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Abstract
Introduction

Cortical thickness asymmetry has been proposed as a latent biomarker for
Autism Spectrum Disorders (ASD) and schizophrenia (SZ). However, the degree of
abnormal asymmetry at the individual level in ASD and SZ remains unclear. To
investigate this, we applied normative modeling.
Methods

Normative means for the whole brain and regional (160 cortical parcels) cortical
thickness asymmetry index (AI) were established using a training set of healthy subjects
(n=4,904, 45.15% male, age range: 6-95 years), controlling for age, sex, image quality
and scanner. We calculated z-scores to quantify individual deviations from the
normative mean in a test set consisting of healthy controls (HCtest, n=526, 40% male),
participants with ASD (n=135, 83% male) and SZ (n=287, 81% male). Regional
deviance was assessed by counting the number of individuals with significant deviations
below (infra-normal, z-score ≤ -1.96) or above (supra-normal, z-score ≥ 1.96) normative
means in each parcel. We also evaluated individual deviance by counting the number of
regions with significant deviations for each participant. A data-driven multivariate
approach was employed to determine whether joint regional deviance was associated
with diagnosis.
Results

There were no differences for deviance of whole brain AI between any of the
groups. Distributions of individual deviances overlapped across all 160 regions, with
only one superior temporal region in which SZ individuals showed a higher proportion of
supra-normal AI values compared to HCtest (HCtest = 1.14%, SZ = 5.92%, 𝞆2 = 15.45,
PFDR< 0.05, ω = 0.14). The SZ group also had a higher average number of regions with
significant deviations than HCtest (infra-normal: z = -4.21, p < 0.01; supra-normal: z =
-4.33, p < 0.01). Multivariate analysis showed no association between inter-regional
heterogeneity of AI and diagnosis. Results were consistent when using a higher
resolution parcellation, alternative asymmetry calculations, analysis restricted to males,
and after controlling for handedness and IQ.
Conclusions

Our findings indicate that whole brain, regional and inter-regional variability in
cortical thickness AI among those with ASD is entirely accounted for by normative
variation. This study challenges the utility of cortical thickness asymmetry as a
biomarker for ASD.
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Introduction

The cortical thickness of the human cortex exhibits hemispheric asymmetry in its

structural organization (Zhou et al., 2013). Case-control studies in schizophrenia (SZ)

and autism spectrum disorders (ASD) indicate that individuals with these conditions

often lack the typical leftward asymmetry in language-related brain regions, where the

left hemisphere is usually larger than the right (Dougherty et al., 2016; Floris et al.,

2016). Notably, SZ and ASD are also associated with pronounced language deficits and

possibly increased rates of non-right-handedness (Hirnstein and Hugdahl, 2014).

Collectively, these findings suggest that hemispheric asymmetry of brain structure may

play a role in the neurobiology of ASD and SZ and hold potential as a biomarker for

these conditions (Ratnanather et al., 2013; Li et al., 2023).

However, recent large-scale case-control imaging studies from the ENIGMA

initiative present conflicting results regarding the significance and extent of hemispheric

asymmetry in ASD and SZ (Kong et al., 2022). These studies reveal a high degree of

inter-individual variability of brain asymmetry in both ASD and SZ, challenging the

notion of consistent hemispheric asymmetry across individuals with ASD or SZ (Kong et

al., 2022). To specifically address individual phenotypic heterogeneity, normative

modeling frameworks have been developed, which establish standard norms for

neurobiological variables and assess individual deviations from these benchmarks

(Marquand et al., 2019). Applying normative modeling to cortical thickness in ASD and

SZ has revealed that individual deviations in regional cortical thickness do not occur

consistently in the same regions or with the same severity (Zabihi et al., 2019;

Bethlehem et al., 2020; Lv et al., 2021; Di Biase et al., 2022; Segal et al., 2023).
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However, no studies have yet applied this analytical approach to regional cortical

thickness asymmetry, leaving it unclear whether deviations from normative cortical

thickness asymmetry are disproportionately represented among individuals with ASD or

SZ. This study’s aims to assess and analyze the heterogeneity of regional cortical

thickness asymmetry in a large, multi-scanner sample of healthy individuals as well as

those with ASD or SZ.
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Methods

Sample characteristics

We examined data for 5430 healthy individuals (44.68% male) and 422 cases,

taken from 20 different scan sites. The clinical sample comprised 135 individuals with

ASD (83% male) and 287 individuals with SZ (81% male). The age distributions per

scan site are given in Supplemental Figure 1). The scanner details, sample size,

demographic and clinical characteristics of each scan site, after various exclusions

based on data quality are presented in Supplemental Table 1.

Image processing and quality control

For a flowchart leading to the final sample, see Supplemental Figure 2. The

ABIDE-I and ABIDE-II datasets include low quality T1 data which biases cortical

thickness measurements (Bedford et al., 2023). We initially included only images from

ABIDE that we denoted as the highest quality (Bedford et al., 2023). The BGS and

COBRE datasets have undergone extensive quality control procedures (Chopra et al.,

2023); we initially included the same images from these two samples as (Chopra et al.,

2023). For the Utrecht dataset images also underwent extensive quality control and we

initially included the same images as (Janssen et al., 2021). Thereafter, using the

initially included raw T1-weighted images from all datasets we applied the

Computational Anatomy Toolbox to generate a weighted overall image quality rating

(IQR) for every image (Gaser et al., 2024). This metric combines ratings of basic image

properties, including the level of noise and geometric distortions, into a single score that

quantifies the overall image quality of a participant’s T1-weighted scan (for more

information, see Gaser et al. 2024). On this metric, lower scores denote higher image

quality. As per previous work, we excluded 682 images with an IQR >2.8 (Wolfers et al.,

4

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.06.24316751doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.06.24316751
http://creativecommons.org/licenses/by-nd/4.0/


2018). Thereafter all remaining images were processed centrally using the FreeSurfer

analysis suite (v7.1) with default settings (Fischl, 2012). The Freesurfer Euler number

was extracted as a proxy for freesurfer surface quality (Rosen et al., 2018). Finally, as

per previous work, images were removed if the maximum, absolute, within-dataset

centered Euler number was larger than 10 (Rutherford et al., 2023). This was the case

for five images.

Cortical thickness hemispheric Asymmetry Index

Whole brain

We used the average cortical thickness for the left (LH) and right hemisphere

(RH) as outputted by FreeSurfer’s reconstruction pipeline. We then computed the whole

brain hemispheric Asymmetry Index (AI) for cortical thickness for each subject (n) as

follows:

𝐴𝐼
𝑛
 =  

𝐿𝐻
𝑛
 − 𝑅𝐻

𝑛

((𝐿𝐻
𝑛
 + 𝑅𝐻

𝑛
)/2)  (1)

where represents the average cortical thickness for subject n for the left𝐿𝐻
𝑛

hemisphere and represents the average cortical thickness for subject n for the right𝑅𝐻
𝑛

hemisphere. A positive AI value reflects leftward asymmetry (LH > RH).

Region

We applied a validated symmetric parcellation of 160 regions of approximately

equal size to the individual cortical thickness maps from the left and right hemisphere

outputted by FreeSurfer’s reconstruction pipeline (Romero-Garcia et al., 2014). For

each left and right hemispheric region we calculated the cortical thickness. We then
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computed the AI for cortical thickness for each hemispheric region (r) and each subject

(n) as follows:

𝐴𝐼
𝑛𝑟

 =  
𝐿𝐻

𝑛𝑟
 − 𝑅𝐻

𝑛𝑟

((𝐿𝐻
𝑛𝑟

 + 𝑅𝐻
𝑛𝑟

)/2)  (2)

where represents the cortical thickness for subject n and region r for the left𝐿𝐻
𝑛𝑟

hemisphere and represents the cortical thickness for subject n and corresponding𝑅𝐻
𝑛𝑟

region r for the right hemisphere.

Alternative approaches

Alternative A1: Using a higher resolution atlas

Given that other studies calculated AI at higher spatial resolution, we processed

all images using a validated higher resolution parcellation (1000 regions) and calculated

the AI for each region (Schaefer et al., 2018; Kruggel and Solodkin, 2020; Roe et al.,

2023).

Alternative A2: Using alternative image processing for calculating AI

We generated unsmoothed vertex-wise standard space cortical thickness maps

for each participant and hemisphere from Freesurfer using Freesurfer’s ‘qcache’

command. These maps were inserted into Freesurfer’s ‘xhemi’, a dedicated image

processing pipeline for cortical asymmetry analysis (Greve et al., 2013). The procedure

achieves alignment of the homotopic hemisphere by cross-hemispheric registration

using a symmetric surface template (Roe et al., 2023). In our case, we mapped the right

hemisphere to the left hemisphere. We then computed the AI for cortical thickness at

each left hemispheric vertex (v) and each subject (n) as follows:
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𝐴𝐼
𝑛𝑣

 =  
𝐿𝐻

𝑛𝑣
 − 𝑅𝐻

𝑛𝑣

((𝐿𝐻
𝑛𝑣

 + 𝑅𝐻
𝑛𝑣

)/2)  (3)

where represents the cortical thickness for subject n and vertex v for the left𝐿𝐻
𝑛𝑣

hemisphere and represents the cortical thickness for subject n and vertex v for the𝑅𝐻
𝑛𝑣

right hemisphere. To reduce the computational burden for subsequent normative

modeling and maximize comparability with our main approach we parcellated the left

hemisphere of each participant into the same 160 similar sized regions as in our main

approach. The AI was subsequently calculated by averaging across vertices belonging

to a region.

Alternative A3: Using males only

We calculated the whole brain and regional AI using males only. Separate

analyses in females were not possible due to insufficient sample size.

Normative modeling

For each of the datasets exclusively comprising healthy controls 90% of

individuals went into the training set and 10% into the test set (HCtest) using the

createDataPartition function from the caret R package. We maintained the distribution of

age, sex, and scanner variables between the training and test sets. From each of the

clinical datasets, i.e. those datasets including cases and healthy controls, 90% of the

healthy controls were added to the training set and 10% were added to the HCtest. All

cases with ASD or SZ were added to the test set. Both the training and test sets

comprised individuals from the same scanners, constituting a "within-site-split".

Subsequently, we used Bayesian Linear Regression (Fraza et al., 2021). The
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training set consisted of 4904 healthy individuals (54.85% female, age range: 6-95

years) which established a normative range for AI, considering an individual's age, sex,

Euler number, and scanner. The age range encompassed the age range of the cases

(range: 7-65 years). For each region, we assessed the extent to which the AI estimate,

for each individual, deviated from the predictions of the normative model. These

deviations were quantified as z-scores, for each region (r) and each subject (n), as

follows:

𝑧
𝑛𝑟

 =  
𝑦

𝑛𝑟
 − 𝑦

𝑛𝑟

σ
𝑟
2+(σ

*
2)

𝑟

(4)

where means the true AI and is the predicted average AI. The difference in these𝑦
𝑛𝑟

𝑦
𝑟𝑠

values is normalized to account for two different sources of variation; i) which is theσ
𝑟
2

aleatoric uncertainty and reflects the variation between individuals across the

population, and ii) he epistemic uncertainty, , which accounts for the varianceσ
*𝑟
2

associated to modeling uncertainty introduced by the model structure or parameter

selection (associated to the age gaps in which there is low density of individuals). As

per prior publications we considered AI z-scores as infra- or supra-normal when they

equalled or exceeded -1.96 or 1.96, respectively (Bethlehem et al., 2020; Lv et al.,

2021; Di Biase et al., 2022; Rutherford et al., 2023; ENIGMA Clinical High Risk for

Psychosis Working Group et al., 2024; Huang et al., 2024).

To evaluate the generalization of our model, we employed a ten-fold

cross-validation approach on the training cohort. Specifically, we divided the training

cohort into ten separate folds. In each fold, we trained BLR models using 90% of the
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participants as training data, while including age, sex, Euler number, and scanner as

covariates, reserving the remaining 10% for assessing generalization performance. This

process was repeated ten times so that predictions of AI values were generated for all

individuals within the training cohort group. This methodology follows standard practices

in machine learning and yields nearly unbiased estimates of the model's true

generalization capabilities. Z-scores were calculated and we assessed model fit by

calculating the root-mean squared error between predicted and true AI values for our

main approach and the three alternative approaches (A1, A2 and A3), see

Supplemental Figures 3, 5 and 10.

We assessed data bias over sites using linear support vector classifiers.

Specifically, we employed a series of one-versus-all linear support vector machines,

each with a default slack parameter of 1 (Segal et al., 2023). These models were

trained separately on the z-scores from the healthy controls from the training subsets

and the test subsets for the purpose of classifying scan sites. For each site, a two-fold

linear support vector machine classifier was trained and the mean balanced accuracy

was calculated. A mean balanced accuracy near chance level (50%) served as an

indicator that the observed deviations were minimally influenced by residual site effects,

which was confirmed for our main approach and the A1 and A2 approaches (see

Supplemental Tables 2-4).

Statistical analyses

Normative modeling-based deviance per region

For each region we calculated, separately for HCtest and each disorder, the

percentages of individuals with infra- and supra-normal outlier values, see Figure 1:
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A-D. This led to the creation of percentage outlier maps to visualize the spatial

distribution, see Figure 1: E. To mitigate the impact of varying sample sizes among

groups, we utilized the percentages of individuals rather than raw counts. Group

differences in the proportion of individuals with supra- or infra-normal z-scores between

HCtest and each disorder were examined using permuted chi-square tests (n=10000)

using the coin R package with FDR (q = 0.05) as a correction for multiple comparisons

and Cohen’s ω (which has an identical interpretation as Cohen’s d) as a measure of

effect size.

Normative modeling-based deviance per individual

Whole brain

The whole brain cortical thickness AI from each individual in the test set was

used to calculate their z-score, representing the individual deviance for whole brain

cortical thickness AI per individual. Group differences in z-scores for whole brain cortical

thickness AI between HCtest and each disorder were examined using Welch t tests and

Cohen’s d was used as a measure of effect size. Group differences in the proportion of

individuals with supra- or infra-normal z-scores between HCtest and each disorder were

examined using permuted chi-square tests (n=10000) using the coin R package and

Cohen’s ω was used as a measure of effect size.
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Region

The regional cortical thickness AI from each individual in the test set was used to

calculate their z-score, representing the individual deviance for regional cortical

thickness AI. For each individual we calculated the number of regions with infra- and

supra-normal outlier values. Group differences in the number of regions with supra- or

infra-normal z-scores between HCtest and each disorder were examined using the

Mann-Whitney U test.

Multivariate analysis of normative modeling-based deviance

We finally investigated whether the multivariate pattern of regional cortical

thickness AI, represented by the z-scores of all regions for each participant, revealed

any diagnostic effect. To explore this, we conducted an exploratory clustering analysis

to determine if the z-scores across the entire cortex could distinguish between HCtest,

ASD, and SZ groups. A data-driven clustering approach was applied, using t-Distributed

Stochastic Neighbour Embedding (tSNE) to construct a distance matrix from the 160

regions by 948 participants' (all participants included in the test set) z-scores. K-medoid

clustering was then performed on this distance matrix, grouping participants into

maximally independent clusters based on the optimal number of clusters determined by

average silhouette width (Hennig and Liao, 2013). Finally, k-medoid clustering was

re-run with the optimal cluster count, and the overlap between clusters and diagnoses

was visualized by projecting the clustering onto the 2-dimensional tSNE-embedded

space.
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Replication analyses

To assess the robustness of our results we repeated all analyses using AI data

derived from the higher resolution parcellation (A1), using the AI derived from the

alternative image processing pipeline (A2) and using males only (A3). Fourthly, we

assessed the effect of handedness and IQ on the average z-scores of each individual

within HCtest and each disorder. Handedness information was available for 238

individuals with SZ and 69 individuals with ASD. Group differences between left- and

right-handers in average z-scores were examined using Welch t tests within HCtest and

each disorder group. Intelligence Quotient (IQ) information was available for 110

individuals with SZ and 69 individuals with ASD. The relationship between IQ and

average z-scores was assessed using Pearson correlation within each disorder group.
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Results

Normative modeling-based deviance per region

Here we counted for each region the number of individuals who had infra- or

supra-normal z-scores. The percentages of ASD, SZ and HCtest with infra- and

supra-normal z-scores for each region and whether the differences between HCtest and

ASD and HCtest and SZ were significant are included in the Supplemental Data. For all

the regions the distributions of the z-scores of the ASD and SZ groups overlapped with

HCtest, see Supplemental Figure 4. There were no significant group differences in the

proportion of individuals with infra-normal or supra-normal z-scores between HCtest and

ASD. There were no significant differences in the proportion of individuals with

infra-normal z-scores between HCtest and SZ. Out of 160 regions, there was one region

in the superior temporal cortex, superior temporal cortex part 1, where the proportion of

individuals with supra-normal z-scores differed significantly between HCtest and SZ

(HCtest = 1.14%, SZ = 5.92%, 𝞆2 = 15.45, PFDR< 0.05, ω = 0.14), see Figure 1: F. When

assessing the mean AI in the superior temporal cortex part 1, the groups of individuals

from HCtest and SZ with supra-normal z-scores in the superior temporal cortex part 1

both showed leftward asymmetry and the two groups did not differ from each other in

mean ‘raw’ AI (mean AI individuals from HCtest with supra-normal z-scores in the

superior temporal cortex part 1 = 0.15, mean AI individuals from SZ with supra-normal

z-scores in the superior temporal cortex part 1 = 0.16, t= 0.11, P > 0.05, d = 0.07).

The minimum and maximum proportion of infra-normal deviance for any region

for individuals with ASD was 0% to 8.15%; 0.7% to 6.7% for SZ; and 1.33% to 4.75%

for HCtest; the corresponding ranges for the minimum and maximum proportion of
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supra-normal deviance for any region was 0% to 8.89% for ASD; 0.7% to 7.31% for SZ;

and 0.76% to 4.56% for HCtest.

Figure 1. Characterizing regional-level deviance in the Asymmetry Index (AI). The

cortex for each individual was parcellated into 160 equally sized cortical regions

(Romero-Garcia et al., 2014) (A). The training dataset, HCtrain, was used to train a

normative model to make predictions about regional AI values given an individual’s age,

sex, Euler number, and scan site (B). The predictions for held-out healthy individuals

(HCtest) and cases were then compared with empirical AI estimates. Model predictions

for one region, showing individuals in the training set (HCtrain; light orange) and the

held-out controls (HCtest; dark orange) and clinical groups (blue). (C). For each

individual, deviations from model predictions were quantified as a z-score map (D). For
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the HCtest and each clinical group, we quantified the proportion of individuals showing an

infra- and supra-normal deviation in a given brain region, yielding infra- and

supra-normal deviation percentage maps (E). We compared the percentage maps from

HCtest and each clinical group using chi-square permutation tests and FDR correction

yielding a map showing regions with significantly different percentages of infra- and

supra-normal AI deviations in ASD or SZ compared with HCtest (F). AI, asymmetry index;

HCtrain, healthy control individuals from the training set; HCtest, healthy control individuals

from the test set; ASD, Autism Spectrum Disorders; SZ, schizophrenia. Data used to

generate this figure can be found in the Supplemental Data.

Normative modeling-based deviance per individual

Whole brain

Here we calculated the z-scores for the whole brain AI and counted the number

of individuals who had infra- or supra-normal deviance. The distributions of the z-scores

of the whole brain AI overlapped for HCtest, ASD, and SZ groups, see Figure 2. There

were no differences in z-scores for whole brain AI between HCtest and ASD (P > 0.05,

Cohen’s d (d) = -0.01) and between HCtest and SZ (P > 0.05, d = -0.02). There were no

differences in the proportion of individuals with infra-normal or supra-normal deviance

between HCtest and ASD for whole brain AI (proportion of individuals with infra-normal

z-scores: HCtest = 2.47%, ASD = 1.48%, P > 0.05, Cohen’s ω (ω) = 0.05; proportion of

individuals with supra-normal z-scores: HCtest = 2.66%, ASD = 5.93%, P > 0.05, ω =

0.15) and between HCtest and SZ (proportion of individuals with infra-normal z-scores:

SZ = 3.48%, P > 0.05, ω = 0.06; proportion of individuals with supra-normal z-scores:

SZ = 3.14%, P > 0.05, ω = 0.03).
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Figure 2. The distributions of the normative modeling based z-scores for the whole brain

AI in HCtest, SZ, and ASD. The vertical line represents the median for each group. The

dotted lines represent |z| = 1.96. AI, Asymmetry Index; HCtest, healthy controls from the

test set; ASD, Autism Spectrum Disorders; SZ, schizophrenia.

Region

Here we calculated the z-scores for the AI of each region and counted for each

individual the number of regions with infra- or supra-normal deviance. The distributions

of the proportion of individuals with regional infra- and supra-normal deviance were

similar for ASD and HCtest; there were no group differences in the average number of

infra- and supra-normal regions between ASD and HCtest, see Figure 3. The SZ group

had a higher average number of infra- and supra-normal regions compared to HCtest

(infra-normal: z=-4.21, p<0.01 , supra-normal: z=-4.33, p<0.01), see Figure 3.

Infra-normal z-scores for AI in at least one region were observed in 93%, 96% and 92%
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of individuals across ASD, SZ, and HCtest, respectively; the corresponding supra-normal

z-scores were 93%, 97% and 96% across ASD, SZ, HCtest, respectively.

Figure 3. Distribution of the number of regions with infra- or supra-normal deviance per

individual. Bars and curves display the distribution of the proportion of individuals per

amount of regions with supra-normal and infra-normal deviations. For example,

approximately 7% of the individuals with ASD is not supra-normal deviant in any region

while approximately 15% of the individuals with ASD is supra-normal deviant in one

region only. Vertical dashed lines display the average number of infra- and supra-normal

regions for each group. HCtest, healthy individuals from the test set; ASD, Autism

Spectrum Disorders; SZ, schizophrenia.
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Multivariate analysis of normative modeling-based deviance

The results of clustering the neighbor-embedded z-scores for regional AI are

displayed in Figure 4. As shown in panel B, there is no significant relationship between

the clustering of z-scores and diagnosis. In other words, the within-group heterogeneity

is reflected by normative heterogeneity, and the overall density plots for the three

groups appear nearly identical.

Figure 4. Panels A1 and A2 present the optimum (A1) and three cluster results (A2) of

k-medoid clustering applied to the 2D embedding of z-scores for regional cortical

thickness AI, generated using tSNE. Panel B demonstrates that these clusters did not

yield any meaningful differentiation based on diagnosis. AI, Asymmetry Index; HCtest,

healthy individuals from the test set; ASD, Autism Spectrum Disorders: SZ,

schizophrenia.
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Replication analyses

Approaches using a higher resolution parcellation (A1), using an alternative

processing method for calculating the AI (A2), and assessing only males (A3) confirmed

the results from the main approach.

Normative modeling-based deviance per region

For A1, A2 and A3 the distributions of the regional z-scores of the ASD, SZ

groups overlapped with HCtest, see Supplemental Figures 6, 11 and 16. For A1, A2, and

A3 there were no significant group differences in the proportion of individuals with

regional infra-normal or supra-normal z-scores between HCtest and ASD, see

Supplemental Data, Supplemental Text and Supplemental Figures 7, 12, and 17. For

A1, in less than 2% of the total number of regions, the SZ group had an increased

percentage of individuals with infra-normal deviance, see Supplemental Data,

Supplemental Text and Supplemental Figure 7. For A2, there was one region located in

the medial orbitofrontal cortex where the SZ group had an increased percentage of

individuals with infra-normal deviance, see Supplemental Data, Supplemental Text and

Supplemental Figure 12. For A3 there were no significant group differences in the

proportion of individuals with infra-normal or supra-normal z-scores between HCtest and

SZ, see Supplemental Data and Supplemental Text and Supplemental Figure 17.

Normative modeling-based deviance per individual

Whole brain

Whole brain cortical thickness AI for A1 is identical to the main approach. A2 and

A3 showed no significant group differences for deviance of whole brain cortical

thickness AI, see Supplemental Text and Supplemental Figures 13 and 18.
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Region

For A1, A2, and A3 there were no significant group differences in the number of

infra- and supra-normal regions between HCtest and ASD. For A1, A2, and A3 the SZ

group had a higher mean number of infra- and supra-normal regions compared to HCtest,

see Supplemental Text and Supplemental Figures 8, 14, and 19.

Multivariate analysis of normative modeling-based deviance

For A1, A2 and A3 there were significant relationships between the clustering of

z-scores and diagnosis, see Supplemental Figures 9, 15 and 20.

Handedness and IQ

Average z-scores of left- and right-handers did not differ within HCtest and each

disorder group (P > 0.05). There was no significant correlation between average

z-scores and IQ in both disorder groups (P > 0.05).
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Discussion

The main finding of this study is that variation in regional asymmetry of cortical

thickness in individuals with ASD falls within the normal inter-individual variation. Whole

brain and regional supra- and infra-normal deviations of asymmetry of cortical thickness

are present in similar proportions in individuals with ASD, SZ and healthy individuals.

For individuals with SZ there was one region in the superior temporal cortex where

individuals with SZ had a higher proportion of supra-normal z-scores compared to

healthy individuals, with very low effect sizes. Prior studies have shown regional cortical

thickness abnormalities in SZ and ASD when compared to healthy individuals (van Erp

et al., 2018; Pretzsch and Ecker, 2023; Bedford et al., 2024). Our study shows that

individual deficits for whole brain and regional cortical thickness asymmetry, defined

through normative modeling, are generally absent in both disorders.

Recent case-control studies using large sample sizes from the ENIGMA

consortium assessing regional cortical thickness asymmetry in ASD, SZ, and healthy

individuals have shown that significant case-control differences of AI were subtle and

not widespread, affecting 9% of regions in ASD and 3% of regions in SZ (Postema et

al., 2019; Kong et al., 2022; Schijven et al., 2023). Floris et al. (2021) is the only study,

to the best of our knowledge, to use the normative modeling framework for assessing

structural brain asymmetry in ASD and healthy individuals (Floris et al., 2021). Floris et

al. (2021) reported 5% of regions where infra- or supra-normals of gray matter volume

asymmetry were more prevalent in individuals with ASD compared to healthy

individuals, all case-control comparisons having small effect sizes. In a replicability

analysis in an independent dataset (ABIDE) they did not report any regional differences
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in gray matter volume asymmetry between the ASD and healthy groups. Prior studies

also found no association between handedness, IQ and regional structural brain

asymmetry in ASD, SZ and healthy individuals (Kong et al., 2022). Our univariate

results are in line with these findings. The multivariate results showed no relationship

between the deviance of inter-regional pattern of cortical thickness asymmetry and

diagnosis, indicating that normal variation in the inter-regional pattern completely

encapsulates the pattern variation in ASD and SZ. It is important to note that the

clustering and embedding methods used here represent just one approach to analyzing

case-control variation in cortical thickness asymmetry. Other multivariate approaches,

which consider a wider range of variables not focusing on brain asymmetry, have shown

that multivariate clustering can successfully parse variation and identify distinct

subgroups in ASD and SZ (Hong et al., 2018). The current study extends previous

studies by showing, for the first time, that variation in regional asymmetry of cortical

thickness in individuals with ASD and SZ is fully encapsulated by normal variation.

This study has limitations. While the present multi-center study benefited from a

substantial training set, which included an Asian dataset, larger and more

heterogeneous datasets, incorporating data from all continents may be important for

heightened performance and validity. While multi-center studies are necessary to

increase sample size it also results in including datasets lacking deep phenotyping.

Hence, information about handedness, IQ and symptomatology was incomplete.

However, our analysis of the relationship of handedness and IQ with asymmetry

replicated previous reports, which provided additional validity for our findings. While our

sample size of individuals with SZ and ASD was comparable to previous normative
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modeling studies, larger (multicenter) clinical samples may enable the identification of

distinct clusters of patients exhibiting significant deviance (Segal et al., 2023). Finally,

we focused on cortical thickness which is a property of cortical size. Other size

properties such as cortical volume or novel approaches focusing on cortical shape

descriptors that are independent of size, may lead to improved explanation of human

variance in cortical asymmetry and may lead to improved clustering when using

multivariate approaches (Chen et al., 2022).

In conclusion, variation of whole brain, regional and inter-regional asymmetry of

cortical thickness in individuals with ASD was fully nested in the normative variation. For

individuals with SZ, extreme deviance from the norm appeared nearly equal to that in

healthy controls. Taken together, our results demonstrate that individual abnormal

asymmetry of cortical thickness is generally equally present in ASD, SZ and healthy

controls. Therefore our results cast doubts on asymmetry of cortical thickness as a

potential biomarker for ASD and SZ.
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