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Abstract:   
  
Cerebral Palsy (CP) is a common (about 1 in 500 children) health condition caused by abnormal brain development 
that affects the ability to control movement. Early risk assessment happens through the General Movements Assessment 
(GMA), a test administered by trained clinicians at 3-4 months of age that has high predictive value for CP. With recent 
improvements in video-based motion tracking, automated risk assessment for CP based on the GMA is being explored. 
However, studies generally have used small datasets or were limited in terms of methodological rigor. Here we acquired 
a large dataset (1060 infants) of videos from a clinical population with elevated CP risk. In a preregistered pipeline using 
a lock-box set that was not used before algorithm submission we find that our machine learning predictions are highly 
predictive of the clinician-assessed GMA (AUC=0.79). Given its low cost, our video-based approach may be useful for 
clinical screening applications, particularly in low-resource settings.    
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Introduction 
  
Cerebral Palsy (CP) is the most common cause of motor impairment leading to physical disability in children, affecting 
an estimated 2-3 out of 1000 infants globally1. In the USA alone, this results in approximately 1 million people living 
with impaired mobility due to CP at any given time, many of which have lifelong disability. Early detection and 
rehabilitation before two years of age is critical, as beginning rehabilitation within this sensitive period for neural 
plasticity and motor development is associated with functional outcomes 2,3. Atypical movement patterns that indicate 
a high risk of developing CP are reliably detectable through visual observation of movements by a trained physician at 
or before 10 weeks of age, but many infants are not evaluated by a physician until after severe, overt motor impairments 
have already developed. In practice, this means that CP is typically diagnosed between 6 to 24 months of age, which is 
near the end of the optimal window for intervention. There is, therefore, a need to develop automated early pre-
screening tools that can detect atypical patterns of motor development before they progress to more severe impairment, 
allowing for more efficient use of costly medical resources and improved outcomes particularly in low resources settings.  

  
CP risk is routinely assessed by clinicians based on visual observation of movements. One such assessment is 

the General Movement Assessments (GMA)4, which is predictive of CP as early as 3 months of age based on the expert 
classification of spontaneous infant movements. It distinguishes between "typical" and "atypical" general movements 
(GMs), including the identification of "fidgety movements" (FMs) at 3-4 months, which are a precursor to coordinated, 
volitional movement. The absence of FMs at this age is 95% predictive of CP when combined with abnormal findings 
on brain MRI2. The GMA assessment is typically scored from video and considers characteristics of movement quality, 
variability, and complexity. If these relevant movement features can be reliably computed from videos, then algorithmic 
approaches for predicting infant risk from movement features should work robustly. 

  
Many parallel efforts by various research groups are underway to automate GMA assessment using video-

derived skeletal tracking5–17. However, the potential for these approaches to scale beyond the dataset on which they were 
trained is currently limited. Existing models rely on hand-annotated, or custom fine-tuned models, which are specific to 
each research group’s dataset. The advent of pre-trained vision transformers has enabled better feature extraction and 
multi-scale information fusion, leading to improved performance on data with occlusions and poses and joint or limb 
segment occlusions, both of which are common in spontaneous infant movement and cause significant issues for infant 
pose estimation algorithms18–23. The combined advancements in deep learning, open datasets, and open-source tools 
have significantly improved the reliability and accuracy of pose estimation and tracking outcomes24,25. Pre-trained vision 
transformers should be sufficiently good to capture the movement features that are relevant for clinical assessment, 
without the need for custom models that risk overfitting.  

  
Existing video-based automated risk assessment models often perform well, but are limited either in terms of 

sample size, generalizability, or methodological rigor. For instance, Gao et al. (2023) trained a transformer model on 
clips of hand-labeled movements and counted the proportion of video clips in their sample labeled as FMs after training6. 
This approach was highly effective at detecting FMs, however, as they noted this approach cannot be extended without 
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the need for retraining on other hand-labeled segments. Others such as Ihlen et al. (2019) found high levels of sensitivity 
and specificity, comparable to clinician GMA assessments, but the model relied on a backward prediction of over 900 
features, raising the concern that the precise featurization may overfit to the specific dataset26,27. Moreover, none of these 
models with promising results have been made fully openly available, limiting the extent to which generalization to a 
new dataset can be tested, and none employed a “lock-box” set (ie. held-out data points that were not used at any point 
during the hyperparameter optimization process), raising the possibility that results are overly optimistic28. There is, 
therefore, still a need to test whether the effects observed in the literature replicate in a large sample, with explainable 
features, and a pre-registered analysis pipeline.  

  
We addressed these limitations using a large dataset of clinician-labeled videos from our institutions’ United 

States CP Early Detection and Intervention Network site data. To assess risk based on video data we developed a 
classification pipeline. To compute accurate movement features, we started by selecting an open-source pose estimation 
algorithm that had high precision on our infant dataset. Out of the 2D pose estimates we, based on clinician feedback, 
computed 38 features that described posture, velocity, acceleration, left-right symmetry, and complexity of movements. 
We show that movement features can predict GMA scores in the largest infant dataset used to date, using an automated 
machine learning approach that limits bias in hyperparameter optimization, and a fully pre-registered pipeline.  

Methods 
Ethics approval for this study was provided by the University of Pennsylvania (Penn) Institutional Review Board (IRB 
Protocol Number: 833180), acting as the single IRB or record and a subsequent reliance agreement between Penn and 
the Children’s Hospital of Philadelphia (CHOP) Institutional Review Board (IRB Protocol Number: 19-016641). 

Collection of a large clinical dataset 

  
Data were collected as part of standard clinical care by team members of the CHOP site of the US CP Early Detection 
and Intervention Network in a REDcap database between May 2019 and December 2023. This included the secure 
uploading of iPad- or iPhone-recorded videos, GMA scores and demographic information.  Access to this clinical 
database was restricted to hospital staff. The GMA was administered in accordance with CHOP’s participation in the 
Cerebral Palsy Foundation’s Early Detection and Intervention network, who follow the international diagnostic 
guidelines 2. For all infants who were between 10-20 weeks post-term age (corrected for preterm birth, if applicable) at 
the time of a clinic visit, and whose parents or legal guardians agreed to video recording for clinical care, clinicians 
captured a 1-2 minute video of the infant lying in supine.  This is the usual age for an infant’s first visit with the Neonatal 
Follow-up Program high-risk infant follow-up clinic. Infants were observed in minimal attire for unobstructed visibility 
of the trunk, shoulders, and extremities to facilitate the observation of natural movements (typically wearing a diaper 
only. The use of pacifiers, toys, or engagement in communication with the infant during the assessment was prohibited 
and other distractions that could potentially influence the outcome were minimized. If patients missed their clinic visit 
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during this time period, parents were instructed how to capture the video and provided a link to upload the video into 
REDcap. 

The evaluation process was characterized by the involvement of over 20 clinicians, including physical and 
occupational therapists, nurse practitioners and physicians, who had completed training in GMA assessment by the 
General Movements Assessment Trust, several with additional advanced training. The GMA score (FMs present, absent 
or abnormal) was determined after adjudication by two independent clinician reviewers. In instances where disparities 
in assessment arose, a third evaluator was consulted. Videos eliciting uncertainty were further examined in weekly 
meetings convened by the site’s early detection team. 

For children still hospitalized at the time of the fidgety-aged GMA, Early Detection Team members captured 
the videos in the hospital as part of standard care. Exclusions were applied to intubated patients, those under the 
influence of sedation medications, within a week post-operative, on ECMO support, or diagnosed with 
myelomeningocele. The full dataset comprised 1060 infants. 129 were then excluded for meeting one or more exclusion 
criteria listed above. Six infants with a GMA score of 3 (“atypical fidgety”) were also excluded, since there were not 
enough infants in this group for model training/testing, and movement patterns differ from those of “absent fidgety” 
infants. The remaining 931 videos were split into an analysis set (744) and a lock box holdout set (187) (Figure 1.). The 
analysis set was further split into train/val/test sets (558, 93, 93), each of which had a 12% representation of the “absent 
fidgety” movement type. The splits were stratified to preserve the ratios of boy/girl infants, as well as age, and 
race/ethnicity. There was a total recording duration of 60-120 s per infant. 

Developing pipeline for robust skeletal tracking 

  
To estimate pose from monocular hand-held video, we implemented a top-down 2D pose estimation pipeline using 
tools from open-source library OpenMMLab, MMDetection was used for infant detection25, and MMPose was used 
for 2D pose estimation24. Infant detection was carried out using an RTMDet29 model pre-trained for person detection 
trained on the Common Objects in Context (COCO) dataset30. 2D frame-wise pose estimation was carried out using 
ViTPose18, a 10B parameter standard vision transformer that has been shown to be robust and domain-adaptable 
compared with previously state-of-the-art approaches like OpenPose31. We found that it had robust out of the box 
performance on the infant video data compared to several other models we tested31–35, obviating the need for fine-tuning 
(Figure 2). However, to ensure best performance, only the first (highest-confidence) detection was considered from each 
frame, and only frames where all 17 key points (OpenPose coordinate system) for the detection were above a confidence 
threshold of 0.8 were considered. As in Chambers et al. (2020)5 missing frames were linearly interpolated, outliers were 
removed using a rolling-median filter (1 second window) and smoothed using a rolling-mean filter (1 second window). 
Kinematic features were then computed from the resulting smooth 2D pose estimates using python code36. Pose 
estimation was conducted using high performance computing servers at CHOP, ensuring that all (identifiable) video 
data remained within the CHOP hospital system and accessible only to CHOP staff in accordance with ethics 
guidelines. 
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Computing Movement Feature Vector 

  
Following pose estimation, infant IDs were divided into training, validation, and lockbox test sets using a stratified split 
to preserve a 12% representation of the absent fidgety movement type, and preserve the ratio of Male/Female infants, 
and Race/Ethnicity described in the dataset description. The video IDs corresponding to each split were pre-registered 
prior to carrying out any additional analyses, along a set of 38 clinician-selected kinematic features, which were used in 
previously published work5,37,38. Following pre-registration, the kinematic features were computed from the smoothed 
keypoint timeseries using the open-source python code adapted from Chambers et al. (2020)5,36. The kinematic features 
captured the displacement, speed, velocity, acceleration, and entropy of the extremities (wrists/ankles) and joint angles 
(elbows/knees) (Figure 3), which were described by clinicians as capturing the relevant information needed for visual 
scoring of the GMA4. No features specific to the GMA (FMs) were computed to minimize the risk of overfitting to the 
clinical dataset. 

Model Training  

  
A binary classifier was trained to predict which infants had a GMA score of “absent fidgety”, which indicates higher risk 
of developing CP2–4,39,40. Because decisions made by researchers during feature selection, model selection and 
hyperparameter optimization may lead to overly optimistic results on trained classifiers even when no data leakage has 
occurred27, feature selection was done in consultation with clinicians prior to any data analysis and pre-registered in 
201838. Model selection and hyperparameter optimization were done using automated machine learning package 
AutoSklearn 2.041,42 with “Vanilla AutoSklearn” settings, which restricted the ensemble size to one such that the current 
best model would always be chosen according to its performance on the validation set. Balanced Accuracy was selected 
as the optimization metric due to the imbalance in class sizes (roughly 10:1)43. Meta-feature free Portfolios were used for 
efficient meta-learning, and training/validation splits were automatically selected using successive halving 41. 5-folds 
cross validation (standard way of validating ML results) was carried out to ensure that model performance was 
generalizable across different data splits within the training/validation set, and the resulting trained model was pre-
registered on May 22, 2024, prior to testing on the held-out lock box data37.  

Results 

Patient characteristics 
  
To ask how well we could predict GMA score from clinician-selected movement features in a large sample, we recruited 
1060 participants from the Children’s Hospital of Pennsylvania. The sample of 1060 infants was sex-balanced, with 
55% girls, 45% boys, and 1% Unknown/Unspecified. It also comprised a wide range of race/ethnicities, including White 
(38%), Black/African American (35%), Other (10%), and all other responses (Multi-Racial, Asian, Indian, American 
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Indian/Alaskan, Native Hawaiian, and Not Reported/Unknown/Other) making up 16% of responses. Of reported 
ethnicities, 8% were Hispanic/Latino.  
 

Each of the video recordings used for analysis was determined evaluable by the clinical reviewers. In cases where 
infants were distracted during the recording session, a second video was obtained. Only the final videos used for GMA 
scoring were considered in this dataset. Average infant age was mean corrected age 14.6 weeks (+/- 2.1 weeks). Of the 
931 infants that remained after applying exclusion criteria, 820 were scored as having FMs (normal) and 105 infants 
were scored with having absent FMs. The remaining six infants were scored as having abnormal movements and were 
excluded from further analyses.  

Pre-trained vision transformers led to robust skeletal tracking 

  
To develop a classification pipeline, we first had to get reliable, accurate skeletal tracking from video. Videos of 

infants are challenging for pose-estimation algorithms due to the high frequency of irregular body poses, the tendency 
for there to be many face/body-like objects in frame (toys, dolls, cartoons), and the high level of occlusion (primarily 
self-occlusion during rolls, variable limb movements or crunching). Algorithms like OpenPose often fail to identify 
body parts when they are occluded, or mis-attribute their location if another body-like object is in frame (Figure 2, left), 
leading to unreliable estimates of pose and movement21. To some extent, these limitations can be overcome with fine 
tuning on each infant dataset; however, we found that a large pre-trained vision transformer, ViTPose-H, performed 
better than any fine-tuned algorithm we tested, fully obviating the need for fine-tuning on the infants, and generalized 
much better to new, unseen datasets (Figure 2, right). This was validated through iterative inspection of 2D pose 
estimates by clinicians trained in the GMA and tested for generalizability on 2 fully out-of-sample infant datasets from 
other experiments (total of 280 infants 0 - 4 months). We thus have a fast, scalable, and precise way of converting videos 
into skeletal tracking.  

A simple movement feature vector was sufficient for clinical score prediction 

  
The recognition algorithm needs as inputs a description of an infant’s movement, a so-called feature vector, 

which is computed from the outputs of the skeletal tracking pipeline. This feature vector was based on extensive 
interviewing of expert clinicians, pre-registered in 2018 5,37,38 and published as part of a CP risk-assessment pipeline based 
on Bayesian Surprise5,38. All of the features were selected and pre-registered prior to collecting the infant videos in order 
to eliminate any risk of overfitting. All 38 movement features were computed for each infant using python code which 
has been made available on github36. We found a high degree of overlap across the features for infants with and without 
FMs (Fig. 3), with no feature clearly distinguishing between GMA scores. In other words, every individual feature fails 
to reveal if a given infant is at high risk of developing CP.  
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Decisions made by researchers during feature selection, model selection and hyperparameter optimization may lead to 
overly optimistic results on trained classifiers even when no data leakage has occurred27. To minimize these procedural 
overfitting risks, we used a pre-registered set of clinician-selected features, and a very well-established standard machine 
learning process (Auto-sklearn 2.041, also pre-registered). For the machine learning classifier we used “vanilla” auto-
sklearn with default settings and a duration parameter of 1h42. Using this approach, the model was able to achieve a 
AUC-ROC of 0.72 on the test set. To verify that this result was generalizable within the training dataset, we ran 5-folds 
cross-validation runs using 6 different random seeds, which gave an average AUC-ROC of 0.73 ± 0.05. This is the 
standard way in which medical machine learning scientists report results and represents the rate of True Positives relative 
to False Positives. In other words, the feature vector contains sufficient information to predict GMA scores.  

  
Many machine learning models have shown similar results, however these approaches still suffer from the problem that 
machine learning experts often try multiple algorithms, selecting only the one that works best on their specific dataset. 
This can make even the best-performing models useless on new data. We took several steps to avoid this. Prior to any 
model training, we randomly selected another test set, a so-called ‘lock box’ set of 187 infants (22 with absent FMs and 
therefore higher risk for CP) which the team did not use until all features, pre-processing steps, and algorithms were pre-
registered. This yielded an AUC-ROC of 0.79 (Figure 4), a value very similar to the AUC-ROC of the machine learning 
pipeline we obtained in cross validation. In other words, there is no sign that we have any degree of overfitting to the 
test-set. We thus obtained good performance in a setting where a lack of overfitting can be guaranteed. 

Discussion 
  
Here we have developed an ML algorithm to predict GMA score (a strong indicator of CP risk) from video-based pose 
estimates using rigorous methods. We used an exceptionally big sample (training set: 558, overall >1000 infants), a 
simple and explainable movement-based feature vector, and we pre-registered each step of the process prior to testing 
on a randomly-selected “lock-box” set of 187 infant videos. We found that our algorithm performs well (AUC-ROC 
0.79). We have utilized an AutoML approach to minimize the risk of overfitting. We have further minimized the risk of 
false positive data using a lock-box set and pre-registered our analysis before running it. We have made data and 
algorithms publicly available on the OSF pre-registration site, Github, and Figshare. Based on our rigorous pre-registered 
approach with a lock-box set we can be confident that we did not do any overfitting and that it will generalize well to 
other datasets. 
  

While the GMA has been shown to have a high level of sensitivity and specificity in clinical settings, we did not 
predict the main important target future outcome – diagnosis of CP – as long-term outcomes were not available at the 
time of model training. Instead we predicted GMA, a clinician powered risk measure. This is common throughout the 
automated CP risk prediction literature, with multiple research groups focusing on predicting GMA score, or detecting 
Fidgety Movements directly, as opposed to predicting CP diagnosis. This approach is not ideal, as it introduces an 
additional source of noise from potential human error during assessment, in addition to the noise inherent in the GMA 
assessment itself. FMs, while highly indicative, are still not a perfect biomarker for CP and multiple items are necessary 
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for CP diagnosis (biomarkers, clinical history, functional motor assessment and neurological assessment). Over-reliance 
on FMs risks missing other, perhaps more indicative features or combinations of features that are not readily apparent. 
Moreover, the extremely low prevalence of Abnormal FMs makes training a model that captures this movement type 
infeasible, meaning that some infants at high risk are not accounted for in models trained only to detect FMs (or their 
absence). Future efforts should focus directly on predicting CP outcomes.  

  
In order to detect subtle movement differences, it is likely that our features are suboptimal. The clinician-

selected movement features offer only a coarse description of movement, whereas we know from the clinical literature 
that the difference between infants whose movements are typically developing and those that are not is often subtle. 
This is especially true if we push towards early-prediction, before the 3-4 months where the difference between 
movements is captured by the GMA, or push towards models that work for widespread pre-screening in the general 
population. Many efforts have been made to identify a precise featurization using machine learning 14,15, however all of 
these efforts risk overfitting since the size of the datasets is very small. By contrast, deep learning models trained on very 
large datasets of infant movements, as well as important context like clinical history and other assessments) promise to 
give more precise feature vectors that capture these subtle differences, boosting performance of the GMA prediction 
model and enabling even earlier prediction of CP.  

  
The wide range of ages at which CP is typically diagnosed reflects the fact that less severe movement deficits are 

often not evident to untrained observers until later in an infant's development when they start missing major milestones, 
whereas indicators of more severe impairment may be evident to clinicians (and caregivers) much earlier. The infants 
included in the model all spent time after birth in the Neonatal Intensive Care Unit (NICU), meaning that they were 
already at an elevated risk of CP. This limitation is prevalent throughout the automated CP detection literature 8,10,11,16, 
since collecting videos of infants for the purposes of training a ML prediction model is most feasible in a hospital setting. 
As such the movements that distinguish the two groups in our sample may not be representative of infants from the 
general infant population. Future work can address this by including infants from the general population as well as those 
from the higher risk NICU cohort. However, other people have shown that movement features can be used to predict 
GMA scores in at-home videos of infants that are not at high risk15, so the approach should generalize if trained on the 
bigger sample. This should be imminently feasible now that we have released a pose estimation and preprocessing 
pipeline that is open, easy to share, and does not require fine-tuning across videos of infants in different settings and at 
different ages.  
  
            We have shown that a simple movement-based automated prediction approach works in an exceptionally big 
sample (>1000 infants). This is significant since models are often trained on very small datasets (< 50) which risk 
overfitting and limit generalizability. Given that the clinician-selected movement features can predict GMA score in 
such a large sample, we have a strong indication that models that include even more data from a wider sample of infants, 
and more precise features, should perform even better.     
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To further minimize the risk of overfitting, we pre-registered all of our analysis pipeline, and our model, prior 
to testing on a “lock-box” set. Both of these steps minimize the risk of selecting features that are unique to a specific 
dataset, or selecting features that are biased by the pre-processing steps taken prior to model training. Such bias results 
in many machine learning models being overfit, and failing when applied to an out-of-sample dataset. Pre-registration 
and lock-box testing greatly reduce this risk, and should be standard for developing machine learning pipelines in clinical 
contexts.  

  
All of the methods used are ethologically doable on a phone camera. Data collection was done using a hand-

held iPad camera, and the pose estimation pipeline was tested both on videos from this dataset, as well as ~300 infant 
videos from other datasets to ensure generalizability across various contexts. While video-based pose estimation for 
infant movement estimation is common in the automated detection literature, each site typically uses their own custom 
fine-tuned algorithm with a post-processing pipeline that is tailored to their specific dataset. The pre-trained vision 
transformer we used was not fine-tuned on any of the infant videos, and as such should work equally well at other 
clinical sites and on at-home videos. Training on datasets across multiple sites and various contexts should now be 
possible, and drive towards a globally available at-home pre-screening tool. 
  
            Overall we have shown that advances in pose estimation now make it entirely realistic to get precise movements 
from infant videos without the need for any specialized camera setup or fine-tuning. We have shown that movement 
features derived from these pose estimates are sufficient for predicting GMA scores in a very large sample, and that our 
model generalizes well to unseen data. This holds tremendous potential for the creation of a global prescreening tool, 
especially if we boost performance using deep-learned feature vectors and train on more data, including from many 
infants across various contexts, and includes CP outcomes as opposed to just clinical scores.  
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Figures 
 

 
Figure 1 Process for rigorous evaluation of automated clinical score prediction. Each step of the model development 
process was pre-registered. Lage video dataset had 1060 infants, 132 were excluded from the dataset for meeting one or 
more medical exclusion criteria prior to any analysis. Training(651)/Test(93) infant videos and “Lock-box” videos (187) were 
pre-registered prior to pose-tracking algorithm selection and movement feature computation. Features were pre-registered 
prior to model training. Model was pre-registered prior to testing on lock-box 

 
 
 
 
 

 
Figure 2 Improvements in skeletal tracking with pre-trained vision transformers. Fine-tuned OpenPose algorithm (Left) 
still struggles with issues frequently encountered in infant videos such as occlusions and complex poses. Modern approaches, 
notably those leveraging pretrained vision transformers such as ViTPose-H (Right), are more robust. Occluded keypoints are 
not included in pose estimate using previous algorithms (Left). Transformer-based approach (Right) learns skeletal structure 
from adult human data and can infer occluded keypoints even on infants. 
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Figure 3 Individual features are highly correlated. Clinician-selected features, including XY features of the wrists/ankles 
(Left) and angular features of the elbows/knees (Right), which are typically used for human assessment of risk are highly 
overlapping for Fidgety (Grey) and Absent Fidgety (Red) movement types, with no individual feature clearly predicting GMA 
score. 
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Figure 4 Model generalizes to lock-box set. Classifier trained on clinician-selected features using vanilla auto-sklearn 
shows a high AUC-ROC of 0.79 (Left) and Precision-Recall of 0.34 (Right) on lock-box set of 187 infants, having 12% 
representation of absent fidgety movement type. True positive rate is equal to the Sensitivity of the classifier, False positive 
rate is equal to 1-Specificity. 
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