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Abstract 

Background: Cognitive function measured by digital clock drawing test (dCDT) has drawn 

attention for their precision, automation, and reproductivity. However, the relationship between 

digital cognitive metrics and biological aging is lacking.  

Methods: We conducted association analyses between cognitive function measured by dCDT 

and biological aging metrics quantified by five DNA methylation (DNAm) age metrics (Horvath, 

Hannum, GrimAge, PhenoAge, and DunedinPACE) in the Framingham Heart Study (FHS). We 

conducted linear regression to investigate the association between cognitive functions (global 

cognitive function and four sub-domain functions) and DNAm age acceleration, adjusting for 

covariates. We used a false discovery rate (FDR) < 0.05 for significance. 

Results: Among the 1,798 FHS participants (mean age 65±13, 53% women), we found that a 

lower dCDT total score is associated with DNAm age acceleration. Larger magnitudes of 

associations were observed in older participants (≥ 65 years). The dCDT total score showed the 

strongest association with the DundinPACE in the pooled sample (beta = -2.1, FDR = 0.0004), 

the younger (beta = -1.9, FDR = 0.02), and older age group (beta = -2.2, FDR = 0.01). The dCDT 

total score was significantly associated with age acceleration estimated by Horvath (beta=-1.9, 

FDR =0.01) and PhenoAge (beta=-2.5, FDR=0.01) in older participants while not in the pooled 

sample or younger participants (<65 years). In sub-domain cognitive functions, we found that 

simple motor function was significantly associated with DunedinPACE (FDR = 0.005) in both 

age groups and associated with GrimAge (FDR = 0.05 in older age group), indicating the 

deterioration in various organ systems may particularly impact this domain.  
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Discussion: Our findings suggest that cognitive function measured by a digital clock drawing 

test is associated with DNAm age acceleration in middle-aged and older participants in the FHS, 

potentially shedding light on the epigenetic mechanisms underlying digitally measured cognitive 

function.  
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Introduction 

Cognitive function, representing a crucial aspect of overall brain health, encompasses 

various domains such as memory, reasoning, and attention1. Neuropsychological (NP) tests are 

typically used to measure cognitive functions for individuals, focusing on one or several specific 

cognitive domains. For example, the traditional clock drawing test evaluates spatial dysfunction 

and neglect2, conducted with pen on paper. However, the assessment of the NP test is often 

biased. The use of computerized devices in NP tests is gaining recognition for their efficiency, 

precision, automation, and reproductivity nature3. The Digital Clock Drawing test (dCDT), an 

extension of the traditional clock drawing test, evaluates the overall cognitive function and 

specific sub-domains such as motor function, memory, spatial reasoning, and information 

processing4. Previous research has demonstrated strong associations of dCDT performance with 

mild cognitive impairment5, and with clinical indices of neurodegeneration, such as brain 

volume6 and NP tests5, showing a comparable performance between dCDT and other NP tests. 

Compared to traditional NP tests, dCDT can capture more subtle cognitive changes7.  

Aging is an inevitable process for humans, resulting in a decline in physiological capacity 

and an increasing risk of various disease conditions8, including neurodegenerative diseases9. 

Biological aging, the changes at the molecular level10,11, is essential to understand the 

heterogeneity in healthy aging12. Epigenetic modifications, such as DNA methylation (DNAm), 

measure biological aging at the epigenetic level13-15. DNAm age16 has been associated with 

general health17,18 and neurodegenerative diseases19. The first generation of epigenetic clocks use 

methylation levels across varying numbers of 5'-C-phosphate-G-3'(CpG) sites with a few clinical 

markers to predict chronological age16,20. Subsequent generations of epigenetic clocks have 

incorporated additional clinical measurements to enhance their accuracy for age prediction21-23. 
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DNAm age acceleration is assessed by regressing the estimated DNAm age on chronological 

age24.  

Studies have established correlations between traditional cognitive assessments and 

DNAm age acceleration25, showing the possibility that DNAm age acceleration is a risk factor or 

marker for cognitive function decline. However, research on the relationship between cognitive 

function measured by digital devices and DNAm age acceleration is currently lacking. Our study 

aimed to fill in this gap. We hypothesize that cognitive function measured by digital devices is 

associated with DNAm aging. We investigated the associations of overall cognitive function and 

specific sub-domains measured by DCTclock with several DNAm-based age acceleration 

metrics in the Framingham Heart Study (FHS). We seek to gain additional insights into the 

underlying molecular mechanism of cognitive function measured by digital devices. 

 

Methods  

Study populations 

FHS, initiated in 1948, is an epidemiological prospective cohort to study risk factors for CVD26. 

All FHS cohorts, including the original cohort (Gen1), offspring cohort (Gen2), and third-

generation cohort (Gen3), have undergone routine health examinations every two to six years. 

Our study included 1,264 Gen2 participants at exam 8 (2005-2008) and 688 Gen3 participants at 

exam 2 (2008-2011). We excluded participants whose blood samples were not collected at exam 

or who did not attend dCDT (2011 -2018). After excluding participants with covariates (e.g., 

age, gender, education, cell counts) missing, we included 1,789 participants (Figure 1) in our 
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statistical analyses. For participants with multiple dCDT tests, we selected dCDT data closest to 

DNA methylation measurement dates for inclusion in our study. 

 

DCTclock 

DCTclock serves as an FDA-approved automated screening tool for detecting cognitive 

changes4.  Data collection for dCDT using DCTclock involved utilizing computerized 

neuropsychological assessment devices: digital pen and digital paper. Following the standard 

protocol, participants were instructed to draw clocks with the command '10 after 11' and then 

replicated another clock by copying a provided model27,28. Both the drawing process and the 

final drawing results were recorded, capturing spatial and temporal data, and analyzed through 

the DCTclock pipeline. These data were treated as input to a trained convolutional neural 

network to recognize individual symbols with classification probability (e.g., clock face, digits, 

and small noise stocks). After classifying the individual symbols in drawing, these symbols were 

used to derive various measurements, such as the correct placement of clock components and 

pen speed. These measurements were organized into four groups representing different cognitive 

aspects: Drawing Efficiency, Simple and Complex Motor, Information Processing, and Spatial 

Reasoning. Drawing efficiency, for instance, evaluated the efficiency in terms of the time spent 

on drawing and the size of the drawing. Similarly, Simple and Complex Motor measurements 

represented motor and non-motor cognitive functions, including maximum movement speed. 

Information Processing focused on cognitive functions like thinking time and latencies, while 

Spatial Reasoning focused on spatial abilities through geometric property measurements. A 

composite score was calculated for each cognitive aspect mentioned above using a Lasso 

regularized logistic regression model4, incorporating all the measurements as parameters. Given 
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the performance of two tasks (command and copy), eight sub-domain scores were generated. 

Additionally, a dCDT total score was computed using a Lasso logistic regression model4. Both 

sub-domain scores and the total score range from 0 to 100. 

 

DNAm measurements 

DNAm adds a methyl group onto the 5th carbon of cytosine to form 5-methylcytosine29. DNAm 

measurements were conducted using whole blood samples collected during exam 8 for Gen2 and 

exam 2 for Gen3. DNAm profiling was carried out through a series of procedures, including 

bisulfite conversion, whole genome amplification, fragmentation, array hybridization, and 

single-base pair extension30. The Illumina Human Methylation 450K Bead chips (Illumina Inc., 

San Diego, CA) were employed to analyze the DNA methylation levels across three different 

laboratories. Detailed information regarding DNAm quantification and quality control 

procedures in FHS had been previously documented31.  

 

DNAm aging metrics 

DNAm age is an estimator of aging based on DNAm patterns. Three generations of epigenetic 

clocks were calculated. The first generation, Horvath’s age16 and Hannum’s age20, utilize a set of 

CpG sites to estimate DNAm age.  Horvath’s age calculated a weighted average of 353 clock 

CpGs with a calibration function to estimate aging from multiple tissues. Hannum’s age 

considered 71 CpG sites along with a few clinical parameters (gender, BMI, etc.) to predict aging 

in whole blood samples. GrimAge22 and PhenoAge23 are the second-generation DNAm aging 

metrics. Both methods calculated the DNAm age by integrating methylation levels with clinical 
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markers. GrimAge first utilized DNAm data to estimate each plasma protein biomarker and 

smoking pack years. Then, 7 DNAm-based plasma protein biomarkers and DNAm-based 

smoking pack year were selected, which included 1,030 unique CpG sites along with gender and 

chronological age to predict time to death22. PhenoAge selected 513 CpGs to predict a linear 

combination of chronological age and nine clinical markers (e.g., Albumin, White blood cell 

count), which predicted the time to death23. We employed the principal component version of 

epigenetic clocks (PC-based clocks) to minimize unobserved technical confounders32. The 

DNAm age acceleration for the first- and second-generation aging metrics were residuals 

calculated by regressing each DNAm age on chronological age. Residuals larger than zero will 

be considered as accelerated aging. The third generation, DunedinPACE, differed from the 

previous generations by predicting the pace of aging per year rather than age in years21. The pace 

of aging was calculated from 173 CpGs based on longitudinal change of 19 clinical biomarkers 

(e.g., blood pressure, total cholesterol, blood urea nitrogen), representing an average rate of 

biological aging per year of 1-year chronological age21. This pace of aging was used as DNAm 

age acceleration for the following analysis.  

 

Covariates 

Covariates included the age at the dCDT, the time interval between the dCDT and blood sample 

collection, gender, educational level, cell count information, and family relationship. The time 

interval was computed as the age at the dCDT minus the age at blood sample collection. 

Educational levels were categorized into four groups: less than high school completion, high 

school graduate, some college, and college graduate. Cell count information was derived from 

DNAm data. We included the count number of Cytotoxic T cells (CD8+T), B lymphocytes 
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(CD19+ B), granulocytes (Gran), monocytes (Mono), Natural killer cells (NK), and Helper T 

Cells (CD4+T) as covariates. Family relationships were included as random effects in the model. 

 

Statistical analysis 

The primary analysis explored the relationship between the dCDT total score as the outcome 

variable and various DNAm aging metrics as the predictor variables. The residuals were 

computed by regressing the DNAm age metrics on chronological age to obtain DNAm age 

acceleration. The residuals were used as DNAm age acceleration in the following analysis. To 

facilitate interpretation, we standardized the DNAm age residuals to have a mean of 0 with 

a standard deviation (SD) of 1. Participants were stratified into two age groups (<65 and ≥65 

years), using age at blood sample collection, to address for age modification effects in the 

associations. Linear mixed models were employed to assess the association between the dCDT 

total score and DNAm aging metrics. We adjusted for age at the dCDT, gender, and educational 

level and used family as a random effect in both combined samples and age-stratified analyses.  

To investigate the association between dCDT sub-domain scores and DNAm aging metrics, 

linear mixed models were employed with the same set of covariates. The False Discovery Rate 

(FDR) method33 was applied to adjust for multiple testing34.  

 

Result 

Participant characteristics 
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This study included 1,789 middle-aged and older participants in FHS (mean age 65 ±13 at 

dCDT, 53% women) (Table 1). On average, DNAm was measured seven years before the dCDT 

measurement (Supplementary Figure 1).  Education levels were significantly higher in the 

younger age group (<65 years) compared to the older age group (≥65 years). On average, 

participants in the younger age group exhibited higher dCDT total score and sub-domain scores 

compared to those in the older age group (all p <0.001).  The average estimated DNAm ages 

differed between DNAm metrics (Supplemental Table 2). For instance, the mean Hannum age 

was estimated at 62, while the Horvath age was estimated at 53 in pooled samples. Compared to 

the mean chronological age, the mean DNAm ages calculated by Hannum, GrimAge, and 

DunedinPACE showed acceleration (with DNAm age higher than chronological age) in the 

pooled sample, whereas PhenoAge and Horvath showed lower mean DNAm ages than the mean 

chronological age. We further observed that, except for DunedinPACE, males tended to have 

advanced DNAm ages compared to females (Supplemental Table 3).  

 

Association between dCDT total score and DNA methylation age acceleration 

In the pooled sample, we observed that a higher dCDT total score was associated with lower 

DNAm age estimated by all DNAm aging metrics (Figure 2). However, the association was 

significant only for DunedinPACE, where a one-SD higher level in the pace of aging was 

associated with a 2.1-unit lower level in the dCDT total score (FDR=0.0004) (Figure 2).  

Age showed a significant effect modification of the association (p = 0.004) with DunedinPACE 

but not for other epigenetic age metrics (Supplemental Table 4). Thus, we conducted stratified 

analyses by age groups for all DNAm age metrics. In the younger age group (<65 years), 

DunedinPACE was the only DNAm metric associated with the dCDT total score (beta = -1.9, 
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FDR = 0.02).  In contrast, in the older age group, three DNAm aging metrics were significantly 

associated with the dCDT total score:  DunedinPACE (beta=-2.2, FDR=0.01), DNAm age 

acceleration estimated by Horvath (beta=-1.9, FDR=0.01) and PhenoAge (beta=-2.5, 

FDR=0.01). Although the association between dCDT total score and other DNAm aging metrics 

was not significant, the directionality of the associations was consistent in both older and 

younger age groups (Figure 3, Supplementary Figure 3).  

 

Association between dCDT sub-domain scores and DNA methylation age acceleration 

In the pooled sample, we observed a significant association between DunedinPACE and both the 

dCDT simple motor function score in the command task (FDR = 0.01) and the spatial reasoning 

score from the copy task (FDR = 0.01). A one-SD higher level in the pace of aging was 

associated with a 0.7-unit decrease in the dCDT simple motor function score and a 1.6-unit 

decrease in the spatial reasoning score. GrimAge was also found to be significantly associated 

with the dCDT simple motor function score in both the copy task (beta = -0.7, FDR = 0.005) and 

command task (beta=-0.9, FDR = 0.005) in the pooled sample. No other significant association 

was found between the other epigenetic age acceleration metrics and the dCDT sub-domain 

score in the pooled sample (Figure 2).  

Different from the result in the pooled sample, we only observed similar results for 

GrimAge in the older age group (>65 years), where a one-SD increase in GrimAge is 

significantly associated with a 1.1-unit decrease in dCDT simple motor function score in 

command task (FDR = 0.04) (Supplementary Figure 2). In addition, PhenoAge was 

significantly associated with the dCDT simple motor function score in the command task (beta 

=-1.0, FDR = 0.04). While no significant association was found between dCDT sub-domain 
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scores and DNAm age in the younger age group, the directionality was consistent for most 

associations in both younger and older age groups (Supplementary Figure 2, 3). 

 

Discussion 

In this study, we investigated the association between cognitive function measured by the dCDT 

and DNAm aging metrics in 1,789 middle-aged and older participants in the FHS. We found that 

lower dCDT total scores were consistently associated with advanced biological age quantified by 

DNAm aging metrics. Among all DNAm aging metrics, DunedinPACE showed significant 

association with the dCDT total score in the pooled sample, younger (<65 years), and older (≥ 65 

years) age groups. In contrast, several other DNAm aging metrics showed significant 

associations with the dCDT total score only in the older participant group.    

As the need for early diagnosis in the preclinical stage of AD grows, advanced screening 

tools for cognition are desired to capture subtle cognitive changes35. The dCDT has drawn 

attention for its efficiency, precision, automation, and reproductivity3. It has been demonstrated 

to be effective in distinguishing cognitive impairment from normal function4,7. Additionally, it is 

comparable to established NP tests, such as the Wechsler Memory Scale and Boston Naming 

Test, in discriminating between participants with mild cognitive impairment (MCI)6 and those 

with normal function. Unlike traditional paper and pen tests, the dCDT captures more granular 

data, including visuospatial, time-base, and kinematic details, offering a more detailed 

assessment. Its automated scoring system provides clinicians with objective and interpretable 

results4.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.06.24316862doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.06.24316862
http://creativecommons.org/licenses/by-nc-nd/4.0/


DNAm is a crucial epigenetic modification that influences gene expression without 

altering the underlying DNA sequence29. By incorporating different sets of CpG sites, the three 

generations of epigenetic age metrics offer varied perspectives on biological aging.  Unlike the 

first- and second-generation clocks, which primarily estimate DNAm aging based on 

chronological age, clinical markers and time to death16,20, the third-generation clock, 

DunedinPACE, focuses on a set of different clinical markers (representing the progressive 

decline across multiple organ systems captured by multiple CpG sites)21. In our study, 

DunedinPACE is negatively associated with overall cognitive function in both younger and older 

age groups, while other age clocks only showed significant results in the older age group. These 

findings indicate that global cognition function, which is an indicator of brain health, may reflect 

the aging rates of multiple organ systems.  

 The analysis of dCDT sub-domain scores with DNAm age provides additional insights 

into how epigenetic aging may influence specific cognitive domains. For instance, the simple 

motor function and spatial reasoning sub-domain scores show significant associations with 

DunedinPACE, indicating that the deterioration in various organ systems may particularly 

impact these domains. GrimAge is based on seven plasma protein markers related to various 

diseases and conditions, including cardiovascular disease (Plasma B2M) and cognitive functions 

(Plasma B2M, ADM, cystatin C, and leptin)16. Our observation that simple motor function was 

associated with advanced GrimAge age indicates that the decline of simple motor functions 

might be related to abnormal levels of these protein markers in the plasma. Future studies are 

necessary to investigate the associations of these plasma proteins with cognitive decline.  

Digital cognitive measures displayed stronger associations with most DNAm aging 

metrics among older (≥65 years) compared to younger (<65 years) participants, likely to reflect 
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the cumulative and nonlinear age influences on both brain health and DNAm. This is consistent 

with our earlier findings of stronger associations between alcohol consumption and epigenetic 

age metrics38. For instance, overall cognitive function exhibited significant associations with 

PhenoAge in the older age group while not in the younger age group. In contrast, the global 

cognitive function score was associated with DunedinPACE in both age groups, indicating that 

DunedinPACE might be more sensitive to capturing the subtle influence of variations in the pace 

of aging on cognitive changes.  

Several similar studies have investigated the association of cognitive function measured 

by traditional methods with DNAm aging metrics. Marioni et al.39 reported that general cognitive 

ability was associated with Horvath age in participants over the age of seventy. Our findings, 

using the dCDT, are consistent with this, showing similar associations with total score in older 

participants (65 years and above).  Another study assessed how various cognitive tests (e.g., 

MMSE, ADAS-Cog-13, MoCA) associated with DNAm age acceleration in participants with 

a mean age of seventy-five25. They found that the faster pace of aging measured by 

DunedinPACE correlates with more severe cognitive decline25. Our results align with this, 

showing that worse cognitive function was associated with DunedinPACE, with a larger 

magnitude in older participants. Furthermore, our findings that higher PhenoAge and 

DunedinPACE were associated with poorer performance scores in older participants were also 

consistent with the previous findings, where they found that higher PhenoAge and 

DunedinPACE are associated with worse cognitive performance25.  

 

Our study has limitations, including a lack of diversity (all participants were Whites) in 

our study sample. Further research with diverse groups is needed. In addition, there is an 
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approximate 7-year gap between DNA methylation measurement and dCDT. This may introduce 

biases due to changes in DNA methylation levels and clinical conditions. Our study has several 

strengths. We employed the dCDT to measure cognitive function, which is a novel measure for 

assessing cognitive function. In addition, we employed PC-based clocks, which use principal 

components to reduce noise and enhance accuracy. To mitigate multiple testing, we applied FDR 

adjustment, which is more appropriate than Bonferroni correction for the presence of correlated 

outcome and predictor variables.  

 

In conclusion, our study investigated how digital cognitive function assessed by dCDT relates to 

biological aging, measured by DNAm. These findings highlight the potential role of DNA 

methylation in cognitive function. Further research is needed to uncover the underlying 

biological pathways behind this association, particularly in more diverse populations.  
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Table 1. Demographic and Clinical characteristics of study participants 

  
Total 

Age below 

65 

Age above 

or equal 

to 65 
P-value 

(n=1789) (n=804) (n=985) 

Female, n (%) 955 (53 %) 407 (51 %) 548 (56 %) 0.208 

Age at dCDT (years) 65 (± 13) 54 (± 8) 75 (± 7)  

Age at DNAm (years) 58 (± 12) 48 (± 7) 67 (± 7)  

Education levels, n (%)         

Incomplete high school 30 (2 %) 6 (1 %) 24 (2 %) <0.001 

High school graduate 332 (19 %) 108 (13 %) 224 (23 %)   

Some college 556 (31 %) 231 (29 %) 325 (33 %)   

College graduate or above 871 (49 %) 459 (57 %) 412 (42 %)   

Dementia 51 (3 %) 0 (0 %) 51 (5 %) <0.001  

Note: In this study, we used age at DNAm for age group stratification. Mean with standard deviation 

(SD) was provided for a continuous variable, while count and proportion were provided for categorical 

variables.  
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Figure 1. Flow chart of study design. The participation of dCDT was solely based on consent. 

In the Framingham Heart Study, we identified participants with digital clock drawing test 

(dCDT) measurements and DNA methylation (DNAm). Five DNAm age metrics were 

calculated. Epigenetic (DNAm) age acceleration (EAA) was calculated by regression of the 

DNAm age metrics on chronological age. Primary analysis focused on the association between 

dCDT total scores and EAAs, whereas secondary analysis focused on the association between 

dCDT sub-domain scores and EAAs. 
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Figure 2. Association between dCDT scores and DNAm age acceleration in 1789 

participants of the Framingham Heart Study. The dCDT total score includes command task 

composite scores and copy task composite scores. DNA methylation age acceleration was obtained by 

regressing DNAm age metrics on chronological age. We conducted association analysis between 

standardized DNAm age acceleration and the dCDT total score, adjusted for age, gender, and education. 

The numbers inside each cell represent the P-values of the associations. The color represents the change 

in dCDT scores corresponding to a one SD increase in DNAm age acceleration. 
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Figure 3. Comparison of effect size in the association between DNAm age acceleration and 

the dCDT total score.  DNAm age acceleration was obtained by regressing DNA methylation 

(DNAm) metrics on chronological aging, followed by standardization with a mean of zero and SD of one. 

We conducted an association analysis between the dCDT total score and standardized DNAm age 

acceleration. CI, confidence interval.  

Unit change in dCDT total score in 

response to one SD increase of EAA 

Epigenetic age 

acceleration  

Effect size (95%CI) 
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