variants
that, on top of being abundant, are present at a much higher proportion with respect to any
other ancestry; AFR-specific). In sum, an AFR-abundant variant can be either private or
shared with other populations, while an AFR-specific variant is necessarily private to African
populations. To that end, we first determined a cut-off for African abundance as an Allele
Frequency (AF) ≥ 0.20, as suggested in an earlier study10. This rendered a total of 1,734,675
AFR-abundant variants, which represented the top 5.5% of the data, since the AF
distribution of African variants 1kGPhg38 annotated dataset is mainly found at AF < 0.1
(Figure S1A,B). Subsequently, we sought to determine which of the AFR-abundant variants
were actually AFR-specific by using an 8x enrichment factor of AF in AFR vs other
populations. This threshold was determined by observing the distribution of AFR-specific
variants within our dataset as defined by Fedorova et al10. The distribution showed a peak at
approximately 12x and a minimum at around ~8x (Figure S1C). As a result, a total of
177,364 AFR-specific variants were obtained. These represent a 0.60% of the 29,459,588
1kGPhg38 dataset and a 10.22% of the AFR-abundant variants. A total of 2,285 (1.29%) of
these AFR-specific variants were located within 186 of the ADME genes. Overall, ADME
genes maintained the proportion of AFR-abundant and AFR-specific variants in ADME vs
non-ADME genes (Figure 1G). Among the genes harbouring more AFR-abundant and
AFR-specific variants, we find members of the CYP450 family and numerous transporters
(Figure 1H). An example of the AF distribution across populations of an AFR-abundant and
AFR-specific variant is showcased in Figure 1I. The distribution of AFR-abundant and
AFR-specific variants annotated in PharmGKB is maintained between ADME and
non-ADME genes (Figure S2).

Finally, we plotted the PharmGKB-annotated genes according to their signature association
(Figure 1J). The top 10 genes important to the PGx signatures are relevant ADME genes,
including several CYP450 family members and transporters (Figure 1K). Interestingly, genes
such as CYP3A4, CYP2B6 and UGT1A1 harbour a relatively high proportion of AFR-specific
variants.

An AI-based methodology to prioritise pharmacogenes

Next, we set out to develop an ML/AI method to predict drug-pharmacogene pairs, using
PharmGKB as a reference dataset. Given the scarce PGx information available, we devised
a strategy that leverages orthogonal information available for drugs and genes to assist in
the training procedure. Previously, in tasks such as drug activity prediction, we showed that
incorporating publicly available data from chemoinformatics and bioinformatics resources
can improve the predictive power of ML models, especially when few training data points are
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available11. Here, we primarily used a biomedical knowledge graph that collects drug and
gene information of multiple types, including drug-gene interactions, gene expression
profiles in cells, drug side effects, protein function and cellular localization, etc. From this
knowledge graph, we selected types of biomedical relationships that we thought made sense
in the context of PGx, for example, protein abundances in tissues, protein-protein
interactions, participation of proteins in pathways, and drug targets and metabolic genes
(Tables S1 and S2). This information was retrieved in ‘embedded’ form from the Bioteque12,
i.e. in 128-dimensional vectors assigned to each drug and each gene in our dataset. In brief,
for each type of relationship and data source (e.g. protein-protein interactions from the
STRING database13) in the knowledge graph, we obtained an embedding vector for each
entity (gene, in this case), such that similar vectors correspond to proximal nodes in the
original network. In addition to knowledge graph embedding vectors, we also obtained
sequence embeddings for genes14 (i.e. learned numerical representations of protein
sequences such that similar embeddings correspond to similar sequences), as well as
multiple descriptors for the drugs. As drug descriptors, we used a representative repertoire
of tools, including 2D chemical fingerprints, arrays of physicochemical properties15,
bioactivity profiles, and ADME calculations16 (Table S3). Collectively, we assembled, for each
drug and gene in our dataset, a compendium of numerical arrays that captured the
knowledge available for them in a vectorial form that is amenable to downstream ML tasks
(Figure 2A).

While the collected orthogonal information above is not explicitly related to PGx, it
constitutes a good starting point for a supervised ML approach whereby a drug-gene pair
predictor is trained based on their known drug-gene associations in PharmGKB (outcome
variable; y) and the drug/gene embeddings or vectors (features; X). More precisely, we
formulated the problem as three binary classification tasks, corresponding to three training
sets of decreasing size, namely all drug-gene pairs in PharmGKB with any type of PGx
association, all drug-gene pairs with a PK association, and drug-ADME gene pairs with a PK
association (Figure 2B). For each binary classification task, we defined as positive (1) the
known drug-pharmacogene associations, and we randomly sampled a set of 10x unlabelled
drug-pharmacogene pairs to be used as negatives (0), preserving the relative frequency of
drugs and genes observed in PharmGKB. We then trained an ensemble of models for each
task in a fully automated manner, each member of the ensemble corresponding to a model
trained with a certain type of drug and gene features (e.g. drug side effects and
protein-protein interactions) (Materials and Methods). In a cross-validation procedure, we
found that aggregating results across the ensemble consistently yielded high performance
(Figure 2B), with AUROC scores around 0.8 for all three binary classification tasks. Of note,
we found that biologically-informative representation for drugs such as drug target profiles,
Chemical Checker bioactivity signatures17,18, and predicted ADME properties (including,
among others, interactions with CYPs), were most powerful predictors, whereas purely
physicochemical descriptors as commonly used in QSAR modelling yielded least performant
models. Similarly, functional protein-protein interactions (PPIs), protein sequence
embeddings (which are known to capture molecular function and structural features), and
protein annotated pathways were most predictive, while physical (not necessarily functional)
PPI interactions detected in vitro in a yeast-two hybrid (Y2H) assay were the least
informative in this setting (Figure 2C).
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We then carried out an exhaustive prediction experiment evaluating all pairwise
combinations of drugs and genes. To simplify the analysis, we empirically derived a
consensus Z-score averaged across the three models. In Figure 2D, it can be seen that for a
majority of the drugs of our interest (i.e. malaria and TB drugs), we could find significant
predictions, including drugs such as rifapentine for which no information was available in
PharmGKB. Likewise, ADME genes such as NAT1 or ABCC2, which had no or little
annotation in PharmGKB, appeared to be associated with a relatively high number of malaria
and TB drugs.

In modern AI search algorithms, embedding-based search is often used as an initial ranking
procedure that is then refined with a large language model (LLM). We therefore submitted
our ranked list of pharmacogenes predicted for each drug to additional scrutiny using GPT-4,
which has demonstrated competitive performance in biomedical domain settings19. In
particular, we took the top-50 genes (ranked by Z-score) predicted for each drug, and asked
GPT-4 to select 10 of them. This selection was done using controlled prompt-engineering
and including prior knowledge about drugs and genes as context for the LLM (Figure 2E and
Table S4). In Figure 2F, we can see that, while there was a correspondence between the top
10 genes selected in the embedding-based search and the final LLM, some genes were
favoured by the LLM, including transporters such as ABCB1, ABCC2, ABCG2, and the
CYP2C9 enzyme. On the other hand, CYP2S1 was deprioritised by the LLM, as well as the
segregating pseudogene CYP2D7.

Overall, we obtained, for each of the 32 malaria and TB drugs of interest, a list of top 10
ADME pharmacogenes predicted by our pipeline (Figure 2F). Some of the predicted
associations were already known PGx associations, such as the relationship between
rifampicin and NAT2, or the association between sulfadoxine and G6PD. These are marked
in red in Figure 2F. However, most of the associations have not previously been reported.
For example, bedaquiline, a relatively new (2012) approved drug to multidrug resistant
tuberculosis, is not annotated in PharmGKB and we predicted it to be associated with
CYP3A4 and CYP3A5 (which, reassuringly, tend to co-occur in the literature20) as well as
ABCB1, among other pharmacogenes. Indeed, ABCB1 was predicted to be associated with
several drugs, which might indicate that this is a gene worth exploring for these disease
areas generally. ABCB1 has also been associated with malaria severity, both through effects
on drug response and through affecting the host's interaction with P. falciparum21.
Interestingly, ABCB1 harbours AFR-abundant and AFR-specific variants, as do other ABC
transporters like ABCC3, ABCC4 and ABCG2, also found in our panel of predictions. To
make the results of this ML/AI-based prediction available to the community, we have
released a web application as specified in the Code Availability section. In this web
application, we include LLM-generated summaries for the drugs and genes, and their
predicted associations, with the hope that they can guide researchers into interpreting the
predictions and critically assessing them.

Integrating predicted pharmacogenes into PBPK modelling

Having prioritised 10 pharmacogenes per drug, we then asked whether these predictions
could be incorporated into PBPK modelling (Figure 3A). To quantitatively assess this, we
performed a comprehensive sensitivity analysis of 10 of our drugs for which we could find
evidence of variable PK and drug response in African cohorts (Table S5). In the sensitivity
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analysis, the AUC and Cmax PK parameters were evaluated for their fold-change if the
predicted genes were incorporated into the model with respect to the absence of those
genes (Materials and Methods). In Figure 3B, we can see that, for all drugs, we found at
least one sensitive pharmacogene, with CYP3A4, CYP3A5 and ABCB1 being frequent
across drugs. Importantly, of the 23 sensitive drug-pharmacogene pairs (Figure 3B), 12
(52%) were not previously reported in PharmGKB, demonstrating the potential of our
approach to quickly prioritise pharmacogenes, especially for drugs for which few or no PGx
interactions are known. For amodiaquine, for example, only CYP2C8 of the 5 sensitive
genes was reported in PharmGKB, while newly predicted genes such as ABCB1 and
ABCG2 elicited even higher sensitivity scores. Moreover, when we randomly sampled 10
genes from the ADME list, we could not identify any sensitive drug-gene pair, demonstrating
the significance of our results. Of the newly identified PBPK-sensitive drug-pharmacogene
associations, 61% involved genes harbouring at least 50 AFR-abundant variants, and 87%
involved genes with at least one AFR-specific variant, suggesting that our findings are worth
exploring more in depth in the context of African genetic studies. Notably, >80% of the
variants in our dataset corresponded to intronic variants (annotated with SNPeff22, see
Materials and Methods), which may be particularly relevant in the context of PBPK
modelling, since intronic variants tend to be associated with gene regulation. This is
coherent with the PBPK software PK-Sim® used for the analysis, which utilises gene
expression data as a proxy for protein abundance to estimate the in vivo activity of enzymes
and transporters that affect PK23.

To illustrate how the pharmacometric analysis could proceed from this point, we chose the
case of rifampicin and artemether (Figure 4A). For artemether, the CYP3A4, CYP2B6 and
ABCB1 pharmacogenes were sensitive. While association with CYP3A4 and CYP2B6 was
previously reported in PharmGKB, for ABCB1 we found further support in the literature24

(there was only low-level evidence in PharmGKB via an automated annotation). The
simulated concentration-time profile of artemether in the presence and absence of ABCB1
transporter protein is shown in Figure 4B. ABCB1 was also found to be sensitive in the
PBPK analysis of rifampicin, and has also recently been associated with rifampicin
pharmacokinetics25. Another highly sensitive (>1) gene, SLCO1B1 is known to play a role in
rifampicin PK26 and was considered jointly with ABCB1 for further analysis. The full PBPK
models files of artemether and rifampicin are included as supplementary Table S6.

NLME modelling and Monte Carlo simulation for the dose optimisation

Finally, we assessed the above-mentioned genes in the context of a dose optimisation
analysis. The NLME modelling of artemether confirmed the CYP2B6*1 and CYP2B6*6 star
alleles to be the significant covariates of artemether pharmacokinetics (supplementary Table
S6). Virtual patients harbouring CYP2B6*1 and CYP2B6*6 variants were associated with
‘normal’ and ‘high’ plasma drug exposure, respectively. Monte Carlo simulation of artemether
standard dose of 80 mg resulted into 41.8% of the population with CYP2B6*1 attaining the
Cmax target of 38.6 ng/mL while in the population with CYP2B6*6, 78% attained the target
Cmax. The optimum doses necessary for the patient populations with CYP2B6*1 and *6
variants to reach a probability of > 91% target attainment were 152 and 85 mg, respectively
(Figure 4A). Similarly, the SLCO1B1 and SLCO1B1 rs4149032 transporter protein variants
were confirmed as significant covariates of rifampicin pharmacokinetics. The SLCO1B1
rs4149032 variant was associated with low rifampicin plasma exposure compared with the
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SLCO1B1 wildtype. Simulation of rifampicin standard dose of 600 mg resulted in 43.5% of
the virtual patient population with SLCO1B1 rs4149032 attaining the AUC target of 54.2
µg*h/mL while 91.3% of the virtual patient population with the SLCO1B1 variant attained the
AUC target (Figure 4). Monte Carlo simulations showed that the rifampicin dose of 750 mg
was optimum in the population of patients with the SLCO1B1 rs4149032 transporter variant
as it resulted in over 91% of the population attaining the target AUC.

Discussion
We have developed an ML/AI and pharmacometrics pipeline for the prioritisation of PGx
interactions in low-data scenarios, with the goal to address unmet clinical needs in Africa.
Despite recent advances in ML/AI, particularly in foundational LLMs like GPT-4 or Llama 3.1,
applications to real-world healthcare issues are still incipient27, with very little literature
describing AI-based approaches to PGx28. In this study, we demonstrated how the
systematic exploitation of publicly available PGx data across all genes and disease
indications via a biomedical knowledge base, coupled with the use of an LLM for reasoned
candidate selection, provides accurate suggestions for the improvement of pharmacometric
modelling in African populations. To the best of our knowledge, this is a pioneering effort in
the field of PGx, with the potential to set the stage for broader and more in-depth analysis as
more data becomes available, potentially beyond the publicly available PharmGKB resource.

As a proof-of-concept, we have focused on malaria and TB, which collectively cause over
one million deaths yearly on the African continent29,30. While some drugs, such as isoniazid,
are relatively well annotated in terms of PGx interactions, other newer drugs, like
bedaquiline, lack actionable information that could be crucial to improve the drug dosage in
specific populations. Overall, infectious disease drugs are underrepresented in PharmGKB,
with only 14.2% of the drugs annotated belonging to this category, and furthermore, when
annotated, they present less annotations per drug than non-communicable diseases. We
hypothesise these numbers are not due to intrinsic characteristics of infectious disease
drugs, but a simple reflection of the status of biomedical research, which is highly skewed
towards non-communicable diseases with more relevance to the Global North.

From a methodological standpoint, we propose a pipeline that couples a novel ML/AI
component with well-established pharmacometric modelling techniques, namely PBPK
modelling, NLME modelling and Monte Carlo simulations. We have restricted the predictions
of PGx interactions to ADME genes, which are much more likely to elicit PK effects than
non-ADME genes. Using our ML/AI pipeline, we have suggested 10 ADME pharmacogenes
for each of the 32 malaria and TB drugs analysed. Unsurprisingly, among the most up
ranked genes we identify several members of the CYP450 family, as well as several
transporters and carriers. The ML/AI component was, in turn, divided into two steps. In the
first, more exploratory step, we recapitulated gene families such as GST that are rarely
associated with malaria and TB drugs. In the second, more refined and knowledge-driven
step, transporters such as ABCB1, ABCC2 and ABCG2 were further highlighted, as well as
frequently-reported enzymes like CYP2C9. Thus, our two-step framework yields both
well-supported and relatively unexpected findings, which can be useful depending on the
level of annotation of the drug of interest. For the poorly annotated drugs (bedaquiline,
rifapentine, and many others) the more conservative (step 2) predictions might be desirable,
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whereas for better-annotated drugs such as moxifloxacin or primaquine, it may be worth
inspecting the more preliminary scores from step 1.

Ultimately, our study aims to unravel PGx associations of relevance to African populations,
who encompass the majority of patients affected by malaria29 and TB worldwide30. To that
end, we have labelled variants observed in ADME genes as AFR-abundant if they had a
high allele frequency in African populations, and as AFR-specific if, on top of this, the
frequency was much higher than in any other biogeographical group. By analysing the
1kGPhg38 population genetics dataset, we add an extra layer of annotation to the ADME
genes, highlighting those that harbour a higher number of AFR-abundant or AFR-specific
alleles. As population genetics studies of relevance to Africa start becoming more and more
available, for example thanks to the H3Africa consortium31 or, more broadly, the All of Us
Research Program32, we expect that our simple annotation approach will gain depth and
granularity by accounting for different African subpopulations, which is key given the high
genetic diversity existing in the continent.

Nonetheless, our proposed pipeline has caveats and limitations. First and foremost, it is not
yet capable of predicting the effects of specific variants, which limits its direct application in
designing PGx genotyping panels relevant to Africa. Although we attempted to circumvent
this limitation through validation of PBPK models with clinical PK data and NLME modelling,
it would have been more desirable to incorporate variant knowledge more expressively
earlier in the pipeline, specifically during the knowledge embedding and ML steps. However,
the sparseness and poor annotation of variants of PGx interest currently hinders this
approach. Additionally, the validation of PBPK models requires either in vitro kinetics
parameters of enzyme or transporter protein variants and clinical PK data or combined
clinical PK and PGx datasets from which kinetic parameters can be modelled. These studies
are not always available in literature, and there is a particular scarcity in studies performed in
African patients33. This makes it more difficult to confirm whether plausible disposition
pathways proposed by ML/AI affect PK - for example, to confirm the involvement of ABCB1
in drugs where its contribution has not previously been reported. The contribution of
secondary (minor) disposition pathways is also more difficult to account for - sensitivity
analysis during PBPK modelling might suggest that they do not contribute to PK, but they
may gain importance if the primary pathways are compromised due to disease, or due to
interactions with other drugs, both of which are important factors to consider in malaria and
TB combination therapy. Second, our focus in this study has been on PK effects mediated by
ADME genes, which only capture a portion of the complexity behind PGx interactions. For
example, several of the drug -gene interactions in PharmGKB, and thus in our prediction set,
involve the induction or inhibition of disposition of a second drug, rather than the drug to
which the PBPK model is applied, making them difficult to capture in our workflow. We will
explore the impact of these drug-gene-drug interactions in subsequent work. Exploring
beyond ADME genes and investigating efficacy (PD) effects is a natural next step, although
coupling this exploration to pharmacometric modelling may be less straightforward. Third,
from a technical standpoint, the ML/AI components of our pipeline could be extended and
updated as new datasets, methods, and LLMs become available. Our code is modular and
designed to accommodate such extensions. Specifically, fine-tuning LLMs to explicitly
include a corpus of scientific literature related to PGx could increase the accuracy of
predictions and reduce the risk of confabulation by the LLM34. Finally, our pipeline has been
applied to a privileged set of approved drugs for which a relatively large amount of data is
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available. To make this pipeline informative for preclinical drug development of new
medicines, it will be necessary to carefully determine the minimal molecular information
required for reliable predictions and to suggest in-vitro experiments accordingly to gather the
necessary data.

Concluding remarks

We have built a computational pipeline to prioritise pharmacogenes and adjust dosing
guidelines for malaria and tuberculosis drugs prescribed in Africa. Our method is designed to
be broadly applicable, incorporating a wide array of computational techniques into PGx
research, where such methodologies have been historically underexplored. We
demonstrated how computational predictions can significantly enhance the understanding of
observational drug response data in the African continent, thereby contributing to making
PGx research more global and representative. However, we believe that this work is just the
first stepping stone toward building an AI-driven, data-rich computational ecosystem for PGx.
The next immediate step will be to increase the detail of predictions to the genotype level,
identifying not only the pharmacogenes but also the specific variants that may be worth
investigating in Africa. To achieve this, it will be necessary to expand the breadth and depth
of genomic data available for African populations, and to develop new algorithmic
approaches to incorporate variant information into the predictive framework presented here.
Additionally, enhancing the method with in-vitro (liver microsome and hepatocyte metabolism
kinetics) data and sources such as (liver) biobanks might substantially widen the scope and
increase the accuracy of our predictions. We are hopeful that this work will raise awareness
of the need for more and better data from Africa, and for Africa, ultimately contributing to
greater equity in the PGx field.

Materials and Methods
Pharmacogenetics data collection

Raw data was downloaded from PharmGKB in January, 2024 (https://www.pharmgkb.org/).
We have collected in a single table all the triplets chemical-gene-variant associations that
are recorded as “significant” in PharmGKB or with level of evidence 1,2,3 or 4. The main
source files curated include: chemicals.tsv (list of all available drugs), genes.tsv (list of all
available genes) and variants.tsv (list of all available variants). SMILES information for each
drug has been retrieved either from PharmGKB when available or PubChem otherwise,
chemicals without a SMILES annotation have been discarded for downstream analysis. Drug
indications have been extracted from DrugBank and manually curated. Variants
corresponding to a single haplotype have been curated from the allele_definition_tables
available at PharmGKB for each haplotype. The triplet annotations drug-gene-variant come
from either the Drug Labels, Clinical Annotations, Clinical Variants or Automated Annotations
in the PharmGKB Downloads section. Evidence levels have been used as stated in
PharmGKB (https://www.pharmgkb.org/page/clinAnnLevels). Data with evidence level 4 has
been discarded for downstream analysis. Data coming from variant Annotations is not
associated with a level of evidence, but significance is stated. Only significant associations
are kept, and level of Evidence is indicated as 5. Automated annotations, for which no level
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of evidence was available either, have been given an evidence level of 6. A detailed step by
step data curation pipeline can be found in the code repository.

Figure 1 shows several statistics from the PharmGKB dataset, with special focus on
communicable disease drugs and ADME genes. For the ‘PGx signatures’ analysis, only
drugs with at least 5 annotated genes in PharmGKB were considered. The signature
analysis was formulated as a ‘topic modelling’ task whereby drugs were ‘documents’ and
pharmacogenes were ‘terms’ in these documents35. Occurrence of words was proportional to
the number of associated variants (3: 50+ variants, 2: 10-49 variants, 1: 1-9 variants), and a
TF-IDF transformation was applied to upweight the least frequent (more informative) genes
per drug. Then, a non-negative matrix factorisation (NMF) was applied to decompose the
drug-pharmacogenes (DxG) (document-terms) matrix into a drug-signature (Dx10) and
signature-gene (10xG) matrix. These matrices were then used to project drugs and genes to
a 2D space using tSNE. ‘Importance’ of genes in the signature-gene matrix was simply
measured as the sum of scores of each gene across signatures.

Selection of drugs and genes: the study is focused on ADME genes and a subset of
approved malaria and tuberculosis drugs (Table 1). The list of genes was based on the
PharmADME extended list of ADME genes8. Malaria and Tuberculosis drugs were manually
selected to include all current first line drugs used for treatment, as well as additional
structurally diverse drugs useful in the management of these diseases.

Population genetics data annotation

The 1kGPhg38 dataset for chromosomes 1 to 22 and X was downloaded from the
International Genome Sample Resource (IGSR) from the collection named ‘1000 Genomes
on GRCh3836. A coordinates file of the GENCODE V43 track (genome assembly version
GRCh38.p13; 37) was obtained from the UCSC Table Browser and the BEDtools software37,38

was used to subset those variants found within the GENCODE V43 defined regions (i.e.,
variants included within exons and introns as well as 5’ and 3’UTRs plus a 200bp
downstream and upstream window). Variants in each chromosome were annotated in
parallel using the SnpEff/SnpSift set of tools 22. Additionally, a total of 69,299 canonical
transcripts (Ensembl IDs) from the Human genes GRCh38.p14 dataset obtained from
BioMart were used in the annotation process 39. The number of initial transcripts in the
100GPhg38 dataset was 78,229,655, all of which were biallellic SNVs. Next, variants were
merged and only SNVs within protein coding transcripts were considered for downstream
analyses.

Africa-abundant and Africa-specific variants

African variants are defined from the point of view of their abundance in African populations
and their specificity to African populations based on the allele frequency (AF) of a given
variant over the populations in the data set. Briefly, an AFR-abundant variant was defined as
a variant having an AF over 0.20 in African populations regardless of its AF in the remaining
populations, and an AFR-specific variant was defined as a variant within the set of
AFR-abundant variants overrepresented at least x8 with regards to the remaining
populations.For the determination of an AFR-abundant optimal threshold, precision and
recall metrics were calculated for a range of African AFs from 0 to 1 using 0.05 steps. For
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the determination of an AFR-specific threshold, instead, precision and recall metrics were
calculated for a range of African overrepresentation (or specificity) values from 1 to 50. Truly
African variants for the calculation of precision and recall were obtained from protein coding
variants identified as AFR-specific in the work of Fedorova et al, 202210.

Orthogonal gene and drug descriptors

Gene descriptors were obtained mainly from the Bioteque resource v112 (for details, see
Table S1). In addition, we obtained precalculated protein sequence embeddings from
UniProt (ProtT5) and we calculated ESM1b embeddings. Drug descriptors were calculated
primarily using the Ersilia Model Hub, which wraps descriptor calculators of multiple types
including bioactivity profiles from the Chemical Checker17, physicochemical properties, and
ADMET calculations16 (for details, see Table S3). Robust scaling was applied to normalise
each column in these datasets. We also fetched drug descriptors from the Bioteque v1 as
detailed in Table S2.

Embedding-based pharmacogene prioritisation

We applied a supervised learning approach to train a drug-pharmacogene prioritisation
model based on drug and gene descriptors. From PharmGKB data, three ground-truth
drug-gene pair datasets were derived. First, a large one containing all drugs and all genes,
and any pharmacogenetic interaction (model A). Second, a reduced one containing all drugs
and all genes, but only considering Metabolism/PK interactions (model B). Finally, a smaller
one containing only ADME genes with PK interactions (model C). We therefore trained three
classification models using the same pipeline.

For each set of positive data, we sampled random unlabelled drug-gene pairs preserving
drug and gene frequencies. The positive:negative ratio was 1:10. Then, we formulated the
training as a binary classification task (1: known PGx interaction, 0: no PGx interaction)
taking as features the drug and gene descriptors. Globally, this encompassed an ensemble
of individual classifiers corresponding to any combination of drug and gene descriptor types.
To harmonise the procedure, all descriptors were first reduced to their first 100 PCA
components. Then, the drug and gene vectors were concatenated and subsequently
reduced to 50 components using linear-optimal low-rank projection (LOLP40). As a
supervised learning algorithm, we used the LGBM zero-shot base classifier as provided by
the AutoML tool FLAML41. To obtain a single prediction across the ensemble, we calculated
the weighted average of all individual predictions, with weights directly proportional to the
individual AUROC performance within the range 0.5-1. Of note, not all drugs and genes
have descriptors of all types. The weighted average was only calculated on the applicable
individual classifiers, and a ‘support’ measure was appended to the output quantifying the
number of individual models participating in the ensemble-based prediction. Models were
evaluated with a stratified 5-fold cross-validation scheme, using AUROC as the main
performance metric.

The trained models were used to explore exhaustively all possible drug-gene pairs.
Predictions from models A, B and C were aggregated in a consensus score using a simple
average, and an empirical z-score was calculated using all predictions as background. Here,
we focused on the set of 32 malaria and TB drugs. For each drug, we ranked ADME genes
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according to their z-score. The top 50 ADME genes per drug were kept for further analysis
(Ranked List 1).

LLM-based pharmacogene re-ranking

Ranked List 1 was then submitted to a re-ranking procedure based on LLMs. GPT-4 was
used as the main LLM throughout the pipeline. As a first step, we aimed at obtaining
succinct and structured TLDR reports for drugs and genes. For drug TLDRs, the LLM was
presented with the DrugBank v5 information, and the LLM prompt was engineered to provide
a drug summary, a paragraph describing targets, enzymes, transporters and carriers, and a
paragraph on the known pharmacogenetics of the drug. Similarly, for gene TLDRs, the
prompt was engineered to provide a TLDR consisting of a short summary of the gene,
including generic knowledge of its function, a brief summary of the associated diseases,
phenotypes, pathways, and drugs (if any), and a paragraph about pharmacogenetic
knowledge of the gene.

These drug and gene TLDR summaries were used as context for the re-ranking LLM query.
In this case, for each drug, the top 50 genes from Ranked List 1 were provided, along with
their summaries. In addition, known associations in PharmGKB were given as context. The
prompt was engineered such that the LLM was encouraged to make inferences in the ‘role’
of a pharmacogenetics expert, based on knowledge about similar drugs and genes,
mechanisms of action, etc. Table S4 shows a simplified version of this and other prompts.
The LLM was asked to provide a list of top 10 pharmacogenes per drug (Ranked List 2)
based on the original ranking of 50. The query was performed three times to minimise the
chance of confabulation. Importantly, the LLM was also asked to provide a brief explanation
for each drug-pharmacogene association.

PBPK-based sensitivity analysis

The enzymes and/or transporter proteins encoded by the top 10 pharmacogenes for
rifampicin, bedaquiline, artemether and amodiaquine were separately inputted into the PBPK
model implemented in PK-SimⓇ v11.3. These models were previously validated using
pharmacokinetic data from published clinical studies performed in cohorts from the African
populations. In order to perform sensitivity analyses, each enzyme or transporter protein was
assigned a random initial value for in vitro kinetic parameters such maximum rate of reaction
(Vmax), Michaelis constant (Km) and intrinsic clearance (CLint). This step was necessary for
the systematic assessment of how variations or uncertainties in model parameters affect
model prediction. Model parameter sensitivity was calculated according to Eq. (1),

(1)𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (δ𝑃𝐾/𝑃𝐾)/(δ𝑃/𝑃)

where, PK is the initial value of the pharmacokinetic parameter such as area under the curve
(AUC), maximum concentration (Cmax), apparent clearance (Cl/F), apparent volume of
distribution (Vd/F), time at which concentration reaches its maximum (Tmax), half-life (THalf) or
mean residence time (MRT). 𝛅PK is the change of the pharmacokinetic parameters from
initial values. P is the initial value of the evaluated input parameter. 𝛅P is the change of
evaluated input parameters from initial value, respectively. A sensitivity coefficient of 1.0
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indicates that 10% change of an evaluated input parameter causes 10% change of the
predicted pharmacokinetic parameter. Therefore, we set the sensitivity coefficient of 1 as the
minimum criterion of considering a pharmacogene (enzyme or transporter protein) as
‘sensitive’ in the PBPK model. The sensitive and known pharmacogenes from literature
together with their variants were retained in the PBPK model for further parameter
identification. The predicted concentrations were compared with the observed as a way of
model validation or confirmation.

NLME modelling

The PBPK predicted concentration-time profiles each drug stratified by enzyme or
transporter protein variant were preprocessed in R for NLME modelling. The datasets of
virtual African patients included enzyme or transporter variants as covariates. The Monolix
suite 2024R1 (https://lixoft.com/products/monolix/) was used to perform NLME and covariate
modelling and determine whether covariates were significantly affecting the
pharmacokinetics of the drugs. This was followed by Monte Carlo simulation to assess the
current standardised dose and determined optimum dose in African patient populations
harbouring certain enzyme or transporter variants.

Data availability
All PGx data used in the study has been curated from the publicly available resource
PharmGKB, accessed in January, 2024. Curated data is available in the
https://github.com/ersilia-os/pharmacogx-embeddings. Data related to genomic variants has
been curated from the 1000 Genomes project and is available in
https://github.com/ersilia-os/pharmacogx-arsa.

Code availability
Code for the data curation and training of the PGx classifier can be found in
https://github.com/ersilia-os/pharmacogx-embeddings. Code for the annotation of genomic
variants based on the 1kGPhg38 can be found in
https://github.com/ersilia-os/pharmacogx-arsa. A simple app showing the final results of the
publication is available at https://github.com/ersilia-os/pharmacogx-app and is demoed at
https://pharmacogx-embeddings.streamlit.app. All code is licensed under a GPLv3 License.
Note that these tools are intended for research purposes only and should not be used in
clinical practice.
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Figures and Tables
Figure 1

Figure 1. Overview of PharmGKB data and African genomic variants. A. Percentage of
drugs for communicable vs non-communicable diseases with at least one significant
pharmacogenetic association in PharmGKB. B. Distribution of communicable vs
non-communicable drugs according to their number of PharmGKB annotations. C.
Clustering of drugs according to their PGx signature. D. T-SNE clustering of drugs according
to their PGx Signature. Examples of infectious disease drugs belonging to different signature
groups are highlighted. E. Number of PharmGKB annotations and number of genomic
variants in ADME vs Non-ADME genes. F. Top ten genes in each of the PGx gene
signatures. G. Percentage of African Abundant and African Specific variants in the
1kGPhg38 whole genome annotation and specifically in ADME genes. H. Top ten ADME
genes by number of African Abundant and African Specific variants. I. Example of an African
abundant variant distribution across populations corresponding to rs7255816 (gene:
CYP4F12) and example of an African specific distribution across populations corresponding
to rs680055 (gene: CYP3A43) (AFR: Africa, EUR: Europe, AMR: America, SAS: South-Asia,
EAS: East-Asia). J. T-SNE of PharmGKB-annotated genes represented by signature
association. Overall importance in signature analysis is shown in the top left, ADME genes
are highlighted in the top right, and top 10% of genes according to African abundant and
African specific variants are shown in the bottom. K. Top ten genes selected by their
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importance to PGx signature and representation of the African Abundant (yellow) and
African Specific (purple) variants they harbour.

Figure 2

Figure 2. AI pipeline for drug-pharmacogene prioritisation in malaria and tuberculosis. A.
Graphical representation of the pipeline to extract gene and drug embeddings for the training
of the PGx classifier. B. Cross-validation performance measured by the Area Under the
Curve (AUROC) of the different PGx classifiers and the performance of each of the three
ensembles (red dot). C. Top quartile performance (AUROC) of classifiers using different
individual drug and gene descriptors. D. Number of genes associated with each of the
selected drugs for the study according to PharmGKB vs predicted by the PGx classifier, and
number of selected drugs associated with the top genes according to the PGx classifier vs
the number of annotations in PharmGKB. E. Graphical representation of the LLM
interrogation for the selection of the top ten PGx associations per drug. F. Genes in the top
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ten most important PGx associations to the drugs of study according to the LLM vs the initial
PGx classifier. G. Top ten genes with predicted PGx association per drug (z-score >1.96,
green) and annotated by their association in PharmGKB (orange). In yellow, we show genes
that have at least 50 AFR-abundant variants and, in purple, genes that have at least one
AFR-specific variant.

Figure 3

Figure 3. Incorporating PGx information into pharmacometric modelling. A. Graphical
representation of the pipeline to include PGx information into PBPK and PK modelling. B.
Sensitivity analysis by PBPK of the top 10 predicted PGx associations between selected
drugs and ADME genes. Genes with a sensitivity between 0.1 and 1 inclusive are shown in
the left column of each panel. Genes with sensitivity values greater than one are shown in
the right column. Red-to-blue spectral scale is for the sensitivity values (low-to-high). The
number indicates the rank in our predicted list. Numbers in a grey box indicate genes not
reported in PharmGKB with any level of evidence for the drug. Numbers in a coloured box
indicate that some degree of evidence is available in PharmGKB.
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Figure 4

Figure 4. PBPK modelling steps and dose optimisation for artemether and rifampicin. A.
Building PBPK models for artemether and rifampicin involving integration of AI predicted
pharmacogenes and model validation using clinical PK data. B. Predicted concentration-time
profiles involving active processes of sensitive pharmacogenes with observed clinical PK
data. C and D. NLME modelling, assessment of standard dose of artemether and rifampicin
for PK target attainment in African population harbouring enzyme/ transporter variants and
Monte Carlo simulation of optimised doses.

Table 1

Drug Name Clearance Mechanism Genes in PharmGKB

Amodiaquine CYP2C8 CYP2C8, G6PD,

Artemether CYP2B6/CYP3A4 (major),
CYP3A5 (minor)

CYP2B6

Artesunate Hydrolysis, UGT1A9,
UGT2B7

G6PD, IKBKG

Choloroquine CYP2C8, CYP3A4 G6PD, SLCO2B1

Dihydroartemisinin UGT1A9, UGT2B7 None
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Doxycycline Biliary and renal excretion of
unchanged drug

G6PD

Lumefantrine CYP3A4 (major), CYP3A5
(minor)

CYP3A4, CYP3A5,
ZSCAN25

Mefloquine CYP3A4 G6PD

Piperaquine CYP3A4 (major), CYP2C8
(minor)

None

Primaquine CYP2D6 G6PD, IKBKG,CYP2D6,

Pyrimethamine CYP2C19 G6PD, IKBKG

Quinine CYP3A4 (major), CYP1A2
(minor)

G6PD

Sulfadoxine Biliary and renal excretion of
unchanged drug

G6PD, IKBKG

Table 1. Malaria drugs analysed in this study, ordered alphabetically by name.

Table 2

Drug Name Clearance Mechanism Genes in PharmGKB

Bedaquiline CYP3A4/5 (major),
CYP2C8, CYP2C9

None

Capreomycin Renal excretion of
unchanged drug

None

Clindamycin CYP3A4(major), CYP3A5 HLA-B

Clofazimine CYP3A4/5, CYP1A2 None

Cycloserine Renal excretion of
unchanged drug

None

Delaminid Hydrolysis by albumin None

Ethambutol Renal excretion of
unchanged drug (major),
Aldehyde dehydrogenase

CYP2B6, CYP2C19,
CYP2C9, NAT2, TNF,
GSTM1, GSTT1

Ethionamide Flavin mono-oxygenase None

Isoniazid NAT2, CYP2E1, Amidases NAT2, ABCB1, BACH1,
CYP2B6, CYP2C19,
CYP2C9, GSTP1, MAFK,
NOS2, TNF, XPO1, GSTM1,
GSTT1
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Levofloxacin Renal excretion of
unchanged drug

None

Linezolid CYP2J2, CYP4F2 None

Moxifloxacin Sulfotransferase, UGT G6PD, KCNE1, KCNE2,
UGT1A1

P-aminosalicyclic acid Renal excretion of
unchanged drug

None

Pretomanid CYP3A4 None

Pyrizinamide Hydrolysis, Renal excretion
of unchanged drug

NAT2, CYP2E1, CYP2C19,
CYP2C9, STAT2, STAT2,
ABCB1, GSTT1, TNF,
GSTP1, GSTM1, CYP2D6,
UGT1A1, CYP2B6, UGT1A3

Rifampin Hydrolysis by AADAC,
biliary excretion of
unchanged drug

SLC01B1, NAT2, CYP2E1,
CYP2C9, STAT3, NR1I2,
CUX2, CYP27B1, DUX1,
GSTT1, CYP2C9, AGBL4,
NOS2, BACH1, CYP2B6,
AADAC, GSTM1, XPO1,
GSTP1, VDR

Rifapentine Hydrolysis by AADAC,
biliary excretion of
unchanged drug

ABCB1, NAT2

Streptomycin Renal excretion of
unchanged drug

MT-RNR1, GSTM1, GSTT1

Terizidone Renal excretion of
unchanged drug

None

Table 2. Tuberculosis drugs analysed in this study, ordered alphabetically by name.
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Supplementary Information
Turon*, Mulubwa* et al. “AI coupled to pharmacometric modelling to
tailor malaria and tuberculosis treatment to the African genetic
background”

Supplementary Figures and Tables
Table S1

Metapath Subset Description

GEN-ass-DIS Open Targets Disease-gene associations from Open
Targets

GEN-ass-DIS DisGeNeT (curated) Disease-gene associations from
DisGeNeT (curated)

GEN-has-MFN GO Molecular Function Gene Ontology molecular functions as
reported in GOA

GEN-has-CMP Jenssen Compartments Cellular localization data for genes

GEN-ass-PWY Reactome Pathway annotations from Reactome

GEN-ppi-GEN STRING Functional protein-protein interactions
(PPIs) from STRING

GEN-ppi-GEN HURI (union) Human Reference Interactome (HuRI)
PPIs (yeast two-hybrid dataset)

GEN-ppi-GEN HI Y2H (union) PPIs from the HI Y2H dataset

GEN-pab-TIS HPA Proteome Human Protein Atlas abundance in
tissues

GEN-pdf-TIS HPA Proteome Human Protein Atlas deficiency in
tissues

GEN-has-DOM InterPro Protein-domain associations based on
InterPro

GEN-upr-CLL GDSC1000 mRNA Upregulated genes in the GDSC cell
line panel

GEN-cex-GEN CoexpressDB Gene-gene coexpression from
CoexpressDB

Table S1. Bioteque gene embeddings.
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Table S2

Metapath Subset Description

CPD-int-GEN Curated Targets Drug-protein interactions from
DrugBank, RepoHub and PharmacoDB

CPD-int-GEN DrugBank Drug-protein interactions from
DrugBank

CPD-int-GEN DrugBank (PD) Drug-target interactions from DrugBank

CPD-int-GEN DrugBank (PK) Drug-enzyme, drug-transporter and
drug-carrier interactions from DrugBank

CPD-int-GEN DrugCentral Drug-target interactions from
DrugCentral

CPD-int-GEN PharmacoDB Targets Drug targets from the cancer cell line
panels resource PharmacoDB

CPD-int-GEN RepoHub Drug targets from the Drug
Repurposing Hub

CPD-cau-DIS CTD Causative compound-disease
associations from CTD

CPD-cau-DIS OFFSIDES & SIDER Drug side effects from OFFSIDES and
SIDER

Table S2. Bioteque drug embeddings.

Table S3

Identifier Name Description

eos7w6n GROVER graph embedding Transformer-based 2D structure
graph-embeddings

eos4u6p Chemical Checker signaturizer Predicted bioactivity profile embedded
using the Chemical Checker approach

eos78ao Mordred physicochemical
descriptors

Full set of 2D Mordred descriptors
(~1,500 dimensions)

eos5axz Morgan counts Count-based Morgan fingerprint of
2,048 dimensions, capturing 2D
connectivity between atoms

eos8a4x RDKit physicochemical
descriptors

A set of ~200 physicochemical
descriptors calculated with RDKit

eos7d58 ADME properties ADME properties predicted with
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ADMET-AI

eos2gw4 Ersilia compound embedding Custom bioactivity-aware embedding
trained on the FS-Mol dataset

Table S3. Ersilia Model Hub drug descriptors.

Table S4

Concept LLM prompt (slightly adapted and shortened version, excluding
formatting details)

Drug TLDR System prompt:

You are a pharmacogenetics expert. You are asked to provide a
summary of a given drug. You’ll be provided with two pieces of
information: (a) a name of a drug and its synonyms, and (b) an
extract of data from DrugBank, containing free text data as well as
lists targets, enzymes, transporters, etc. You should use the
information in (b) but you should also use your own knowledge to
provide a summary of the drug. Do not restrict yourself to
DrugBank information, especially for pharmacogenetics. Other
useful resources are PharmGKB, FDA drug labels, and the
scientific literature. Feel free to infer pharmacogenetic
interactions, but clarify if you are making an inference.

Your summary should be structured as follows: (1) A summary
paragraph of the drug, including its name, therapeutic class, and
general knowledge about its pharmacokinetics,
pharmacodynamics and metabolism. (2) A summary of the drug’s
targets, enzymes, transporters and carriers. (3) A paragraph on
drug’s pharmacogenetics, including any known association to
pharmacogenes.

Be as succinct as possible. Your response should not exceed 500
words. Strictly limit yourself to 3 paragraphs.

User prompt:

Provide a summary of the drug given the following information: (a)
Drug name: [...], DrugBank information: [...].

Gene TLDR System prompt:

You are a pharmacogenetics expert. You are asked to provide a
summary of a given gene. You’ll be provided with a gene name or
symbol. You should use your own knowledge to provide a
summary of the gene. Useful resources include PharmGKB,
UniProt, Gene Cards, and the scientific literature.

Your summary should be structured as follows: (1) A summary
paragraph of the gene, including its official symbol, official name,
and general knowledge about its function and expression. (2) A
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summary of the gene’s drugs, diseases, phenotypes, and
pathways. (3) A paragraph on the gene’s pharmacogenetics,
including any known pharmacogenetic associations with drugs.
Mention as many drugs as possible.

Be as succinct as possible. Your response should be at most 500
words long. Do not use full gene names. Use the official gene
symbols.

User prompt:

Provide a summary of the gene: [...]

Drug paragraph System prompt:

You are a pharmacogenetics expert. You’ll be asked to provide a
short summary of a given drug’s pharmacogenetic interactions
profile. You will be provided with a drug name and a summary of
the knowledge on the drug. In addition, you may be provided with
a list of genes that are known to interact with the drug.

You should provide a summary of the drug’s pharmacogenetic
interactions profile. Your answer should be between 100 and 200
words, in one paragraph. Mention all genes provided in the list
and try to offer an explanation for each of them. You should try to
distinguish between pharmacokinetics and pharmacodynamics.

User prompt:

Summarise the following text in one or two sentences. Focus on
the genes and their interactions with the drug, and on the
explanation: [Drug TLDR]

Pharmacogenetic knowledge: (a) Pharmacokinetics and ADME
genes: [...]. (b) Pharmacokinetics and other genes: [...]. (c)
Possibly non-pharmacokinetics and ADME genes: [...]. (d)
Possibly non-pharmacokinetics and other genes: [...]

Gene paragraph System prompt:

You are a pharmacogenetics expert. You’ll be asked to provide a
short summary of a given gene’s pharmacogenetic interactions
profile with drugs. You will be provided with a gene symbol and a
short summary for the gene. In addition, you may be provided with
a list of drugs that are known to interact pharmacogenetically with
the gene.

You provide a summary of the genes’s pharmacogenetic
interactions profile. Your answer should be between 100 and 200
words. Mention all drugs provided in the list and try to explain
each of them. You should try to distinguish between
pharmacokinetics and pharmacodynamics.

User prompt:
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Summarise the following text in one or two sentences. Focus on
the drugs and their interactions with the gene, and on the
explanation: [Gene TLDR]

Pharmacogenetic knowledge: (a) Parmacokinetics: [...]. (b)
Possibly non-pharmacokinetics: [...]

Drug-pharmacogene
reranking

System prompt:

You are a pharmacogenetics expert. Your goal is to identify
pharmacogenetic drug-gene pairs. The user will specify a drug of
interest. You need to rank a set of candidate genes according to
their likelihood of being pharmacogenetically related to the drug.
Prioritise pharmacokinetic interactions, such as those affecting
drug metabolism, transport, and excretion.

The user will provide a pre-ranked list of 50 genes, along with a
z-score. Z-scores above 1.96 are significant. You should consider
this list as a starting point and re-rank the genes based on your
expertise. Up-rank genes with a known pharmacogenetic
relationship with the drug. Do not include genes that are not in the
pre-ranked list.

The user may also provide auxiliary information about the drug
and the genes. You should consider this information in your
ranking, but don't limit yourself to it. Do not focus only on known
associations. Use your expertise to infer new pharmacogenetic
relationships. Make logical and mechanistic reasoning based on
gene function, gene expression, drug mechanism of action,
pharmacokinetics, etc. For example, consider known
pharmacogenetic relationships of similar drugs and similar genes
in your reasoning.

You should return a ranked list of genes. The list should be sorted
in descending order of likelihood. Give me only the top 10 genes.

For each gene, offer an explanation of why you think there is a
pharmacogenetic relationship with the given drug. This
explanation should be 500 words long. Be as detailed as possible.
The explanation should be detailed enough to convince a
biomedicine expert that the gene is likely to be
pharmacogenetically related to the drug.

User prompt:

My drug of interest is: [...]

These are the candidate genes for this drug, tentatively ranked by
the Z-score: [Ranked List 1]

In addition, consider that the following pharmacogenetic
interactions are already known for this drug, according to
PharmGKB: [...]

Below is auxiliary information about the given drug: [Drug
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paragraph]

Below is auxiliary information about the genes in the pre-ranked
list: [Gene paragraph]

Table S4. LLM prompts.

Table S5

Drug IIV, Cl/F (%) IIV, Vd/F (%)

Artemether 28 - 99 20.5

Lumefantrine 14.8 - 38 15.2 - 48.7

Quinine 40 - 73.6 44.5 - 65.3

Artesunate 43.4 76.7 - 77.7

Sulfadoxine 34 - 65.7 11.2 - 16

Pyrimethamine 35.6 - 84 16.7 - 106

Amodiaquine 32 53

Dihydroartemisinin 20.7 - 90.4 34.7 - 60

Piperaquine 45 65

Doxycycline - -

Clindamycin - -

Chloroquine 30 62

Primaquine 65.3 82.9

Mefloquine 12 - 48 19 - 90

Proguanil 22.6 17

Atovaquone 68 46.8

Tafenoquine - -

Streptomycin - -

Rifampicin 5.5 - 30 19 - 49
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Isoniazid 18 - 93 16

Pyrazinamide 20 - 61.2 16 - 39.4

Ethambutol 20

Ethionamide 120 168

Rifapentine 22 16

Moxifloxacin 13 - 33 -

Levofloxacin 15.2 -

Bedaquiline 39 41

Linezolid 37 32

Clofazimine 25.6 54.6

Cycloserine 32.7 -

Terizidone 64 16

Delamanid 20 26

P-aminosalicylic acid 47.5 - 177 74.8

Pretomanid 19 -

Capreomycin - 123

Sutezolid - -

Table S5: A list of antimalarial and antituberculosis drugs with corresponding percentage
interindividual (IIV) variability in apparent clearance (CL/F) and apparent volume of
distribution (Vd/F).

Table S6

Physicochemical and ADME
properties

Artemether Rifampicin

Molecular weight (g/mol) 298.38 822.9

Log D/ P 3.28 1,5 2.7 2
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Fraction unbound 0.0461 0.116 3

Compound type Neutral 1 Ampholyte 3

pka NA 1.7 and 7.9 3

Solubility (mg/L) 166 5 1400 6

Caco-2 (cm/s x 10-6) 42.7 1 5.79 4

AADAC

Kcat (1/min) - 6.5 a,7,8

ABCB1

Kcat (1/min) - 47.83 a,7,8

SLCO1B1

Kcat (1/min) - 0.001 a,7,8

SLCO1B1 rs4149032

Kcat (1/min) - 2.87 a,7,8

CYP2B6*1

Km (µM) 3.1 9 -

Vmax (pmol/min/pmol) 36 9 -

Kcat (1/min) 51.44 a, 10 -

CYP2B6*6

Km (µM) 6.72 9 -

Vmax (pmol/min/pmol) 150 9 -

Kcat (1/min) 17.9 a,10 -
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CYP3A4

Km (µM) 8.24 9 -

Vmax (pmol/min/pmol) 12.3 9 -

Kcat (1/min) 0.000578 a,10 -

GFR fraction 1b 1b

Table S6: Physiologically based pharmacokinetic model parameters for artemether and
rifampicin in the African population. Kcat = in vitro Vmax per recombinant enzyme. a =
Parameter optimised on clinical pharmacokinetics data. b = Assumed the drug is passively
filtered from kidney blood plasma into urine. NA = Not applicable.

Figure S1

Figure S1. Distribution of African Allele Frequencies. A. Allele Frequency distribution of
SNVs in African populations (AFR AF) in the filtered 1kGPhg38 dataset containing
32,577,573 SNVs annotations. B. Distribution of the African Allele Frequency in the
1,734,675 set of AFR-abundant variants. C. Overrepresentation distribution of African
specific variants vs other populations using all the populations found within the AFR
population group.
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Figure S2

Figure S2. Proportion of African Abundant and African Specific variants in PharmGKB
annotated genes. A. Frequency of AFR-abundant, AFR-specific and other variants
annotated in PharmGKB for non-ADME genes (1195). B. Frequency of AFR-abundant,
AFR-specific and other variants annotated in PharmGKB for ADME genes (167).
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