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Abstract 41 

Evidence indicates phenotypic and biological overlap between psychiatric and 42 

neurodegenerative disorders. Further identification of underlying mutual and unique biological 43 

mechanisms may yield novel multi-disorder and disorder-specific therapeutic targets. The 44 

metabolome represents an important domain for target identification as metabolites play 45 

critical roles in modulating a diverse range of biological processes. Here, we used Mendelian 46 

randomisation (MR) to test the causal effects of ~1000 plasma metabolites and ~300 47 

metabolite ratios on anxiety, bipolar disorder, depression, schizophrenia, amyotrophic lateral 48 

sclerosis, Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. In total, 85 causal 49 

effects involving 77 unique metabolites passed FDR correction and robust sensitivity analyses 50 

(IVW-MR OR range: 0.73-1.48; pFDR < 0.05). No evidence of reverse causality was identified. 51 

Multivariate analyses implicated sphingolipid metabolism in psychiatric disorder risk and 52 

carnitine derivatives in risk for amyotrophic lateral sclerosis and multiple sclerosis. However, 53 

polygenic risk scores for prioritised metabolites showed limited prediction in the UK Biobank. 54 

Downstream colocalisation in regions containing influential variants identified greater than 55 

suggestive evidence (PP.H4 ≥ 0.6) for a shared causal variant for 29 metabolite/psychiatric 56 

disorder trait-pairs on chromosome 11 at the FADS gene cluster. Most of these metabolites 57 

were lipids containing linoleic or arachidonic acid. Additional colocalisation was identified 58 

between the ratio of histidine-to-glutamine, glutamine, Alzheimer’s disease and SPRYD4 gene 59 

expression on chromosome 12. Although no single metabolite had a causal effect on a 60 

psychiatric and a neurodegenerative disease, results suggest a broad effect of lipids across 61 

brain disorders. Metabolites identified here may help inform future targeted interventions.  62 
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 3 

1. Introduction 63 

Psychiatric disorders show substantial co-morbidity1 and shared genetic 64 
architecture2. Additionally, they are common both prior to and within 65 
neurodegenerative diseases3–7 – themselves genetically related8,9 – and are indicated 66 
as risk factors for their later onset10–12. Genomic analyses suggest that psychiatric and 67 
neurodegenerative risk are partially underpinned by shared risk loci and causal brain 68 
transcripts and proteins13–17. By further investigating shared biological risk 69 
mechanisms, novel interventions may be identified with effectiveness for specific or 70 
multiple disorders.  71 
 Metabolomics – the study of small molecules linked to metabolism – is a 72 
promising tool for such investigation as it represents the stage of the omics cascade 73 
closest to the phenotype18. Importantly, metabolites are strong drug target 74 
candidates as many are obtained dietarily and modulate diverse biological 75 
processes including gene expression, RNA metabolism and protein activity19–21. 76 
Obtaining samples is minimally invasive as thousands of metabolites can be detected 77 
in plasma, serum or urine22. 78 
 Similar metabolite groups, such as ceramides, are indicated to play a role in 79 
both psychiatric and neurodegenerative disorders23–27. However, observational 80 
studies may be confounded by reverse causation28.  Importantly for psychiatric and 81 
neurodegenerative disorders, the metabolome can be perturbed by disease 82 
pathology and/or pharmaceutical interventions29–33. As such, following onset and 83 
treatment discerning the direction of effect and identifying causal metabolite targets 84 
is challenging. These limitations can be addressed using Mendelian randomisation 85 
(MR), a statistical framework that leverages genetic variants as instrumental variables 86 
(IVs) to proxy an exposure and infer its causal effect on an outcome of interest34. As 87 
risk alleles are randomly assorted and fixed from conception, MR is less vulnerable 88 
to reverse causality than classical epidemiological approaches28,35. Beneficially, this 89 
approach can be performed using summary statistics from large genome-wide 90 
association studies (GWAS) (two-sample MR (2SMR)), allowing researchers to 91 
perform increasingly powerful analyses36. This approach applied to the metabolome 92 
has already identified several causal risk metabolites for Alzheimer’s disease, bipolar 93 
disorder, major depressive disorder, and multiple sclerosis37–41. 94 
 However, no study has yet been conducted to identify shared and unique 95 
metabolomic risk factors across the psychiatric and neurogenerative disorder 96 
spectrum. In this study, we assess the causal effect of ~1000 unique plasma 97 
metabolites and ~300 metabolite ratios on four psychiatric disorders (anxiety, bipolar 98 
disorder, depression and schizophrenia) and four neurodegenerative diseases 99 
(amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease 100 
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(PD) and multiple sclerosis (MS)). We further prioritise key metabolites using 101 
Bayesian model averaging, identify regions of shared causal variants with statistical 102 
colocalisation – integrating expression quantitative trait loci (eQTLs) – and assess the 103 
predictive performance of polygenic scores for risk metabolites on incident diseases 104 
in the UK Biobank (UKB).  105 
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2. Methods 106 

An overview of the analyses is shown in Figure 1. 107 

Metabolites and metabolite ratios

Chen et al. 2023 Hysi et al. 2022

Meta-analysis of 
overlapping 
metabolites 

Exposure(s)

Neuropsychiatric disorders

Respective 
phenotypes in 

FinnGen Freeze 9
(except AD)

(2023)

ANX (Purves et al. 2020; Meier et al. 2019) 
ALS (van Rheenan et al. 2021)
AD (Wightman et al. 2023 (No UKB)
BP (Mullin et al. 2021)
DEP (MVP 2022; Howard et al. 2018)
MS (IMSGC, 2019)
PD (Nalls et al. 2019)
SCZ (Trubetskoy et al. 2022)

Meta-analysis

Primary analysis:
IVW-MR
Sensitivity analyses: 
• Weighted median
• Penalized weighted 

median
• Contamination mixture
• MR-Lasso
• MR-Egger
• Constrained maximum 

likelihood
• Leave-one-out

Outcome(s)
Genetic 

instrumental 
variables

Unmeasured 
confounder

(1)

(2)

(3)

Cross-trait statistical colocalisation

Trait 1 Trait 2 Trait 1 Trait 1

Trait 1 Trait 1

Trait 2 Trait 2

Trait 2 Trait 2

H0: No causal variants for 
either trait

H1: Causal variant for trait 1 H2: Causal variant for trait 2

H3: Traits associated, but with 
different causal variants

H4: Traits associated and 
share a causal variant

Extract regions +/-250kb 
of LOO outlier instruments

Mendelian Randomisation

eQTL integration for further 
colocalisation and mediation MR

eQTLs
Respective 

neuropsychiatric 
phenotype

Genetic 
instrument
al variables

Whole blood eQTL 
summary data from 
eQTLGen phase 1

Relevant 
Metaboliteβa βb

βc

βa x βbProportion mediated =
βc

PP.H4 ≥ 0.6 
with both 
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loci

PP.H4 ≥ 0.6: Identify genes 10kb from credible SNPs in locus

Conditional MR

Possible confounders:
1. BMI

2. Waist-to-hip ratio

3. Educational attainment Outcome | 
BMI/WHR/EA

Outcome

mtCOJO

Re-calculation of IVW-MR estimates

Polygenic risk scores

Metabolite prioritization

Base: Polygenic metabolites GWAS sumstats

Target: 

Metabolite1

Metabolite2

Metabolitej

⋮
Relevant 
outcome

MR-
BMA

Sensitivity analyses robust;
no LOO outliers

MIP ≥ 0.1
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 108 
Figure 1: Analysis flowchart. In the Mendelian randomisation section, the three key assumptions are 109 
illustrated and can be described as: (1) Instruments must be robustly associated with the exposure – 110 
usually defined as genome-wide statistical significance of the variants; (2) Instruments are not 111 
associated with a confounder and (3) Instruments are not associated with the outcome via pathways 112 
other than through the exposure, for example through horizontal pleiotropy. These assumptions are 113 
known as the (1) relevance, (2) independence and (3) exclusion restriction assumption, respectively. 114 
ANX = anxiety; ALS = amyotrophic lateral sclerosis; AD = Alzheimer’s disase; BP = bipolar disorder; 115 
DEP = depression; MS = multiple sclerosis; PD = Parkinson’s disease; SCZ = schizophrenia 116 
 117 

2.1 GWAS summary statistics 118 

2.1.1 Neuropsychiatric disorders 119 
An overview of the GWAS summary statistics is shown in Table 1. These consisted of 120 
individuals of European ancestry only. For each disorder, we performed inverse 121 
variance weighted (IVW) genome-wide meta-analysis across samples9,42–51 using 122 
METAL52 to maximise sample size and statistical power. Details on each sample can 123 
been seen in the original papers. For AD, we used summary statistics that did not 124 
contain family history-based proxy phenotyping from the UK Biobank given its noted 125 
influence on the effect direction of downstream analyses53. The APOE region 126 
(chr19:45,020,859–45,844,508 (GRCh37)) was excluded from the AD GWAS due to 127 
known pleiotropic effects on relevant non-AD diseases such as heart disease and 128 
hypercholesterolaemia54. It was not meta-analysed with FinnGen freeze 9 as with the 129 
others as the sample already contained samples from a previous FinnGen freeze. 130 
Genetic correlations between these disorders – calculated using Linkage 131 
Disequilibrium Score Regression (LDSC)55 in GenomicSEM56 v.0.0.5 – are described 132 
and plotted in Supplementary Material 1 and 2, respectively.  Full output tables are 133 
in Supplementary Tables 1 and 2. Effective sample sizes were calculated as per 134 
Grotzinger et al.57, providing comparable sample size estimates representing 135 
equivalently powered GWAS with a 1:1 case/control ratio. 136 
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 137 

Table 1: Previously conducted genome-wide association study summary statistics for psychiatric and 138 
neurodegenerative disorders used in this study. 139 
 140 
2.1.2 Plasma metabolites 141 
We obtained metabolite summary statistics from two studies conducted in non-142 
overlapping samples: (1) 1,091 individual metabolites and 309 metabolite ratios 143 
measured in 8,299 unrelated individuals from the Canadian Longitudinal Study of 144 
Aging (CLSA)58 and (2) 722 individual metabolites measured in 8,809 individuals in 145 
the NIHR UK Bioresource cohort59. In both studies, metabolites were detected and 146 
quantified in plasma by Metabolon Inc. using ultra-high performance liquid 147 
chromatography-tandem mass spectroscopy. Unidentified metabolites were 148 
excluded from analyses. We performed genome-wide meta-analysis as above for 431 149 
metabolites when the same metabolite was available in both samples for a meta-150 
analysed sample size of 17,038. 151 
 152 
2.1.3 GWAS standardisation 153 
Prior to meta-analysis, summary statistics were standardised with MungeSumstats60 154 
version in R (v.4.2.1) using dbsnp 144 and the 155 
BSgenome.Hsapiens.1000genomes.hs37d5 reference genome available through 156 
Bioconducter (v.3.1.3). Missing rsids were obtained, duplicate and multi-allelic 157 

Category Phenotype GWAS sample N  Cases N  Controls
Total 
cases

Total 
controls N eff

Purves et al. 25,453 58,113

Meier et al. (iPSYCHE) 4,584 19.225
Finngen Freeze 9 
(KRA_PSY_ANXIETY) 40,191 277,526

Mullins et al. 41,917 371,549

Finngen freeze 9 (F5_BIPO) 7,006 329,192

Million Veterans Project 83,810 166,405
Psychiatric Genomics Consortium/ 
UK Biobank (Howard et al.) 170,756 329,443

Finngen freeze 9 (F5_DEPRESSIO) 43,280 329,192

Trubetskoy et al. 53,386 77,258
Finngen freeze 9 
(KRA_PSY_SCHIZODEL) 13,061 277,526

Alzheimer's 
disease Wightman et al. (excl. UKB) 39,918 358,140

39,918 358,140 89,308

van Rheenen et al. 27,205 110,881

Finngen freeze 9 (G6_ALS) 483 170,667

International Multiple Sclerosis 
Consortium 47,429 68,374

Finngen freeze 9 2,182 373,987

Nalls et al. 33,674 449,056

Finngen freeze 9 4,235 373,042

Psychiatric

Neurodegenerative

Anxiety

Bipolar disorder

Depression

Schizophrenia

Amyotrophic 
lateral sclerosis

Multiple 
Sclerosis

Parkinson's 
disease

226,035

48,923 651,818 129,398

825,105824,848298,038

70,228 354,864

66,447 354,784 176,178

27,686 281,548 115,084

49,611 442,361 120,692

37,441 822,098 120,692
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variants excluded, and alleles aligned to the reference, flipping effect and frequency 158 
direction accordingly. Where necessary, MungeSumstats was used to lift over 159 
genome build coordinates from GRCh38 to GRCh37 via the UCSC Genome Browser 160 
chain file. 161 
 162 

2.2 Mendelian randomisation 163 

2.2.1. Metabolite instrument selection 164 
Independent instrumental variables (IVs) were initially selected at genome-wide 165 
significance (p ≤ 5 x 10-8), clumping at an r2 threshold of 0.001 within 10,000 kb of the 166 
lead variants. Clumping was conducted using the ieugwasr package (v.0.1.4), PLINK 167 
(v.1.9)61 binaries and the European sample of the 1000 Genomes phase 3 reference 168 
panel62 (N = 503), restricted to minor allele frequency (MAF) > 0.01. This is the same 169 
reference panel used by the MRC IEU OpenGWAS database63 170 
(http://fileserve.mrcieu.ac.uk/ld/1kg.v3.tgz). 171 

Where less than five IVs were available for any given exposure, a lower p-value 172 
threshold of 5 x 10-6 was used for IV selection as per previous analyses64. If less than 173 
5 IVs were available at the 5 x 10-6 threshold, this metabolite was excluded. Where an 174 
IV was not available for the outcome, proxy IVs (i.e., variants in linkage disequilibrium 175 
(LD) with the original instrument at r2 > 0.8) were identified using snappy (v.1.0) 176 
(https://gitlab.com/richards-lab/vince.forgetta/snappy) and same reference panel. 177 
Proxies were selected using the highest r2 value and closest genomic position. Prior 178 
to analysis, exposure and outcome were harmonised to the same effect allele, and 179 
strand ambiguous palindromic variants (MAF > 0.42) dropped. Instrument strength 180 
was assessed via their F-statistic (βexposure

2/SEexposure
2), with weak instruments (F-181 

statistic < 10) excluded. If less than 5 IVs remained, the metabolite was again 182 
excluded. Instrument measurement error was assessed with the I2

G-X statistic (< 0.9 183 
suggestive of measurement error)65. 184 

Following the above steps the effects of 428 meta-analysed metabolites were 185 
tested, plus 740 and 132 metabolites from the CLSA and NIHR UK Bioresource 186 
studies, respectively, for a total of 1300 unique metabolites/metabolite ratios. 187 

 188 
2.2.2. MR analyses 189 

We conducted the primary analyses using inverse variance weighted MR (IVW-190 
MR) with multiplicative random effects as recommended66. If the IVW-MR estimate 191 
was statistically significant after Benjamini-Hochberg false discovery rate (FDR) 192 
correction67 (pFDR ≤ 0.05, corrected for total number of tests specific to each outcome), 193 
six sensitivity analyses were conducted to assess its robustness to violations of the 194 
pleiotropy assumption and instrument validity. We implemented methods that assume 195 

http://fileserve.mrcieu.ac.uk/ld/1kg.v3.tgz
https://gitlab.com/richards-lab/vince.forgetta/snappy
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a majority valid instruments (weighted median68; penalised weighted median69), 196 
plurality valid instruments (constrained maximum likelihood (cML)70; contamination 197 
mixture model MR (MR-ContMix)71), and that exclude invalid outliers (MR-Lasso72). 198 
Additionally, we used MR-Egger73, which gives consistent causal estimates even if all 199 
instruments are not valid, provided pleiotropic effects are not correlated with variant-200 
exposure associations. This is known as the Instrument Strength Independent of 201 
Direct Effect (InSIDE) assumption and is MR-Egger-specific. To pass sensitivity 202 
criteria, all sensitivity analysis point estimates needed to be directionally concordant 203 
with the IVW estimate and the majority (≥ 4) statistically significant at p ≤ 0.05. Where 204 
a metabolite passed sensitivity criteria, we performed reverse IVW-MR as above with 205 
the outcome as the exposure. 206 

Pleiotropy was assessed using the MR-Egger intercept test (no evidence of 207 
pleiotropy: pEgger-Intercept ≥ 0.05) and heterogeneity using Cochran’s Q (no evidence of 208 
heterogeneity: pQ-Stat ≥ 0.05). Metabolites passing sensitivity were further inspected 209 
using leave-one-out (LOO) analysis to assess whether causal estimates were driven 210 
by the inclusion of a single influential variant. Metabolites that passed sensitivity 211 
criteria and had no LOO outlier variant were considered polygenic metabolites and 212 
are referred to as such henceforth. Those passing sensitivity but with a LOO outlier 213 
variant were considered single instrument metabolites. 214 

 215 

2.2 Further analysis of polygenic metabolites 216 

2.3.1 Conditional analysis 217 
Hysi et al.59 noted that many metabolites are genetically correlated with phenotypes 218 
related to body composition and educational level. To assess whether any identified 219 
effects were driven in part by the genetic correlations between the metabolites and 220 
these phenotypes, we performed conditional GWAS of the neuropsychiatric disorders 221 
using multi-trait conditional and joint analysis (mtCOJO)74 to remove the per-SNP 222 
effects of body mass index (BMI), BMI-adjusted waist-to-hip ratio (WHR), and 223 
educational attainment (EA). 224 

We obtained GWAS summary statistics for BMI (N = 806,834) and BMI-225 
adjusted waist-to-hip ratio (N = 697,734) from the GIANT consortium75,76. We 226 
additionally obtained summary statistics for educational attainment (EA) from the EA4 227 
GWAS meta-analysis, excluding 23andMe, from the Social Science Genetic 228 
Association Consortium (SSGAC)77 (N = 765,283). 229 

IVW-MR estimates were recalculated for significant metabolite-230 
neuropsychiatric disorder pairs post-mtCOJO and compared to the original 231 
estimates. Forest plots were visually inspected for evidence of attenuation between 232 
original and adjusted estimates. 233 
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 234 
2.3.2 Metabolite prioritisation using MR-BMA 235 
Metabolites are highly genetically correlated58. Consequently, univariate MR 236 
estimates – which assume exposures are independent – may be biased by the 237 
pleiotropic effects of other risk metabolites. Such issues may be addressed using MR 238 
with Bayesian model averaging (MR-BMA)78. MR-BMA is a multivariable MR 239 
approach that ranks of causal effects among related exposures according to their 240 
independent causal signal. Unlike conventional multivariable MR methods, MR-BMA 241 
is well suited for the highly correlated nature of high-throughput exposures such as 242 
metabolites78. Instruments were selected by pooling those used in IVW-MR for all per-243 
disorder statistically significant metabolites, excluding correlated instruments as 244 
before (r2 > 0.001, window = 10,000 kb). We use a prior probability of 0.1 and a prior 245 
variance of 0.25 as previously78,79. Metabolites were ranked according to their 246 
marginal posterior probability (MIP), with MIP ≥ 0.1 interpreted as causal. To avoid 247 
multicollinearity between the exposures, we calculated a genetic correlation matrix 248 
using the linkage disequilibrium score regression (LDSC)80 function of 249 
GenomicSEM56. As per the original MR-BMA study, where point estimates ≥ 0.95, we 250 
excluded the metabolite correlated with the most other metabolites (if > one) or 251 
retained only the metabolite with the most-significant IVW-MR estimate in the MR-252 
BMA analysis (if only one). 253 
 254 
2.3.2 Cross-trait polygenic score (PGS) analysis 255 
To assess whether any of the polygenic metabolites prioritised in MR-BMA be used 256 
for disease prediction, we calculated polygenic scores (PGS) – the weighted sum of 257 
an individual’s risk alleles81 – within the reference standardised framework of the 258 
GenoPred pipeline82 using individual level data from the UK Biobank (UKB)83. Within 259 
GenoPred, allele weights were calculated using MegaPRS84, a PGS method that uses 260 
the BLD-LDAK heritability model and improves prediction by incorporating 261 
information on allele frequency, LD and various functional annotations. MegaPRS has 262 
shown strong predictive performance compared to other PGS methods85,86. 263 
 UKB participants were excluded from analyses if they had unusual levels of 264 
heterozygosity, a call missing rate >2% or discordant phenotypic and genetic sex (FX 265 
< 0.9 for males, FX > 0.5 for females). Individuals were filtered for relatedness up to 266 
3rd degree relatives based on KING kinship estimates (r < 0.044)87 using 267 
GreedyRelate (v1.2.1) to remove one individual from each related pair, maximising 268 
sample size (https://gitlab.com/choishingwan/GreedyRelated). Analyses were 269 
restricted to individuals of European ancestry. The final sample contained 381,564 270 
individuals prior to any age-based exclusions. 271 

https://gitlab.com/choishingwan/GreedyRelated
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 Case/control status was defined using the first occurrence data fields from the 272 
UKB (Supplementary Table 3), where cases were ascertained using primary care 273 
Read v2 or Read CTV3 codes, hospital inpatient ICD-9 and ICD-10 codes, death 274 
record ICD-10 codes and medical condition codes self-reported at UKB assessment 275 
centre visits. Individuals were excluded if the code had no event date or if the date 276 
of event was before, the same year as or on the participants date of birth, or a date 277 
in the future. Associations between metabolite-PGS and respective neuropsychiatric 278 
disease was assessed using logistic regression, controlling for age, sex, genotyping 279 
batch, assessment centre and the first ten genetic principal components from the 280 
UKB. Within each model, the comparison group was restricted to individuals with no 281 
occurrence of any of the neuropsychiatric disorders. To provide age-appropriate 282 
controls for AD and PD, samples were restricted for those analyses to individuals 283 
aged ≥60 and ≥50 years, respectively. For DEP and ANX cases, individuals with an 284 
occurrence of BP or SCZ were excluded. The variance explained by each PGS was 285 
assessed using Nagelkerke’s pseudo-r2. Sample sizes ranged from 140,154 to 286 
356,763, depending on the disorder, with case numbers ranging from 600 (ALS) to 287 
46,900 (DEP) (mean age range = 56.65-64.13; %male range = 46.32-49.35). 288 
 289 

2.4 Further analysis of single instrument metabolites 290 

2.4.1 Statistical colocalisation 291 
Using LOO analysis, we identified IVs that significantly attenuated the IVW-MR 292 
estimate when excluded. We extracted regions +/- 250 kb of these IVs and performed 293 
statistical colocalisation for each metabolite and the respective neuropsychiatric 294 
disorder within the COLOC-reporter pipeline88. Regions of interest were extracted and 295 
harmonised for each phenotype to contain only shared variants on the reference 296 
panel. Colocalisation was performed using the coloc.abf function of the COLOC 297 
package89. A posterior probability of 0.8 for hypothesis four (PP.H4) – presence of a 298 
shared causal variant between the phenotypes – was taken as evidence of 299 
colocalisation (PP.H4 ≥ 0.6 taken as suggestive). 300 
 301 
2.4.2 eQTL colocalisation 302 
For regions of colocalisation (including suggestive), we identified genes located 303 
within 10 kb of credible SNPs using Ensembl and biomaRt (v.2.54.0). For each gene, 304 
we extracted cis-eQTLs from the whole blood eQTL summary data of the eQTLGen 305 
Consortium90 (N = 31,684) and performed colocalisation between the eQTLs and both 306 
phenotypes in each metabolite-neuropsychiatric disorder pair as above. 307 
 308 
 309 
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2.4.2 eQTL MR 310 
For genes colocalising with both the metabolite and neuropsychiatric disorder a trait-311 
pair, we extracted independent instruments for gene expression from the eQTL 312 
summary statistics (p ≤ 5 x 10-8; r2 ≤ 0.001; window = 10,000 kb) and used IVW-MR 313 
to assess the causal effect of gene expression levels on the outcome and exposure. 314 
We examined the consistency of the gene expression causal effects using Summary-315 
based Mendelian Randomisation (SMR)91, extracting eQTL probes for the relevant 316 
gene from blood-based eQTL summary datasets from Westra et al.92 (N = 3,511) and 317 
Lloyd-Jones et al.93 (N = 2,765). Heterogeneity was assessed using the 318 
HEterogeneity In Dependent Instruments (HEIDI) test, with pHEIDI < 0.05 indicative of 319 
heterogeneity. This is essentially a test of colocalisation. 320 

Previous research has indicated that the causal effect of gene expression on 321 
a complex trait can be mediated by the effect of metabolites within a transcript-322 
metabolite-trait causal triplet94. Where gene expression levels showed a significant 323 
causal effect on both an outcome and a metabolite, we calculated the proportion 324 
mediated using the product of coefficients method as per previous analyses95. 325 
Standard errors were estimated using the delta method and p-values drawn from a 326 
z-score distribution. 327 
 328 

3. Results 329 

3.1 Mendelian randomisation 330 

We conducted a total of 10,327 tests of the causal effect of the metabolites and ratios 331 
on the eight neuropsychiatric outcomes (instrument N-range: 5-27). Of these, 1695 332 
tests were conducted with instruments clumped at 5 x 10-8 and 8632 with instruments 333 
clumped at 5 x 10-6.  For single instruments, F-statistics ranged from 10.11 to 5625.88 334 
(mean per-test F-statistics range: 20.77-1163.90). Analyses were thus not impacted 335 
by weak instruments. Per-test I2

G-X ranged from 0.45 to 1.000. Only 94 tests (0.009%), 336 
involving 13 unique metabolites, were conducted with I2

G-X < 0.9, suggestive of 337 
measurement error. Only 27 tests were conducted using instruments with I2

G-X ≤ 0.8, 338 
involving six metabolites: 2-hydroxyarachidate, 4-hydroxy-2-oxoglutaric acid, 4-339 
vinylguaiacol sulphate, glycolithocholate, and O-cresol sulphate. 340 
 Primary IVW-MR analyses identified 138 causal effects involving 113 unique 341 
metabolites after outcome-specific FDR correction (Supplementary Table 4; Figure 342 
2a). Of these, 85 metabolite-outcome pairs passed our sensitivity criteria, involving 343 
77 unique metabolites (Supplementary Table 5). All neuropsychiatric disorders had 344 
two or more metabolites with statistically significantly effects. No reverse effects were 345 
detected for these metabolite-outcome pairs after FDR-correction (Supplementary 346 
Table 6). IVW-MR odds ratios (OR) for metabolite-neuropsychiatric disorder trait-347 
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pairs ranged from 0.73 to 1.48 (p-value range: 1.52 x 10-3 - 9.67 x 10-31; pFDR range: 348 
4.45 x 10-2 - 1.26 x 10-27). However, MR-Egger intercept tests detected significant 349 
pleiotropy for eight of the 85 metabolite-outcome pairs (pEgger-Intercept < 0.05) 350 
(Supplementary Table 7). Cochran’s Q heterogeneity tests detected significant 351 
heterogeneity for 15 (pQ-Stat < 0.05) (Supplementary Table 8). All metabolite-outcome 352 
pairs with pEgger-Intercept < 0.05 and 14 out of 15 with pQ-Stat < 0.05 were identified as 353 
influenced by single influential variants in the LOO analysis (Supplementary Table 354 
9). Only the effect of the ratio of mannose to glycerol on depression (pQ-Stat = 0.043) 355 
was not driven by a single influential variant. 356 

Excluding metabolites with effect estimates primarily influenced by single 357 
variants left a total of 41 metabolite-neuropsychiatric disorder trait-pairs with 358 
polygenic metabolites – all unique. Of these, 13 were identified with depression, 359 
seven with MS, six with ALS, four each with AD and bipolar disorder, three with 360 
schizophrenia, and two each with anxiety and PD (Figure 2b). These metabolites 361 
were linked to nine broad metabolic classes (super-pathways), counting the 362 
combinations of pathways of metabolite ratios as unique pathways (Figure 2b; 363 
Supplementary Table 10). Over half (N = 22) were lipids, and the rest amino acids 364 
(N = 10), nucleotides (N = 3), peptides (N = 1), carbohydrates (N = 1) or ratios 365 
involving amino acid/cofactors and vitamins (N = 1), amino acid/energy (N = 1) and 366 
carbohydrate/lipid (N = 1) pathways. The remaining metabolite – glutamine conjugate 367 
of C6H10O2 (2) – is considered only partially characterised. 368 

These metabolites were implicated in 28 unique sub-pathways representing 369 
the metabolic/biochemical subclasses related to the metabolites (Figure 2c; 370 
Supplementary Table 10). The largest group of metabolites was related to 371 
sphingolipid metabolism (N = 5). All metabolites involved in sphingolipid metabolism 372 
had effects on psychiatric disorder risk. Sphingosine 1-phosphate has a risk 373 
increasing effect on bipolar disorder (OR [95%CI] = 1.17 [1.06-1.28], p-value = 9.49 374 
x 10-4, pFDR = 0.03), while glycosyl-N-stearoyl-sphingosine (d18:1/18:0), 375 
sphingomyelin (d18:1/24:1, d18:2/24:0) and sphingomyelin (d18:2/23:0, d18:1/23:1 376 
and d17:1/24:1) has risk decreasing effects on depression (OR range: 0.93-0.96, p-377 
value range: 2.38 x 10-4 – 9.91 x 10-4; pFDR range: 0.02-0.04). Additionally, 378 
sphingomyelin (d18:1/18:1, d18:2/18:0) has a risk decreasing effect on schizophrenia 379 
(OR [95%CI] = 0.87 [0.81-0.94], p-value = 1.89 x 10-4, pFDR = 0.04). 380 

 381 
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 382 

 383 
 384 
Figure 2: (a). Volcano plots for anxiety (ANX), bipolar disorder (BP), depression (DEP), schizophrenia 385 
(SCZ), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and 386 
Parkinson’s disease (PD) showing odds ratios and -log10 p-values from inverse variance weighted 387 
Mendelian randomisation (IVW-MR) for all tested metabolites. (b). Forest plot of FDR statistically 388 
significant metabolites associated with neuropsychiatric outcomes in IVW-MR and passing sensitivity 389 
tests, with no leave-one-out (LOO) outliers (i.e., polygenic metabolites). Point estimates indicate odds 390 
ratios with bars representing 95% confidence intervals (95%CI). Point estimates for each metabolite 391 
are coloured according to their metabolic super-pathway. (c). Stacked histograms showing total count 392 
of FDR statistically significant polygenic metabolites associated with each neuropsychiatric disorder, 393 
with fill colours indicating metabolite sub-pathways. AD = Alzheimer’s disease; ALS = Amytropic 394 
Lateral Sclerosis; ANX = anxiety; BP = Bipolar Disorder; DEP = Depression; MS = Multiple Sclerosis; 395 
PD = Parkinson’s disease; SCZ = Schizophrenia 396 
 397 

The strongest negative effect was observed for the amino acid leucine and PD 398 
(OR [95%CI] = 0.73 [0.62-0.85], p = 9.64 x 10-5; pFDR = 3.13 x 10-2). Isoleucine showed 399 
similar effects (OR = 0.73 [0.62-0.86]; p = 1.65 x 10-4; pFDR = 4.28 x 10-2). The strongest 400 
positive effect was observed for the lipid 1-(1-enyl-oleoyl)-GPE (P-18:1) and MS (OR 401 
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= 1.48 [1.33-1.65]; p-value = 2.71 x 10-12; pFDR = 3.42 x 10-9). The most statistically 402 
significant effect was identified for the ratio of arachidonate (20:4n6) to oleate to 403 
vaccenate (18:1) and anxiety (OR = 0.93 [0.93-0.95], p-value = 9.67 x 10-31, pFDR = 404 
1.26 x 10-27). 405 

The remaining 44 metabolite-neuropsychiatric disorder trait-pairs had 406 
attenuated effects in the LOO analysis, involving 36 unique metabolites and six of the 407 
neuropsychiatric outcomes (Supplementary Table 11). Most of the effects were 408 
observed in relation to psychiatric disorders (N = 40), primarily with BP (N = 16) and 409 
DEP (N = 16). Another four were observed with ANX and three with SCZ. These 410 
metabolite-psychiatric trait-pairs involved 33 unique metabolites, 25 of which were 411 
lipids and one a ratio of lipid/carbohydrate. These lipids were involved in 12 unique 412 
sub-pathways, the largest group of which was related to phospholipid metabolism (N 413 
= 6). The remainder were amino acids (N = 5), a carbohydrate (N = 1) and a 414 
xenobiotic (N = 1), involved in seven unique sub-pathways. Of those remaining, four 415 
unique single instrument metabolites had a causal effect AD – two amino acids and 416 
two xenobiotics – and a nucleotide showed causal effect on MS. 417 

A total of 31 of the LOO associations were driven by 11 influential variants on 418 
chromosome 11 within a ~500 kb window (61293499-61854782 bp). This region 419 
contains the fatty acid desaturase (FADS) gene cluster, which is linked to the 420 
regulation of fatty acid levels and their circulation96. All metabolites influenced by 421 
these variants were lipids and associated with psychiatric disorder risk (NANX = 4, NBP 422 
= 13, NDEP = 12 and NSCZ = 2). Between-variant LD estimates for the influential 423 
instruments in this region were calculated using LDlinkR (v.1.3)97 and ranged from 424 
0.16-1, with r2 ≥ 0.72 for all variants except rs14570 and rs2524299 which showed a 425 
maximum r2 of 0.34 and 0.38, respectively (Figure 3a; Supplementary Table 12). 426 

We used Wald ratio tests to re-estimate the effect of single instrument 427 
metabolites on the relevant outcome using the influential instrument only. F-statistics 428 
ranged from 105.37 to 5625.88. Wald estimates were directionally consistent with 429 
IVW-MR estimates and remained significant at p ≤ 0.05, although the protective 430 
effects of 4-guanidinobutanoate and mannonate on AD were only nominally 431 
significant (p = 0.04 and 0.02, respectively) (Figure 3b; Supplementary Table 13). 432 
Regions containing influential instruments were further investigated using 433 
colocalisation. 434 
 435 
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 436 
Figure 3: (a). The r2 estimates between influential single variants on chromosome 11 alongside their 437 
genomic location. (b). Recalculated Wald ratio estimates for metabolites with influential single variants 438 
using the influential variant only. Point estimates indicate odds ratios with bars representing 95% 439 
confidence intervals (95%CI). Point estimates for each metabolite are coloured according to their 440 
metabolic super-pathway. AD = Alzheimer’s disease; ANX = anxiety; BP = Bipolar Disorder; DEP = 441 
Depression; MS = Multiple Sclerosis; SCZ = Schizophrenia 442 
 443 

3.2 Further analysis of polygenic metabolites 444 

3.2.1 Conditional analysis 445 
Conditioning neuropsychiatric outcomes on BMI, BMI-adjusted WHR or EA did not 446 
attenuate the IVW-MR effect estimates for causally associated metabolites when re-447 
estimated (Supplementary Table 15; Supplementary Material 3). This suggests that 448 
the metabolite associations were not influenced by any correlation between the 449 
genetic instrument’s effect and the effects of these traits as captured in the 450 
neuropsychiatric GWAS. 451 
 452 
3.2.2 Metabolite prioritisation using MR-BMA 453 
Prior to the per-outcome multivariate MR modelling in MR-BMA, we excluded the less 454 
statistically significant of any metabolite pair correlated ≥ 95% (Supplementary Table 455 
15). As such, we excluded 5-methylthioadenosine (mta) from the AD model due to its 456 
correlation with the glucose to sucrose ratio, 5-dodecenoate (12:1n7) from the MS 457 
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model due to its correlation with N-formylmethionine and uridine, 2-myristoyl-GPC 458 
(14:0)* from the ALS model due to its correlation with 1-stearyl-GPC (O-18:0)* and the 459 
glutamine to alanine ratio from the DEP model due to its correlation with gamma-460 
glutamylglutamine. 461 
 For AD, anxiety, MS, PD and schizophrenia, all metabolites had MIPs ≥ 0.1, 462 
suggesting unique causal contributions to risk. For bipolar disorder, sphingosine 1-463 
phosphate, the ratio of histidine to phosphate and the ratio of glycine to pyridoxal 464 
passed the MIP threshold, with 3-hydroxy-5-cholestenoic acid just under (MIP = 465 
0.098). However, of the 12 metabolites included for depression, only the two 466 
sphingomyelins (d18:1/24:1, d18:2/24:0 and d18:2/23:0, d18:1/23:1, d17:1/24:1) and 467 
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) passed. For ALS, only 468 
acetylcarnitine passed the MIP threshold. Acetylcarnitine had the highest overall MIP 469 
of all metabolites tested (MIP = 0.893) (Supplementary Table 16). 470 
 471 
3.2.3 Polygenic score (PGS) analysis 472 
No MR-BMA prioritised metabolite PGS was associated with any of their respective 473 
outcomes after FDR correction for 23 tests (pFDR ≥ 0.05). Nominal associations were 474 
observed between depression and the PGS for sphingomyelin (d18:2/23:0, 475 
d18:1/23:1, d17:1/24:1) and 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) 476 
with identical effect sizes (OR[95%CI] = 0.989 [0.979-0.998], p-value range = 2.131 477 
x 10-2 - 2.517 x 10-2) and between the PGS for leucine and PD (OR [95%CI] = 0.962 478 
[0.93- 0.996, p-value = 2.814 x 10-2). These effects were directionally consistent with 479 
the MR estimates but had non-relevant predictive ability given small Nagelkerke’s 480 
pseudo-r2 estimates (Nagelkerke’s pseudo-r2

MAX = 1.445 x 10-4) (Supplementary 481 
Table 17). 482 
 483 

3.3 Further analysis of single instrument metabolites 484 

3.3.1 Colocalisation at loci of influential instruments 485 
Of the 44 colocalisation tests conducted in regions +/- 250 kb of the LOO influential 486 
variants, 26 showed evidence of colocalisation (PP.H4 ≥ 0.8) and a further five had 487 
suggestive evidence (PP.H4 ≥ 0.6) (Supplementary Table 18). All except one of these 488 
regions were on chromosome 11 within a ~500 kb window (61293499-61854782 bp). 489 
All disorders colocalising with metabolites in this region were psychiatric and every 490 
psychiatric disorder examined showed colocalisation with at least one metabolite. 491 
Colocalisation has been previously observed between the omega-3 fatty acid 492 
docosahexaenoic acid (DHA) and depression within the same region39. 493 

All implicated metabolites except 1-stearoyl-2-docosapentaenoyl-GPC 494 
(18:0/22:5n6)* were complex fatty acid chains containing the fatty acids arachidonic 495 
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acid (AA) (N = 18), linoleic acid (LA) (N = 5), alpha-linolenic acid (ALA) (N = 1) or 496 
both AA and LA (N = 4). Higher levels of AA-containing metabolites were consistently 497 
protective in Wald estimates while higher levels of LA- or ALA-containing metabolites 498 
had risk increasing effects. Where ratios contained both AA- and LA-containing 499 
metabolites, higher levels of the AA relative to the LA was protective and higher LA 500 
metabolites relative to the AA risk increasing (Supplementary Table 19). This is 501 
concordant with previous metabolome-wide MR analysis of bipolar disorder41 and 502 
observational analysis of depression98. The other region of colocalisation was 503 
identified on chromosome 12 (56615338-57115338) between the ratio of histidine-to-504 
glutamine and AD (PP.H4 = 0.92). 505 

Two tests showed evidence of two distinct causal variants at the tested locus 506 
– the ratio of glucose to mannose and depression (chr2: 27480940-27980940; PP.H3 507 
= 0.92) and docosapentaenoate (n6 DPA; 22:5n6) and bipolar disorder (chr11: 508 
61347212-61847212; PP.H3 = 0.99). Suggestive evidence for two distinct causal 509 
variants was also identified for butyrylglycine and depression (chr12:120925524-510 
121425524; PP.H3 = 0.70), methylsuccinate and depression (chr12:120926083-511 
121426083; PP.H3 = 0.63), and 5-methyluridine (ribothymidine) and MS 512 
(Chr22:50687969-51187969; PP.H3 = 0.63). PP.H3 ≥ 0.6 in these regions suggests 513 
that MR estimated effects arose from linkage disequilibrium, violating MRs horizontal 514 
pleiotropy assumption. Remaining colocalisation tests were inconclusive. 515 
 516 
3.3.2 eQTL colocalisation 517 
In total, nine genes were identified within 10 kb of credible SNPs at colocalising loci 518 
(Supplementary Table 20). For the colocalisation analyses at chr11:61293499-519 
61854782, eQTLs for MIR611 or MIR1908 were not available in the eQTLGen 520 
summary statistics. As such, follow-up eQTL colocalisation in this region was 521 
conducted only with MYRF, TMEM258, FEN1, FADS2 and FADS1. For the region 522 
chr12:56615338-57115338, eQTLs were not available for MIP, but were available for 523 
GLS2 and SPRYD4. In total, 130 colocalisation tests were conducted with eQTLs. Of 524 
these, only eQTLs for SPRYD4 colocalised with both a risk metabolite and its 525 
respective neuropsychiatric outcome: the ratio of histidine-to-glutamine (PP.H4 = 526 
0.91) and AD (PP.H4 = 0.91). Additional colocalisation was identified for GLS2 with 527 
the ratio of histidine-to-glutamine (PP.H4 = 0.99), but not AD (PP.H4 = 0.42). TMEM258 528 
colocalised with depression (PP.H4 = 0.86). Suggestive colocalisation was identified 529 
between TMEM258 and anxiety and between MYRF and depression (PP.H4 ≥ 0.6). Of 530 
the remaining tests, 113 indicated two distinct causal variants in the region (PP.H3 ≥ 531 
0.8), four were suggestive of only a causal variant for gene expression, and the 532 
remainder inconclusive (Supplementary Table 21). 533 
 534 
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3.3.3 eQTL MR for the histidine to glutamine ratio and AD 535 
We conducted MR analyses for the effect of SPRYD4 expression levels on the ratio 536 
of histidine-to-glutamine and AD using five independent instruments. SPRYD4 537 

expression levels were identified as increasing risk for AD (OR = 1.08 [1.02-1.16], b 538 

[95%CI] = 0.08 [0.02-0.15], p-value = 0.007) and the level of the ratio of histidine to 539 

glutamine (b [95%CI] = 0.30 [0.18-0.42], p-value = 1.16 x 10-6). SMR estimates for 540 

the effect of SPRYD4 expression were directionally consistent and statistically 541 
significant at p ≤ 0.05 for AD and the ratio of histidine-to-glutamine across eQTL 542 
panels. HEIDI tests did not indicate heterogeneity (pHEIDI ≥ 0.05) (Supplementary 543 
Table 22). There was no evidence that the ratio of histidine to glutamine substantially 544 
mediates the effect of SPRD4 expression on AD, with only a nominally significant 545 
association and wide confidence intervals (proportion mediated [95%CI] = 63.20% 546 
[1.80-124.59%], p-value = 0.043). 547 
 548 
3.6 Further examination of histidine, glutamine, AD and SPRYD4 549 
To further evaluate the association between the ratio of histidine to glutamine, we re-550 
examined the IVW-MR estimates for the separate effects of histidine and glutamine 551 
on AD. No causal effect was observed for histidine on AD, not even nominally (OR = 552 

1.11 [0.99-1.27], b = 0.11 [-0.011-0.24], p-value = 0.07). However, there was a 553 

nominally significant negative causal effect for glutamine (OR = 0.87 [0.81-0.94], b 554 

[95%CI] = -0.14 [-0.21 to -0.06], p-value = 0.0007, pFDR = 0.052). Although glutamine 555 
passed post-hoc sensitivity criteria with no evidence of pleiotropy or heterogeneity 556 
(Supplementary Table 23), LOO identified the same influential variant on 557 
chromosome 12 as observed for the ratio of histidine-to-glutamine – the 3′-UTR 558 
variant rs2657879 (Supplementary Table 24). For glutamine, the effect of rs2657879 559 
was in the opposite direction to the histidine-to-glutamine ratio. 560 

A Wald ratio test using only this instrument estimated a negative effect of 561 

glutamine on AD risk (OR = 0.84 [0.76-0.91], b = -0.19 [-0.28 to -0.09], p-value = 9.65 562 

x 10-5). Strong evidence of colocalisation was observed between glutamine and AD 563 
in the region (PP.H4 = 0.92), and between glutamine and SPRYD4 (PP.H4 = 0.98) 564 
(Supplementary Table 25). Gene expression levels of SPRYD4 were negatively 565 

associated with glutamine in the MR analysis (b = -0.35 [-0.52 to -0.18], p-value = 566 

3.94 x 10-5). Strong, directionally consistent effects of SPRD4 expression on glutamine 567 
were observed in SMR (Supplementary Table 26). However, the HEIDI tests 568 
indicated heterogeneity (pHEIDI ≤ 0.05). There was no evidence that glutamine 569 
mediated the effects of SPRD4 expression on AD (proportion mediated [95%CI] = 570 
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75.81% [-0.36-151.99%], p-value = 0.051). LocusZoom plots for the ratio of histidine 571 
to glutamine, glutamine, AD and SPRYD4 gene expression are shown in Figure 4. 572 
 573 

Figure 4: LocusZoom plots of the colocalising region (PPH4 ≥ 0.8) chr12: 56615338-57115338 for 574 
Alzheimer’s disease, the ratio of histidine to glutamine, glutamine, and SPRYD4 expression.  575 
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4. Discussion 576 

We identified 77 unique plasma metabolites and a total of 85 sensitivity robust MR 577 
estimated causal effects on neuropsychiatric disorder risk. Over half of associations 578 
were driven by single influential variants. Of these, 30 metabolite-neuropsychiatric 579 
disorder trait-pairs had greater than suggestive colocalisation and 29 were lipids 580 
colocalising with a psychiatric disorder near the FADS gene cluster on chromosome 581 
11. No eQTL colocalisation was observed for any metabolite-outcome trait-pair in this 582 
region, suggesting the underlying mechanisms are not related to shared gene 583 
expression effects. Additional colocalisation was observed between AD glutamine-584 
related metabolites and SPRYD4 gene expression on chromosome 12. For the 585 
remaining 41 polygenic metabolites, multivariate analysis with MR-BMA prioritised 23 586 
metabolites and implicated sphingolipids and carnitine derivatives in psychiatric and 587 
neurodegenerative risk respectively. However, the predictive performance of 588 
metabolite polygenic scores was negligible in the UK Biobank. 589 

Lipids – specifically polyunsaturated fatty acids (PUFAs) – have previously 590 
shown MR causal effects on depression, with docosahexaenoic acid (DHA) 591 
colocalising at the FADS gene cluster39. Our study highlights the broader significance 592 
of this region in linking lipid levels to risk across the psychiatric disorder spectrum. 593 
Here, we identify suggestive colocalisation between at least one lipid and every 594 
examined psychiatric disorder. Nearly all lipids colocalising with psychiatric 595 
disorders contained linoleic acid (LA) or arachidonic acid (AA) – both omega-6 596 
PUFAs. AA-containing lipids were consistently protective, while LA-containing lipids 597 
increased risk. These findings are consistent with other MR studies of bipolar 598 
disorder, depression and schizophrenia41,99,100. Our results suggest that these 599 
associations extend to ANX. Although these effects were primarily driven by shared 600 
causal variants on chromosome 11, several polygenic metabolites comprised of 601 
AA/LA-containing lipids also showed causal effect on psychiatric risk. The ratio of 602 
arachidonate (20:4n6)-to-oleate-to-vaccenate (18:1) and 1-(1-enyl-palmitoyl)-2-603 
arachidonoyl-GPC (P-16:0/20:4) – both AA-containing – had risk decreasing effects 604 
on anxiety and depression respectively and were prioritised in multivariate analysis. 605 
In single instrument analyses, this ratio had risk decreasing effects on bipolar 606 
disorder, depression and schizophrenia, colocalising with all. These results suggest 607 
that effects of AA/LA-containing lipids in psychiatric risk may extend beyond effects 608 
on chromosome 11. 609 

Circulating levels of lipids containing LA and AA may be promising intervention 610 
targets for psychiatric disorders. LA – the most abundant omega-6 PUFA in the 611 
western diet – is found in nearly all manufactured food through vegetable oils101, while 612 
AA is found in animal products such as meat, poultry, fish and eggs102. As free fatty 613 
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acids AA is a downstream product of LA, from which it is synthesised through 614 
desaturation and chain elongation102 (Supplementary Material 4).  615 

Free LA and AA are linked to inflammatory dysregulation103 – itself implicated 616 
in psychiatric disorders104,105. AA is catalysed by cytochrome P450 enzymes to 617 
epoxyeicosatrienoic acids (EETs), which show anti-inflammatory effects and are 618 
suggested to be protective of neurological function106. The deleterious effects of LA-619 
containing lipids compared to the protective effects of AA-containing lipids may 620 
implicate dysregulated conversion from LAs to AAs, contributing to elevated 621 
inflammation as less AA is available for conversion to anti-inflammatory EETs. 622 
However, LA-to-AA conversion is relatively low in humans and requires LA to be in 623 
free form following cleavage from lipid molecules via enzymes such as 624 
phospholipase A2 (PLA2). Although PLA2 action on fatty acids has been previously 625 
linked to inflammatory depression107, further investigation is required to elucidate 626 
mechanisms by which LA- and AA-containing lipids contribute to psychiatric risk. 627 

The effects of the ratio of histidine-to-glutamine and glutamine on AD observed 628 
here are in line with previous MR evidence suggesting higher blood glutamine as 629 
protective37,108. Interestingly, glutamine is noted to exert a neuroprotective effect 630 
against β-amyloid aggregation109 – a key drug target for AD110. This study provides 631 
further evidence for its protective effects on AD risk and suggests the association is 632 
driven by shared causal variants on chromosome 12. Further, we observe that the 633 
association between AD and glutamine may be partially driven by the mutual effect 634 
of SPRYD4 gene expression. As SPRYD4 has not been previously identified in AD 635 
GWAS it represents a novel locus of interest for future study. 636 

Our study also provides further evidence for the role of sphingolipid 637 
metabolism in psychiatric disorders. Sphingolipids are fatty acids with roles in cell 638 
growth/death, inflammation, mitochondrial function and immune response111. We 639 
identified two sphingomyelins and glycosyl-N-stearoyl-sphingosine (d18:1/18:0) as 640 
protective for depression, with the sphingomyelins both prioritised in multivariate 641 
analysis. Further, sphingomyelin (d18:1/18:1, d18:2/18:0) was protective for 642 
schizophrenia and sphingosine-1-phosphate indicated to elevate risk of bipolar 643 
disorder. Sphingomyelins are central to ceramide metabolism, to which they are 644 
converted via sphingomyelinase and back via sphingomyelin synthase112 645 
(Supplementary Material 5). Ceramides are catabolised into sphingosine and 646 
eventually sphingosine-1-phosphate112. General dysfunction of sphingolipid 647 
metabolism, particularly ceramide aggregation, has been previously observed in 648 
psychiatric disorders23,24,111,112 and reduced sphingomyelin levels may contribute to 649 
elevated neuroinflammation112. As such, the ceramide system is a proposed pathway 650 
for drug-based interventions for psychiatric disorders112. This study implicates 651 
sphingomyelins as possible protective targets. 652 
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Although fewer metabolomic patterns were observed in neurodegenerative 653 
disorders we did observe protective effects of several carnitine related metabolites – 654 
adipoylcarnitine for MS and acetylcarnitine and propionylcarnitine for ALS. All three 655 
are metabolised from L-carnitine, which plays a role in the transportation of fatty acids 656 
to mitochondria113, and when acetylated is suggested to slow disease progression for 657 
both disorders and AD114–116. Further, lower serum carnitine levels are observed in 658 
ALS117 and are associated with increased fatigue in MS118. A randomised control trial 659 
(RCT) of acetylcarnitine supplementation in ALS suggests it may improve self-660 
sufficiency in patients compared to placebo114. The importance of acetylcarnitine for 661 
ALS is further emphasised by our multivariate analysis, where it was the only 662 
metabolite prioritised for ALS and had the highest MIP of any metabolite examined. 663 
Interestingly, a larger phase two/three RCT of acetylcarnitine effects on biological and 664 
clinical outcomes in ALS is underway 665 
(https://classic.clinicaltrials.gov/ct2/show/NCT06126315). The remaining polygenic 666 
metabolites did not show clear functional relatedness, indicating disorder-specific 667 
metabolomic contributions – broadly confirmed in MR-BMA, where, for most 668 
disorders, all metabolites had a MIP ≥ 0.1, indicating unique causal effects. 669 

Although no specific metabolites were identified with an effect on both a 670 
psychiatric and neurodegenerative disorder, our results suggest the general 671 
importance circulating lipids in both categories. Dietary lipids are known to modulate 672 
neuroinflammation and play an important role in the brain by regulating neuronal and 673 
synaptic function119. Future studies exploring biological overlap in neuropsychiatric 674 
disorders may therefore wish to focus on lipidomic analysis for the purposes of further 675 
elucidating shared metabolic pathways. 676 

Several disorder-specific metabolites warrant further discussion. For example, 677 
we replicated the risk-increasing effect of uridine on MS previously identified 678 
observationally and in MR40,120. Uridine is linked to pyrimidine metabolism with 679 
important biological functions including RNA synthesis and the regulation of glucose, 680 
lipid and amino acid levels121. Interesting, within pyrimidine biosynthesis, uridine is an 681 
eventual metabolic product of dihydroorotate121, also identified here as increasing 682 
risk for MS. Additionally, the branch chain amino acids (BCAAs) leucine and its 683 
isomer isoleucine were both protective for PD. Plasma levels are noted to be lower in 684 
cases than controls and correlated with increased functional disability122. In an RCT 685 
of PD/parkinsonism, supplementation with leucine and vitamin D enriched whey 686 
protein was significantly associated with increased lower body function and muscle 687 
mass retention123. Our findings provide further evidence of the protective effects of 688 
leucine/isoleucine in PD and suggest them as possible interventional targets. 689 

In the UKB, PGS for prioritised polygenic metabolites showed limited 690 
prediction of their respective outcome disorder. Polygenic scores are noted to explain 691 

https://classic.clinicaltrials.gov/ct2/show/NCT06126315
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only a small proportion of the variance even within the same phenotype124. As such, 692 
it is not entirely surprising that we are unable to detect significant associations cross-693 
trait, particularly given the smaller effective target sample size available in the UKB 694 
compared to the large, meta-analytic samples sizes available from GWAS summary 695 
statistics for use in MR. To improve prediction, future studies might aggregate the 696 
genetic effects of multiple metabolites to better capture the total underlying metabolic 697 
risk for disease, for example through a multi-PGS framework125. 698 

In conclusion, we performed metabolome-wide MR to test the causal effects 699 
of 1300 metabolites/metabolite ratios on eight neuropsychiatric disorders. Results 700 
implicate AA and LA-containing lipids across the psychiatric disorder spectrum, with 701 
shared causal variants identified near the FADS gene cluster. We also identified 702 
shared causal variants between glutamine metabolites and Alzheimer’s disease, and 703 
identify a shared effect of SPRD4 gene expression. Additionally, our results implicate 704 
sphingolipid metabolism in psychiatric disorders and carnitine related metabolites as 705 
protective for MS and ALS, alongside several promising target metabolites with 706 
disease-specific effects. More broadly, this study suggests that lipid metabolism 707 
plays an important role in both psychiatric and neurodegenerative risk. The 708 
metabolites identified in this study can help inform potential interventions and future, 709 
targeted studies of metabolic contributions to disease risk. 710 

 711 

5. Limitations 712 

This study used data from individuals of European ancestry only and as such may 713 
lack generalisability. Further, as previously noted79, although the exclusion of the 714 
APOE region from the AD analyses is necessary to avoid violating MR assumptions, 715 
this may result in false negatives due to the regions known role in lipid metabolism126. 716 
Conversely, we can have greater confidence that the metabolites identified here are 717 
not confounded by APOE effects. Given the importance of this region in AD and lipid 718 
metabolism, it deserves specific focus in future metabolomic work. Further, MR 719 
requires that several assumptions – such the availability of suitable instruments and 720 
absence of pleiotropic effects – be met to provide reliable results. Although we 721 
mitigate against these by including only strong instruments (F-statistic ≥ 10) and 722 
using a robust sensitivity criterion to delineate causal metabolites, results should be 723 
interpreted with caution prior to further triangulation.  724 
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