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Abstract: 

Introduction:  Disease surveillance is an essential element of an effective response to antimicrobial 

resistance (AMR). Associations between AMR cases and area-level drivers such as remoteness and socio-

economic disadvantage have been observed, but spatial associations when modelling routinely collected 

surveillance data that are often imperfect or missing have not been previously possible.

Aim: We aimed to use spatial modelling to adjust for area-level variables and to enhance AMR surveillance 

for missing or sparse data, in an effort to provide clinicians and policy makers with more actionable 

epidemiological information. 

Methods: We used monthly antimicrobial susceptibility data for methicillin-resistant Staphylococcus aureus 

(MRSA) from a surveillance system in Australia. MRSA was assessed for the effects of age, sex, socio-

economic and access to healthcare services indices by fitting Bayesian spatial models. 

Results:  We analysed data for 77, 760 MRSA isolates between 2016 and 2022. We observed significant 

spatial heterogeneity in MRSA and found significant associations with age, sex and remoteness, but not 

socio-economic status. MRSA infections were highest in adult females aged 16-60 living in very remote 

regions and lowest in senior males aged 60+ years living in inner regional areas..

Conclusion:  Current disease surveillance approaches for antimicrobial resistant infections have limited 

spatial comparability, are not timely, and at risk of sampling bias. Bayesian spatial models borrow 

information from neighbouring regions to adjust for unbalanced geographical information and can fill 

information gaps of current MRSA surveillance. Assessment of disease spatial variation is especially critical 

in settings which have diverse geography, dispersed populations or in regions with limited microbiological 

capacity. 

Keywords: disease surveillance; antimicrobial resistance; modelling; spatial epidemiology

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.06.24316846doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.06.24316846
http://creativecommons.org/licenses/by/4.0/


3

Introduction

One of the greatest global health challenges we face is the increase in antibiotic-resistant bacteria. In 2019, 

antimicrobial resistance (AMR) was directly responsible for 1.27 million deaths across the globe and 

increasing levels of disability and costs1. Australia has rising rates of AMR and comparatively high rates of 

antimicrobial use2. Remote regions of Australia, where the population density is low have some of the 

highest rates of AMR in the world, with 46% of Staphylococcus aureus isolates methicillin-resistant 

(MRSA)3. These regions have historically fallen outside of surveillance reach4, which may be in part due 

limited healthcare services and microbiology capacity dispersed across a large geographically diverse area 

and high staff turn over4 5. Despite these surveillance challenges, healthcare professions are reliant on 

accessing reliable, local and timely data that represents the geographical diversity of the patient population 

that they serve5. Mapping disease patterns is one way to support these health practitioner information needs 

and to gain a better understanding of the interconnectedness of AMR across One Health ecosystem6.

Currently, mapping disease patterns from AMR surveillance systems is largely done using thematic maps7,8, 

as either a choropleth, heat map, plot densities, or cartogram. Such maps are often highly dependent on 

testing rates and may mislead the viewer into thinking an important pattern exists, when noise or sampling 

error are likely explanations9,10. In geographically diverse regions such as Europe, where population density 

and geographic characteristics are varied11, or in remote settings of Australia, with small sample size or 

outliers, these data are at risk of being disproportionately represented in thematic maps12. 

Bayesian spatial statistics is a powerful approach to quantify disease patterns that takes into account 

information from surrounding areas (and in time), leveraging that nearby observations are often more likely 

to be similar 13-15.  Taking advantage of this dependence across space (and time) allows one to smooth out 

the data, helping to counteract potential effects from outlier observations or uneven data structures/sample 

size, often seen in areas with low population or diverse geography. These models also more accurately 

quantify the significance of complex relationships between disease and key risk factors and can include a 

wide range of data sources, such as location, time, age groups, and gender 16. 
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Bayesian models are increasingly being used to enhance public health surveillance data, for identification of 

disease clusters 17, to correct reporting delays 18 and for epidemic tracking 19. However, these methods have 

been under-utilised for enhancing AMR surveillance for more timely detection of incident cases in regions 

with sparse data.  

This study expands on earlier AMR mapping efforts in northern Australia 3 and contributes to the 

importance of using statistical approaches when transforming surveillance data into actionable 

epidemiological information. 
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Materials and Methods

Study setting

This study was set across three jurisdictions of northern Australia: Western Australia, Northern Territory 

and Queensland, which is divided into 22 Statistical Area  level 3 (SA3) regions (Figure 1) 12. 

Figure 1. Study sites in northern Australia comprised of 22 regions colour coded by Remoteness index. 

Northern Australia comprises of 50% ‘outer regional’, 23% remote and very remote and the remining 4% 

inner regional (Figure 1). The disadvantaged areas tended to be localised to regional and remote settings, 

while more advantaged areas tend to be in or near the regional cities (Figure 2). 

Figure 2. The socio-economic factors by region, northern Australia between 2016 and 2021. (A) Index of 

Economic and Occupation. (B) Index of Relative Socio-economic Disadvantage. (C) Index of Relative 

Socio-economic Advantage and Disadvantage. (D) Index of Economic Resources.

Data source 

We used surveillance data from the HOTspots surveillance and response program, which has been 

previously described3 . Monthly methicillin-resistant Staphylococcus aureus (MRSA) isolates from hospitals 

and primary healthcare clinics was extracted for the years 2016 – 2022. Isolate information was recorded on 

22 non-overlapping aerial regions for Northen Australia across three jurisdictions at the Statistical Area level 

3 level, which is a regional breakdown of Australia with a population estimate of 30,000 to 130,00012. Age 

was aggregated to children (0-15 years), adults (16-60 years) and senior adults (61 years and over). Sex was 

assessed as male or female. 

Remoteness index was classified into five categories (major cities, inner regional, outer regional, remote and 

very remote) 12.

Socio-Economic Indexes for Areas (SEIFA), includes four indices derived from the Australian Bureau of 

Statistics Census during the study period20. Namely, index of relative socio-economic advantage and 

disadvantage; index of relative socio-economic disadvantage; index of education and occupation; and index 

of economic resources. 
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Statistical analyses

We analysed MRSA data at each time point for spatial autocorrelation via Moran’s I, which ranges from 

minus one to one. Moran’s I of minus one, denotes observations are perfectly spatially displaced (i.e. such as 

in a checkerboard); Moran’s I equal to zero, denotes observations resemble random patterns, and Moran’s I 

towards one suggests strong spatial autocorrelation and the potential presence of spatial clusters. Bayesian 

intrinsic conditional autoregressive (CAR) spatial models were fitted on MRSA prevalence (assuming a 

binomial distribution) independently at each time point which had significant spatial autocorrelation 

(Supplementary Figure 1).  To avoid multicollinearity each SEIFA index was investigated separately and the 

index providing the best fit was included in the final multivariable model (Supplementary Figure 2).

MRSA prevalence was derived from the number of antibiotic susceptibility tests that were resistant (𝑟𝑘) 

divided by the number of total susceptibility tests (𝑡𝑘), for region 𝑘 at a specific time point. To investigate 

spatial autocorrelation and the effect of age and sex, as well as region specific Socio-Economic Indexes for 

Areas (SEIFA) and remoteness index on MRSA, the following model was fitted:

𝑟𝑘 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑡𝑘, 𝜃𝑘)

𝑙𝑛( 𝜃𝑘

1 ―  𝜃𝑘
) =  𝛽0 + 𝛽1𝑎𝑔𝑒15―65 + 𝛽2𝑎𝑔𝑒65> + 𝛽3𝑠𝑒𝑥𝑀𝑎𝑙𝑒 +  𝛽4𝑆𝐸𝐼𝐹𝐴 +  𝛽5𝑅𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 𝑏𝑘 

𝑏𝑘| 𝑏―𝑘, 𝑊, 𝜏2, 𝜌 ~ 𝑁( 𝜌 ∑𝐾
𝑖=1 𝑤𝑘𝑖𝑏𝑖

𝜌 ∑𝐾
𝑖=1 𝑤𝑘𝑖𝑏𝑖 + 1 ― 𝜌

, 
𝜏2

𝜌 ∑𝐾
𝑖=1 𝑤𝑘𝑖𝑏𝑖 + 1 ― 𝜌)

𝜏2 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 ― 𝐺𝑎𝑚𝑚𝑎(1,0.01)

𝜌 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)

𝛽𝑖=1 𝑡𝑜 5 ~ 𝑁(0, 100)

The logistic linear predictor comprises of the sum of the effects of age, sex, remoteness index and SEIFA 

indices in addition to the spatial autocorrelation, modelled via the random the spatial effects. These random 

effects follow the specification by Leroux et. al. (2000) 21 to apply a flexible approach to varying strengths 

of spatial autocorrelation.
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The strength of spatial dependence, denoted by 𝜌, can range from strong and clustered spatial structure as 𝜌 

approaches one, to independent and identically distributed observations, when 𝜌 equals zero. The spatial 

scale variance parameter, 𝜏2, describes the amount of variation between the spatial random effects. 

Incorporation of information to the neighbourhood structure is denoted by binary and symmetric matrix 𝑊. 

Geographical regions 𝑘 and 𝑙 which share a border with each other are denoted by 𝑤𝑘𝑙 = 1  and zero 

otherwise.  Vague non-informative priors were chosen for parameters 𝜏2, 𝜌 and 𝛽. Estimation of joint 

posterior distribution was computed via Markov chain Monte Carlo (MCMC) methods22.

Ten models were explored at each time point (Supplementary Table 1), and convergences were visually 

assessed via density, trace and autocorrelation plots (Supplementary Table 2). The prevalence resistance 

with 95% credible intervals (Cr. I) for each region were estimated via posterior predictions. 

For assessing the odds of MRSA infection by age, adult (aged 16 -60) and senior adult (aged 61+) categories 

were compared to the children (age 0-15). For assessing the odds of MRSA by remoteness, we compared all 

remoteness categories to inner regional.

All analyses were completed using R software version 4.2.1 (R Core Team 2022) within the RStudio editor 

(version 2022.07.02). The following R packages were used for data cleaning, processing, Moran’s I 

assessment, Bayesian model fitting, geographical maps and plots: “dplyr”, “reshape2”, “zoo”.  “ggplot2”, 

“ggfortify”, “coda”, “spdep” and “sf”, “CARBayes”. All maps were generated using the ‘ggplot2’ and “sf”, 

packages 23.

Ethical statement

This study was conducted and approved by the Human Research Ethics Committee of the Northern Territory 

Department of Health and Menzies School of Health Research (HREC-2018-3084). The study did not 

recruit active participants and used retrospective pathology records that were provided to the researchers in a 

deidentified format, a waiver of consent was approved . 
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Results

Prevalence of MRSA in northern Australia

The study utilised data on 77, 760 clinical isolates collected between 2016 and 2022 (84 months). 

Figure 3 presents a descriptive analysis of MRSA, including healthcare onset and sex. According to the 

descriptive summary from the HOTspots surveillance program, MRSA prevalence has remained stable at 

35% since 2016 albeit, there was a reduction in 2021 to 31% (Figure 3A). There was an observed difference 

in MRSA by onset, with higher prevalence of MRSA observed in community healthcare settings compared 

to hospitals since 2014 (Figure 3B). MRSA has been consistently higher amongst females compared to 

males (Figure 3C). 

Figure 3. Epidemiology of MRSA, over time (A), by healthcare setting (B), and by sex (C), northern 

Australia 2008-2023

Spatial autocorrelation and clusters

Figure 4A shows the results from the spatial autocorrelation analysis measured by Moran’s I index and the 

associated significance test. The analysis suggest high spatial heterogeneity with Moran’s I index ranging 

from -0.25 to 0.75, across regions between January 2016 until December 2022.  

Large fluctuations in spatial autocorrelation were observed for MRSA from January 2016 until September 

2020. From October 2020, Moran’s I index was increasing reaching a maximum of 0.75 (December 2021, p 

< 0.001), indicating a stronger spatial autocorrelation and potential for cluster detection.  Highest MRSA 

infections were observed in central regions of northern Australia, namely Pilbara (Western Australia), 

Kimberly (Western Australia), Barkly (Northern Territory), Alice Springs (Northern Territory) and Outback 

North (Queensland). Whereas clusters of low MRSA infections were observed in the top end of Northern 

Territory (Darwin region and the capital city of Northern Territory), and on the east coastline of northern 

Australia (Queensland) (Figure 4B).

Figure 4A. Spatial autocorrelation (Moran's I statistic) of MRSA, northern Australia 2016-2022

Figure 4B. Regions of clustered high and low MRSA, northern Australia 2020-2022
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Spatial risk of MRSA by sex and age

Females exhibited a higher likelihood of MRSA infection compared to males, with an average odds ratio 

(OR) of 1.33 (95% Credible Interval (Cr. I) 1.06 – 1.66, see Supplementary Table 3). The probability of 

MRSA infection was found to be higher in adults (OR 1.06, 95% Cr. I 0.82-1.39), and lower in senior adults 

(OR 0.66, 95% Cr. I 0.45-0.96), when compared to children. Notably, the first half of the year showed the 

highest odds of MRSA infection among adult patients (refer to Supplementary Table 3 for more details)

Spatial risk of MRSA by remoteness 

Remoteness index was associated with an increased odds of MRSA infection across northern Australia. 

Compared to inner regional, the average odds ratio of 1.22 (95% Cr. I 0.45-3.20) in outer regional; and 

average odds ratio of 2.18 (95% Cr. I 0.72-6.38) in remote regions; and an average odds ratio of 1.86 (95% 

Cr. I 0.63-5.41) in very remote regions. The statistically significant time points for MRSA and remoteness 

index were February 2016, March 2016, July 2016, October 2017, December 2017, May 2018 and August 

2021(refer to Supplementary Table 4 for more details). 

Spatial risk of MRSA by socio-economic disadvantage

We did not find a statically significant association between MRSA and any of the SEIFA indices assessed 

(Index of Economic Resources, Index of Education and Occupation, Index of Relative Social Advantage and 

Disadvantage, or Index of Relative Social Disadvantage).

Using Bayesian spatial models to enhance insights gained from routine surveillance data for MRSA

To demonstrate the effectiveness of Bayesian spatial models to improving raw surveillance (Figure 5), we 

used monthly MRSA data from June 2021. Our model incorporated the tested significant risk factors such as 

age, sex and remoteness (Figure 6). 

Figure 5. Map representing MRSA raw surveillance data by age and sex, northern Australia June 2021.

Figure 6. Map representing Bayesian spatial modelling to estimate posterior MRSA prevalence by age and 

sex, northern Australia June 2021.
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In June 2021, when mapping raw surveillance data for each region by age and sex, it was found that 16 out 

of the total 22 geographical regions had missing data. This was due to either areas being unsampled or 

incomplete due to low counts (<15 records) (Figure 5). Therefore, less than 30% of the MRSA data could 

be utilised, with no data available for seniors (61 years and above) and limited data for adults (16-60 years) 

and children (0-15 years) in June 2021 as shown in Figure 5.

In contrast, using Bayesian spatial models permitted an analysis of the entire 22 regions for the month of 

June 2021(Figure 6, Figure 7). The regions with highest predicted prevalence across all age groups and 

sexes, were the remote regions of northern Australia which includes two Western Australia regions (east and 

west Pilbara), two Northern Territory regions (Daly-West Arnhem and Alice Springs) and one Queensland 

region (Outback North) (Figure 6). The regions with lowest predicted MRSA infections were situated in 

urban settings and included regions in Northern Territory (Darwin region and Palmerston regions), and 

regions in east Australia (Mackay, Whitsunday, Townsville, Cairns). 

Posterior predicted estimates of MRSA and credible intervals are represented in Figure 7. Adult females 

(Figure 7B) and adult males (Figure 7E) were at highest risk of infection compared to children or seniors of 

each sex.

Figure 7. Posterior predicted MRSA prevalence estimate and 95% credible intervals by age and sex using 

Bayesian spatial models, northern Australia June 2021. 

MRSA infection was highest in adult females (16-60 years) living in remote settings (West and East Pilbara 

regions:46.51% [95% Cr.I 29.34 – 61.72]), Daly-Tiwi-West Arnhem region: 46.43% [95% Cr. I 29.56 - 

61.28], Alice Springs region: 46.51% [95% Cr. I 29.93-60.95], and Outback North region :46.45% [95% 

Cr.I 30.45-60.63]). MRSA infection was lowest in senior males (61+ years) living in urban settings (Mackay 

region 14.48%, and other regions including Townsville and Cairns).
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Discussion

We utilised Bayesian spatial modelling to generate monthly estimates of MRSA infections using routinely 

collected surveillance data in a sparsely populated, high-burden regions of Australia. From September 2020, 

we observed two distinct patterns of MRSA infection in northern Australia: potential clusters of high MRSA 

infections in the central regions, contrasted by low MRSA infection rates in the east coast regions. Our 

analysis revealed that MRSA was most prevalent amongst females aged 16-60 living in very remote areas, 

whereas senior males in urban areas of northern Australia had comparatively low MRSA infection rates. 

These findings provide critical insights to refine our epidemiological understanding of MRSA rates within a 

region that has historically been beyond the reach of surveillance 4. We demonstrate the value of spatial 

modelling in pinpointing populations and geographic areas at increased risk of infection, as well as areas 

where infection rates remain low. This information will enable more targeted approaches to control AMR in 

high-risk regions and learn from regions that have a lower infection risk. 

We identified large fluctuations in spatial autocorrelations in MRSA infections during the study period. 

From January 2017 to August 2020, spatial patterns of MRSA appeared random and highly variable. 

However, from September 2020, the patterns remained stable and did not change over time, suggesting a 

period of MRSA cluster formation.  MRSA hot spots were observed in remote settings and central Australia 

regions, whilst cold spots were observed in urban settings and on largely east coast of Australia regions. 

Potential for disease clustering likely has several underlying explanations and would merit further 

investigation. A primary driver for cluster formation starting from September 2020, could be attributed to 

the impact of coronavirus disease 2019 (COVID-19) pandemic. The pandemic not only resulted in 

significant loss of lives but also disrupted health systems and the economy to a considerable extent24,25. 

During the COVID-19 pandemic, Australia, like many other high income countries, experienced a decrease 

in the volume of antibiotic prescriptions2. Compared to 2019, this represented a substantial reduction, as 

much as 34% in the prescription of antimicrobials2. During the initial stage of the pandemic, there was a 

decrease in respiratory infections amongst children 26 and high uptake of enhanced hygiene and social 

distancing 27. However as the pandemic progressed,  factors such as overuse of antibiotics in COVID-19 
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patients would have impacted the spread of AMR, with as many as 72% of COVID-19 patients receiving 

antibiotic treatment, either as empirical or to treat a bacterial coinfection, despite only 19% of these patients 

presenting with bacterial coinfections28. This would have been further compounded by the shortage of 

personal protective equipment, high staff turn-over and lack of healthcare staff throughout the pandemic 29. 

Additionally, changes in transmissibility or severity of MRSA, or the establishment of community-

associated MRSA clones with specific virulence factors could have also been contributing factors30. This 

highlights the importance of improved and continuous surveillance efforts for MRSA, as fluctuations in 

incidence may indicate shifts in transmission dynamics or effectiveness of control measures.

We applied this spatial analysis to also investigate health inequality based on location. We found strong 

association between MRSA infection and remoteness, age and sex but not socio-economic factors, which 

supports previous findings31. The highest risk for MRSA infections was among adult females aged 16-60, 

living in very remote regions. Females had a 33% increased odds of MRSA infection compared to males 

(mean OR 1.33, 95% CI 1.06 – 1.66) across the study period. This may indicate a broader trend of higher 

resistance or vulnerability among females and could be due to various factors, including an observed effect 

in other settings of delayed antibiotic treatment in female patients32 or suggest a difference in health-seeking 

behaviours between the genders. The lowest risk was amongst senior males aged 60 years and over, living in 

inner regional areas, with a 44% reduced odds of MRSA infection (OR 0.66, 95% CI 0.45-0.96) compared 

to female seniors, adults and children as well as male adults and children. This groups lower risk of MRSA 

serves in contrast to the higher risk seen in other groups, indicating that factors such as age, sex, and location 

play a role in AMR. They underpin the need to understand how these factors reinforce AMR risk and 

vulnerability 33. This points to the need for targeted interventions, such as improving healthcare access in 

remote areas, ensuring timely antibiotic treatment and to consider age and sex-specific strategies to manage 

AMR infections.

The finding that MRSA infections in northern Australia were not associated with socio-economic status 

raises an important issue of using indices that measure individual level characteristics at a large geographical 

scale. We utilised the Australian Bureau of Statistics Statistical Area Level 3 (SA3) to determine socio-
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economic status. However, this approach may have obscured the impact on MRSA infection due to inherent 

variations in individual characteristics within such expansive administrative boundaries, particularly for 

residents of the Northern Territory and far north Western Australia, both of which cover vast geographical 

areas34. External analyses on the number of PBS prescriptions supplied for all antimicrobials per 1,000 

individuals standardised by age at the SA3 level between 2017 to 2022 demonstrated a large range in the 

number of prescriptions across regions. Inner regional Mackay had a consistent 6-fold increase in the 

number of prescriptions compared to very remote East Arnhem over this period, indicating that in addition 

to potential socio-economic factors, antibiotic consumption rates may be an important factor to consider in 

future AMR modelling. However, due to the confidential nature of the PBS report at the time, we were 

unable to incorporate such information in our current analyses.  

Inclusion of other data sources and understanding the needs of the population would also be critical in 

assessing spatial inequity35 36. Bayesian modelling can overcome some of these challenges by integrating 

diverse data sources (with small sample sizes) and leveraging spatial-temporal dependence to refine and fill 

the information gaps for more meaningful and actionable epidemiological insights. Our estimates and maps 

of estimated MRSA prevalence show the fine detail of how age, sex and remoteness vary across space in a 

given month in these regions. We generate monthly MRSA rates by area which are more timely and provide 

spatial patterns for targeted AMR control efforts in a way that is not possible using raw unmodelled yearly 

surveillance data. 

Limitations

There are several limitations in this study. Firstly, the number of community healthcare clinics and hospitals 

participating in HOTspots aims to be comprehensive. However, there are several large private pathology 

services in Queensland not supplying data to HOTspots (e.g., Sullivan Nicolaides). Therefore, HOTspots 

surveillance data likely under-represent the private sector (community healthcare clinics) in far north 

Queensland. This is less of an issue in the NT and far north WA where Western Diagnostic Pathology 

services are the majority of the community healthcare clinics and contribute data to HOTspots. Due to the 

limited reporting of the exact location and number of private pathology services across northern Australia, it 
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remains unclear what proportions of the entire northern Australian population are not included in the 

HOTspots surveillance system. However, as our data was aggregated to a region (i.e. Statistical Area Level 

3), we are confident that each region would have a representative number of isolates from community 

healthcare clinics required for the analysis. Secondly, we used Bayesian spatial modelling to help improve 

the estimation of the statistical uncertainty of model parameters and smooth estimates, and to help generate 

better predictions at locations without data. However, there is the possibility for this approach to under-

smooth or over-smooth estimates or predictions. Thus, we cannot discount the possibility that estimates of 

prevalence in particular region without any data might have been overestimated when lending weight from 

observed high prevalence values in a neighbouring location, or vice versa when there are excessive low or 

zero prevalence values in a neighbouring region. Thirdly, while our models converged in our spatial 

analyses of 22 geographical aerial regions, for replication of our methods in instances with sparse data or 

fewer regions, we recommend the implementation of zero inflated or sparse methods. Lastly, the spatial 

clustering of MRSA infections in our analysis suggests a potential for outbreaks in northern Australia but the 

Moran’ I method cannot quantify which regions within our dataset of northern Australia had similar MRSA 

infection rates. In future, a comprehensive assessment of widely employed cluster detection methods (i.e. 

Getis Ord G∗ i , Kulldorff spatial scan statistic) is recommended to identify the optimal cluster detection 

method for AMR surveillance data, as has been shown for dengue surveillance data37.

Conclusion 

The approach of spatial modelling and ‘borrowing’ information from neighbouring regions is especially 

needed to support AMR surveillance in regions that are resource poor, isolated or have diverse geographical 

populations. Integrating Bayesian spatial models into routine AMR surveillance systems, such as HOTspots, 

and developing further disease cluster detection methods for future analysis would be critical to identify the 

current and emerging high-risk areas and target these to reduce the continuous and worsening burden of 

AMR in northern Australia. This approach is flexible and scalable to other settings in Australia and beyond.

Finally, as temperatures continue to rise in northern Australia 38 such spatial modelling tools will be even 

more critical as the geographic distribution of infectious disease changes39 and the link between AMR and 
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climate emerges 40. While system dynamics modelling will help understand the interactions and feedback 

loops 41of climate-related risks across One Health, spatial mapping using routine surveillance data will be 

critical to document these impacts across space and time. 
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