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Abstract 

Aim: Ischemic stroke remains a leading global cause of morbidity and mortality, emphasizing 
the need for timely treatment strategies. This study aimed to develop a machine learning model 
to predict clinical outcomes in ischemic stroke patients undergoing Alteplase therapy, thereby 
supporting more personalized care. 
Methods: Data from 457 ischemic stroke patients were analyzed, including 50 demographic, 
clinical, laboratory, and imaging variables. Five machine learning algorithms—k-nearest 
neighbors (KNN), support vector machines (SVM), Naïve Bayes (NB), decision trees (DT), and 
random forest (RF)—were evaluated for predictive accuracy. The primary evaluation metrics 
were sensitivity and F-measure, with an additional feature importance analysis to identify high-
impact predictors.  
Results: The Random Forest model showed the highest predictive reliability, outperforming 
other algorithms in sensitivity and F-measure. Furthermore, by using only the top-ranked 
features identified from the feature importance analysis, the model maintained comparable 
performance, suggesting a streamlined yet effective predictive approach. 
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Conclusion: Our findings highlight the potential of machine learning in optimizing ischemic 
stroke treatment outcomes. Random Forest, in particular, proved effective as a decision-support 
tool, offering clinicians valuable insights for more tailored treatment approaches. This model's 
use in clinical settings could significantly enhance patient outcomes by informing better 
treatment decisions.  
Keywords: Ischemic Stroke; Alteplase; Machine Learning Model, Feature Selection, Backward 
Elimination 

 

1. Introduction 

Ischemic stroke stands as one of the most devastating neurological emergencies and a life-

threatening medical condition, often leading to severe long-term disability or even death [1]. 

According to estimates, 1 in 4 adults over the age of 25 experience an ischemic stroke in their 

lifetime, underscoring the widespread impact of this condition [2]. This condition arises from the 

sudden death of brain tissue due to a dramatic reduction in blood flow and oxygen supply to the 

brain, often caused by the formation of clots and occlusion of cerebral arteries [3].  

Risk factors for ischemic stroke can be classified into non-modifiable and modifiable categories. 

Non-modifiable risk factors include age, sex, and ethnicity, whereas modifiable risk factors 

encompass hypertension, smoking, poor dietary habits, and physical inactivity. The clinical 

presentation of ischemic stroke often includes sudden onset of paralysis, numbness, or weakness 

on one side of the body, difficulties with speech, visual disturbances, loss of balance, dizziness, 

severe headaches, and vomiting [4, 5]. Prompt recognition and early intervention are vital, as 

timely treatment can significantly improve functional recovery and overall outcomes following a 

stroke event.  

Tissue plasminogen activator (tPA), particularly Alteplase, is marked as the gold standard for 

ischemic stroke therapy. It has been shown to effectively reverse or mitigate the effects of 

ischemic stroke when administered within 4.5 hours of symptom onset. However, the efficacy 

and safety of tPA have been controversial, particularly regarding its use in patients with later 

presentation than the recommended time window [6-8].  

In recent years, computational approaches have significantly aid in simulating brain function, 

assessing stroke-induced damage, and modelling drug interactions [9-11]. Machine Learning 

(ML) has emerged as a powerful tool in the realm of medical decision-making, offering a data-
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driven approach that enhances clinical practices. ML algorithms excel in pattern recognition, 

which reduces human bias and improves the accuracy of predictions [12-17]. Their applications 

in the field of ischemic stroke are expanding, including in the diagnosis, personalized treatment 

decision-making, and prediction of complications and patient outcomes following treatment [18]. 

Early and accurate predictions of both the disease and treatment outcomes are crucial, as they 

empower clinicians to implement optimal care strategies, ultimately reducing the risk of adverse 

outcomes, and enhancing the quality of life for stroke survivors [19].  

Given the significance of monitoring patients after receiving Alteplase and the uncertainties 

surrounding the safety and efficacy of Alteplase in cases of delayed presentation, we aimed to 

develop a robust machine�learning model to predict the potential effects of Alteplase therapy in 

ischemic stroke patients. This model is supposed to assist clinicians in making informed 

decisions regarding patient management.  

2. Material and Method 

2.1. Study Design and Patients 

This retrospective study analysed the clinical data of 457 ischemic stroke patients (253 females 

and 204 males) admitted to Valiasr Hospital of Zanjan, Iran in 2021. The patients, aged between 

29 and 99 years (mean age: 69.49 ± 10 years), received Alteplase therapy during hospitalization. 

The study aimed to develop a machine learning (ML) model to predict the efficacy of Alteplase 

in ischemic stroke patients based on various clinical and demographic attributes.  

2.2. Data Collection 

A total of 50 attributes (features) were collected for each patient, including demographic 

information, medical history, treatment data, and stroke characteristics. These features were 

recorded at admission and during hospitalization, covering the following categories:  

2.2.1. Demographic and clinical data: 
• Gender, Age, Weight 
• Time of Stroke Onset 
• Smoking Status 
• History of Pharmaceutical Treatment (Yes/No): 

� Anti-platelet medication  
� Oral anticoagulants 
� Heparin 
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� Oral anti-diabetic medication 
� Insulin Therapy 
� Anti-hypertensive medication 
� Statins 

•  Medical History (Yes/No) 
� Diabetes  
� Hyperlipidaemia 
� Previous stroke or transient ischemic attack (TIA) 
� Atrial fibrillation 
� Type of atrial fibrillation (transient/permanent) 
� Congestive heart failure 
� Vascular disease 

 
2.2.2. Laboratory and Imaging Data: 

• Blood glucose concentration at admission and 24 hours post-admission 
• Activated partial thromboplastin time (APTT) 
• Serum creatinine levels 
• Neuroimaging data  

� CT (imaging-computed tomography) 
� MRI (magnetic resonance imaging) 

• Systolic and diastolic blood pressure at admission and 24 hours post-admission 
 
2.2.3. Medication Administered During Hospitalization: 

• Aspirin or/and Clopidogrel 
• Pantoprazole or/and Carvedilol or/and Nitrocontin 

 
2.2.4. Stroke Characteristics 
Stroke characteristics were evaluated based on the National Institutes of Health Stroke Scale 
(NIHSS). NIHSS evaluates stroke severity across multiple domains: 

• NIH1A: Level of Consciousness (LOC)  
• NIH1B: LOC questions (birthday and age recall) 
• NIH1C: LOC commands (eye and hand movements) (nih1A_baseline) 
• NIH2: Best gaze (horizontal eye movements) (nih2) 
• NIH3: Visual function (finger counting or visual threat) 
• NIH4: Facial Palsy 
• Motor function 

� NIIH5A: right arm movement 
� NIH5B: left arm movement 
� NIH6A: right leg movement 
� NIH6B: left leg movement 

• NIH7: Limb ataxia (coordination and tremor evaluation) 
• NIH8: Sensory function (sensory loss evaluation) 
• NIH9: Best language (object identification, repetition, and speech production) 
• NIH10: Dysarthria (speech intelligibility and/or speech naturalness) 
• NIH11: Extinction and inattention (inferred from other tests) 
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NIHSS sub-scores and total scores were calculated to quantify the overall stroke severity.  

 

2.3. Machine Learning Algorithms 

To predict clinical outcomes after Alteplase therapy, five popular supervised ML algorithms 

were employed: k-nearest Neighbors (KNN), Support Vector Machine (SVM), Naïve Bayes 

(NB), Decision Trees (DT), and Random Forest (RF).  

2.3.1. k-Nearest Neighbors (kNN) 

The kNN is a simple yet effective classification algorithm that classifies a sample based on the 

majority class of its k nearest neighbor, determined using the Euclidean distance, which 

measures the similarity between samples. The value of k determines the number of neighbors 

considered for classification [20].  

2.3.2. Support Vector Machine (SVM) 

The SVM method is recognized as a benchmark classifier in artificial intelligence. This method 

constructs a decision boundary, or hyperplane, between the two closest training samples to 

separate the samples into the two classes by maximum marginal distance and minimum 

classification errors. SVM assumes that the number of dimensions exceeds the number of 

samples to reduce classification errors [21].  

2.3.3. Naïve Bayes (NB) 

Naïve Bayes is a probabilistic learning model based on Bayes’ theorem. It operates under the 

assumption that the features are independent. This classifier uses the maximum probability 

principle to classify input data into specific classes [22]. 

2.3.4. Decision Tree (DT) 

DT is a well-established ML technique used for classification and prediction. A decision tree is 

visualized as a tree-like graph comprising a root node as well as several internal nodes and leaf 

nodes. To make predictions, the algorithm selects the optimal feature at each step, navigating the 

tree until it reaches a leaf node that indicates the class for a sample [23].  

2.3.5. Random Forest (RF) 
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Random Forest improves prediction accuracy by combining several decision trees. It generates 

smaller trees using random subsets of features and employs a majority voting strategy across all 

the trees to predict the class label of a sample [24]. 

2.4. Evaluation Metrics  

The performance of the ML models was evaluated using several classification metrics derived 

from the confusion matrix: sensitivity, specificity, accuracy, and the F1-score [25].  

A confusion matrix categorizes prediction into four outcomes: true positive (TP, number of 

instances correctly predicted as positive), true negative (TN, number of instances correctly 

predicted as negative), false positive (FP, number of instances incorrectly predicted as positive), 

and false-negative (FN, number of instances incorrectly predicted as negative). 

2.4.1. Sensitivity (Recall) 

Sensitivity, also known as true positive rate, quantifies the proportion of actual positive samples 

that are correctly identified by the model. This metric is calculated using the formula [26]: 

����������� 	

�


� � �
    

2.4.2. Specificity 

Specificity, or the true negative rate, evaluates the proportion of negative samples that are 

correctly classified [27]. This metric is particularly important where false positives can lead to 

unnecessary interventions. Specify is calculated as: 
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2.4.3. F1-score 

The F1-score, also known as f-measure, balances Precision (precision=TP/TP+FP) and Recall, 

providing a harmonic mean of two. The F1-score is calculated as [28]: 
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2.5. Feature Selection 
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To enhance the predictive capabilities of our models and quantify the contribution of input 

features to predict clinical outcomes, a backward elimination strategy was adopted. In this 

approach, an initial full model is trained with all variables (features). The variables are 

eliminated individually from the full model until only those that meaningfully influence the 

outcome remain [29, 30]. Five popular algorithms including kNN, SVM, NB, DT, and RF were 

employed to construct the models. After omitting each feature, they were assigned a score based 

on their contribution to predicting patient outcomes. Next, important features were identified and 

the models were retrained and tested using the top features. Finally, the evaluation metrics were 

calculated for the models, providing insight into model performance and the accuracy of the 

predictions. 

3. Results 

3.1. Initial Model Training 

We started by training five predictive models, KNN, SVM, NB, DT, and RF, using fifty features. 

The performance metrics of models are summarized in Table 1 and illustrated in Figure 1. Both 

SVM and RF had a sensitivity of 0.97, indicating their highest performance in detecting positive 

instances. In contrast, NB showed a notably lowest sensitivity of 0.7 suggesting the limitation of 

this classifier for capturing true positives compared to other models. However, NB performed the 

best than its counterparts in terms of specificity, having a score of 0.93. This suggests that NB 

was the most effective model at correctly identifying true negatives, thereby minimizing false 

positive predictions. On the other hand, KNN showed a challenge in reducing false positives 

since it had the lowest specificity score.  

When evaluating the accuracy, SVM outperformed the others with a score of 0.9, suggesting its 

strong overall predictive capability while NB showed the lowest effectiveness in producing 

correct overall predictions. The F-measure revealed that both SVM and RF achieved the highest 

validation score of 0.97. this indicates that these models excel in terms of sensitivity and 

maintain a favorable balance between precision and recall, making them highly suitable for 

practical applications.  

 

Table 1: Predictive performance of KNN, SVM, NB, DT, and RF. 

Predictive model 
Model performance 

Sensitivity Specificity Accuracy F-measure 
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KNN 0.92 0.33 0.81 0.92 
SVM 0.97 0.6 0.9 0.97 
NB 0.7 0.93 0.74 0.7 
DT 0.92 0.73 0.89 0.92 
RF 0.97 0.53 0.89 0.97 

KNN: k-nearest Neighbors; SVM: Support Vector Machine; NB: Naive Bayes; DT: Decision Trees; RF: Random 
Forest. 

 

Figure 1: Comparison of F-measure, sensitivity, specificity, and accuracy metrics between KNN, SVM, DT, and RF 
ML models for predicting outcomes after Alteplase therapy in ischemic stroke patients. 

 

3.2. Feature Selection 

To identify the top features that significantly have a central role in predicting the potential effect 

of Alteplase therapy in ischemic stroke patients, we adopted a backward elimination strategy. 

We created a modified version of the dataset by omitting each feature and retraining the models 

with this new dataset. The performance of each retrained model was then assessed using the 

accuracy metric. Comparing the performance of each modified model with the baseline model, 

each removed feature was mapped to its corresponding accuracy. Features with a significant drop 

in a model’s performance due to its elimination were identified as critical while those with 

minimal impact were eliminated. Figure 2 visually represents the importance of the identified 
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features, ranked from most to least impactful. Features at the uppermost part of the plot signify 

the greatest role in enhancing predictive accuracy, while those at the bottom are deemed less 

relevant.  

Among the most important features identified, NIH1C (LOC commands (eye and hand 

movements)), NIH1B (LOC questions (birthday and age recall)), and NIH_noValue (the absence 

of any stroke characteristics) had the highest scores, indicating their importance in accurately 

predicting patient outcomes. In addition, NIH9 (Best language (object identification, repetition, and 

speech production)), NIH8 (Sensory function (sensory loss evaluation)), congestive heart failure, anti-

platelet medication, NIH4 (facial palsy), type of antiplatelet treatment, and gender were other significant 

features. These top ten features were selected for training the final models.  

On the other hand, the glucose level and the antiplatelet treatment were found to be the least 

significant features. The feature selection results underscore the centrality of specific 

neurological assessment in predicting outcomes, emphasizing the potential for these features to 

guide clinical decision-making.  
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Figure 2: Visualization of key features influencing outcomes after Alteplase therapy in ischemic stroke patients. The 
color gradient illustrates feature importance, with purple and blue denoting high significance, while orange to yellow 
indicates lower relevance.  

3.4. Final Model Training 

After selecting the top ten features identified as significant predictors, we proceeded to train five 

ML models including KNN, SVM, NB, DT, and RF, to predict outcomes for ischemic stroke 

patients receiving Alteplase therapy. Several evaluation metrics including sensitivity, specificity, 

accuracy, and F1-measure were then calculated.  

It is noteworthy that, while a decrease in some measures was observed across all models after 

feature selection, the majority of models exhibited unchanged or even enhanced values. The 

detailed performance of each ML model is shown in Figure 3.  
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Figure 3- Radar plots depicting the performance of the various algorithms before and after important feature 
selection for predicting outcomes after Alteplase therapy in ischemic stroke patients.  

 

4. Discussion 

In this study, we developed and validated machine learning models for predicting the potential 

effect of Alteplase therapy in ischemic stroke patients. Our initial approach involved 

constructing models using KNN, SVM, DT, NB, and RF algorithms with fifty variables.  

Based on the results, models made by RF and SVM demonstrated acceptable performance 

compared to other ML algorithms. Accordingly, Kaiting Fan et al. constructed an accurate and 

personalized secondary prevention ML model, which achieved an area under the curve (AUC) of 

0.790 with RF compared to other models including SVM, NB, and logistic regression (LR), 

particularly in delivering accurate and timely prediction for stroke patients following 30 days 

intravenous Alteplase treatment [31].  

Similarly, Ahmad A. Abujaber et al., found that the SVM model, with an AUC of 0.72, 

outperformed other ML models in predicting prognostic outcomes for ischemic stroke patients 

who had received thrombolytic (fibrinolytic) treatment [32]. In a separate study by Zheng Ping et 

al., RF, LR, and SVM emerged as the top three algorithms among various ML models, 

demonstrating the highest accuracy for predicting long-term outcomes in stroke patients post-
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intravenous thrombolysis [33]. Furthermore, Hamed Asadi, et al., reported that the SVM model 

displayed significant predictive capability for acute ischemic stroke after intra-arterial therapy, 

achieving a root mean squared error of 2.064 [34]. These findings highlight the potential of ML 

models to uncover complex relationships and hidden patterns among a wide range of input 

variables, thereby facilitating the most accurate predictions possible in clinical settings [35]. 

However, within the medical field, employing a large number of features in predictive modeling 

may not always be the most effective approach. Gathering extensive data can pose a significant 

challenge for practitioners, particularly in clinical settings where guidelines may vary and not all 

information is constantly accessible. Moreover, including numerous features can complicate 

analyses, leading to increased computational costs, increased complexity, and reduced 

interpretability of the models [36, 37]. Therefore, simpler models are easier to interpret, more 

widely applicable, and better suited for practical use. However, it is crucial to ensure that 

essential variables are not ignored in the pursuit of model simplicity [38]. 

To balance model parsimony with the inclusion of essential features, we employed a backward 

elimination approach, a type of wrapper strategy [39], to select the most significant predictors 

while ensuring that our model remains relatively efficient and interpretable.  

 Among the most important features identified, NIHSS scores including NIH1C (LOC 

commands (eye and hand movements)), NIH1B (LOC questions (birthday and age recall)), and 

NIH_noValue (the absence of any stroke characteristics), NIH9 (Best language (object 

identification, repetition, and speech production)), and NIH8 (Sensory function (sensory loss 

evaluation)) had the highest scores, indicating their importance in accurately predicting patient 

outcomes.   

 Baseline NIHSS scores, which were identified by the ML algorithms of the present study as 

important key features, serve as a standardized tool for assessing the potential effects of 

Alteplase therapy in ischemic stroke patients [40, 41]. Congestive heart failure, anti-platelet 

medication, NIH4 (facial palsy), type of antiplatelet treatment, and gender were other significant 

features.  

 Prior studies further support the relevance of these findings. For example, Mingfeng Zhai et al. 

identified a correlation between age and baseline NIHSS scores with increased long-term 

mortality in stroke patients [42]. Similarly, Yinglei Li et al., emphasized that factors such as 
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posterior circulation stroke, elevated NIHSS scores at admission, and specific laboratory 

parameters (such as homocysteine levels) are significant predictors of post-Alteplase outcomes 

[43]. Additionally, Yanan Xu et al., found that baseline NIHSS, systolic blood pressure at 

admission, and the neutrophil-to-lymphocyte ratio (NLR) were critical features for predicting 

hemorrhage transformation in acute ischemic stroke after alteplase, with the baseline NIHSS 

score serving as an independent risk factor [44]. 

 Consistent with previous research, a high baseline NIHSS score, which indicates severe or 

diffuse neuron impairment due to ischemic stroke, was associated with poor outcomes [45]. 

Gender was also identified as a significant factor influencing treatment outcomes as Kaiting Fan 

MS found that age along with NIHSS scores at admission are important features for enhancing 

ML-driven ML predicting [31]. Furthermore, Carolyn Breauna Sanders et al. highlighted heart 

failure as a critical predictor of unfavorable outcomes in ischemic stroke patients, noting that 

those with both ischemic stroke and heart failure were associated with improved ambulatory 

status post-Alteplase therapy [46].  

Understanding these critical factors provides valuable insight into identifiable risk factors that 

can be managed to enhance the care of ischemic stroke patients after Alteplase therapy. 

Furthermore, the assessment of Alteplase therapy during hospitalization is essential for optimal 

patient management. Clinicians often focus predominantly on laboratory-based indicators while 

sometimes underestimating non-laboratory characteristics. Objective assessments of disease 

severity are vital for medical decision-making. Our findings underscore the importance of 

evaluating the functional status of ischemic stroke patients following Alteplase therapy, as this 

can significantly impact clinical outcomes.  

5. Conclusion 

This study underscores the potential of ML models, especially random forest (RF), in predicting 

outcomes for ischemic stroke patients under Alteplase therapy. Its ability to accurately classify 

outcomes while maintaining sensible sensitivity and specificity suggests it is a useful tool for 

clinicians aiming to improve patient care.  
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6. Ethics Approval Statement 

This study was conducted in compliance with ethical guidelines and was approved by Ethics 

Committee of Zanjan University of Medical Sciences, Zanjan, Iran. Ethics approval was 

obtained prior to data collection, with approval number ZUM-4038. All participants provided 

informed consent, and their confidentiality and rights were protected throughout the study. 
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