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Abstract 

Genetic colocalization analyses are frequently conducted to determine if causal signals at a 

genetic locus are shared between two phenotypes. However, colocalization is rarely undertaken 

at the HLA locus, due to its complex linkage disequilibrium (LD) and high polymorphism density. 

This lack of genetic causal inference method limits our ability to translate HLA associations into 

therapeutic targets. Here we present a method that uses HLA alleles, instead of nucleotide 

variants, to perform genetic colocalization of two traits at HLA genes. The method, which we call 

HLA-colocalization, works by controlling for LD using Bayesian variable selection, then 

performing Bayesian regression on the resulting posterior inclusion probabilities. We first show 

through simulation that the method correctly identifies truly colocalizing genes. We then test 

the method in two positive control scenarios, showing colocalization between hepatitis B and 

liver disease at HLA-DPB1, and between Epstein-Barr virus and multiple sclerosis at HLA-DRB1 

and HLA-DQB1. Lastly, we perform a large colocalization scan between multiple viruses and 

auto-immune diseases, demonstrating that the method is well calibrated, and uncovering 

multiple biologically plausible novel causal associations, such as cytomegalovirus and ulcerative 

colitis. To our knowledge, HLA-colocalization is the first accurate genetic colocalization method 

for the HLA locus (github: https://github.com/DrGBL/hlacoloc). 
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Introduction 

The human leukocyte antigen (HLA) cluster of genes on chromosome 6 of the human genome is 

associated with multiple autoimmune, inflammatory, and infectious conditions
1–3

. It contains 

genes that are critical for a functioning innate and adaptive immune response including those 

encoding complement proteins, as well as class I and II HLA proteins that are responsible for 

presenting self and foreign peptide to CD8+ and CD4+ cells respectively
4
. It is widely recognised 

as one of the most complex genetic loci in the human genome, due to its high density of 

structural and single nucleotide polymorphisms, the complex long-range linkage disequilibrium
2
 

(LD), and the fact that multiple independent associations may be observed across the locus with 

single traits.  

 

These genetic complexities, that are unique to HLA, prohibit the application of genetic 

epidemiological causal inference methods, such as Mendelian randomization or genetic 

colocalization, that have resulted in significant translational breakthroughs and new therapeutic 

discoveries in other regions of the genome
5,6

. In the case of Mendelian randomization, the HLA 

locus likely breaks the core assumption of absence of horizontal pleiotropy (i.e. the HLA locus is 

associated with too many traits or diseases for any HLA SNP instrument to confidently be only 

associated with an outcome through its role on the exposure). In the case of genetic 

colocalization, the long-range LD is either computationally intractable (i.e. the algorithms do not 

converge when including classical variants such as single nucleotide polymorphisms, SNPs), or 

the outputs provide biologically uninformative results even when colocalization is probable (i.e. 

it cannot identify specific HLA or loci that drive the colocalization). That is, even if genetic 

colocalization is observed at the HLA, it is still difficult with currently available methods to 

pinpoint specific genes or alleles within the HLA that explain the observed shared genetic signal 

between two phenotypes. Hence, given the breadth of diseases linked with HLA and the 

potential for translational opportunity, a method that could perform genetic colocalization and 

inform biologically causal components of the HLA is a great unmet need. 

 

In what follows, we present an overview of our proposal of the underlying architecture of HLA 

gene and allele associations with disease traits. We then outline a method that exploits this 

model, and tests for colocalization at HLA genes between two traits, thus finding potential links 

between those tested phenotypes. We test the method using simulations in cohorts of diverse 

genetic ancestries derived from the UK Biobank
7
, then using known positive control scenarios, 

we show results of colocalization at varying number of HLA allele fields to show that these can 

provide biologically relevant insight into the HLA. Specifically, we show how Epstein-Barr virus 

seropositivity colocalizes at the HLA with multiple sclerosis in European ancestry populations, 

and how hepatitis B antigen positivity colocalizes with liver disease in the East Asian 

populations
8
. Lastly, we perform a large-scale HLA-colocalization analyses of pathogen serology 

and autoimmune diseases, finding novel colocalizing genetic signals, opening up potentially 

unexplored links between pathogens and disease.  

 

Results 

A theoretical architecture of HLA-disease associations; the gene-allele signature 

Other less complex regions of the genome have genetic associations with disease observed as a 

result of causal, predominantly biallelic, SNPs affecting gene transcription or their gene product 

function, with surrounding SNPs associated through LD (Fig. 1a). In contrast, associations 

observed in the HLA region typically show many other SNPs apparently associated as result of 

the long-range LD
9–12

 in addition to those in local LD. For most traits with SNP associations across 
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the HLA, our current understanding is that the associations are a result of multiple independent 

associations between classical HLA gene alleles, typically focussing on the class I (HLA-A, -B, and 

–C) and class II (HLA-DR, -DQ and -DP heterodimer) genes
9–12

 (although notable exceptions 

exist
13

).  

In what follows we refer to HLA alleles using the standard nomenclature, which consists of the 

gene name, followed by 4 colon-separated fields that provide information on serotype, protein 

altering variants, synonymous variant, and non-coding variants respectively (e.g. allele HLA-

A*01:01:01:01 is a classic example of a 4-field allele). Depending on the technology used for 

genotyping, HLA alleles can be described to any given field length, with increasing resolution of 

underlying single variants characterised as the number of fields increases. Thus, this allele 

nomenclature inherently describes clusters of variants forming the functional HLA molecule.  

 

Upon imputation, or sequencing, of HLA alleles and testing of the resultant allele associations 

with disease traits, multiple alleles in many HLA genes have observed associations. Several 

alleles in different genes frequently have near-equivalent association test statistics owing to LD 

(Fig. 1b). Differentiating causal alleles within genes, assuming a similar architecture to less 

complex loci, has near-ubiquitously been elusive. For example, HLA haplotypes DR1, DR2, DR3, 

and DR4 are all strongly associated with the risk of type 1 diabetes mellitus, but span multiple 

class II HLA genes (most significantly HLA-DRB1 and HLA-DQB1)
14

. 

 

Another unique observation with HLA associations is that not only are there single alleles in 

significant association with disease traits in each gene, but many other alleles in each gene also 

demonstrate associations with the trait. The direction of effect of these alleles on the trait may 

be positive (risk increasing in the case of binary disease) or negative (protective).  The 

explanation for these observations can be postulated to be a result of HLA alleles representing 

single-unit proteins that bind and present relevant self- (class I) or foreign- (class II) peptides in 

either shared or distinct ways
15

. Those alleles within genes with shared properties often have 

shared peptide-contacting amino acid residues, whereas other amino acids at those positions 

may explain opposing effects. Together, multiple alleles within a gene represent a spectrum of 

potential effects on the trait depending on their ability to bind and present peptide. However, 

the measured effect (and resultant association statistic) of any one allele will be a combination 

of the true effect on the trait, and LD with any other allele in another gene that may influence 

that same trait. We propose that if we can define the alleles within each gene that are likely to 

be most predictive of any trait, after adjusting for complex LD, we may be able to define a 

‘signature’ of association for each HLA gene, that may then be tested with other traits to find the 

probability of colocalization (Fig. 1c). 

 

Overview of the HLA colocalization method 

Here, we present HLA-colocalization, an easy-to-use Bayesian method that allows for the 

assessment of genetic colocalization of two traits at HLA genes using summary statistics through 

the generation of LD-adjusted allelic signatures of association. Compared to standard genetic 

colocalization
16,17

 methods, this method does not colocalize at the level of biallelic SNPs, but 

rather at the level of whole HLA genes using HLA allele nomenclature described above. The 

method defines HLA alleles as multiallelic variants at any given HLA gene. Hence, HLA allele 

based colocalization seeks to find which genes, rather than which SNP, harbor the shared genetic 

determinants for a given pair of traits. To avoid ambiguity, in the remainder of the text, we will 

use the term “allele” to refer exclusively to HLA alleles as described above, and we will use 

“SNP” to refer to single-nucleotide variants. 
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Modern SNP-based colocalization methods vary, but most of them generally work in two steps. 

In the first step, sets of largely independent SNPs are identified. These sets are deemed to be the 

most likely determinant of their respective phenotypes and are determined through different 

algorithms accounting for LD such as conditional analyses
6
 or Bayesian variant selection

16
 (BVS). 

In the second step, algorithms determine if the sets of SNPs selected for each phenotype in the 

first step are shared between those phenotypes. Measuring how much is shared between these 

sets of variants is also done in varying ways such as multiplying posterior inclusion probabilities 

(PIPs) or Bayes factors, for example
6,18,19

. 

 

HLA-colocalization follows the same general approach. In the first step, we select a set of HLA 

alleles which are most predictive of each trait. This is done with a BVS algorithm (SuSiE
18

), 

resulting in each HLA gene being assigned a set of alleles with varying PIPs. Alleles with high PIPs 

are interpreted as being more predictive of the phenotype at that gene. Working with HLA 

alleles allows for the simplification of the LD and makes the BVS algorithm robust to the HLA LD 

structure. This distribution of PIPs then provides a causality signature for each gene that we use 

in the second step, where we measure how similar these causality signatures are for each gene 

between traits. Phenotypes which share a gene with similar causality signature are said to 

colocalize at that gene. In our HLA-colocalization method these steps are performed using 

Bayesian methods, allowing for a final probability of colocalization at each HLA gene. Specifically, 

if two phenotypes have a high probability of HLA colocalization at the same gene, then they are 

likely to share the same genetic determinant at that gene. Hence, if one assumes that the HLA 

locus is causal for the phenotypes, then the mechanism behind this causality is shared between 

the two phenotypes at the gene(s) with high probability of colocalization. Note that similar to 

SNP-based colocalization, direction of causality from one phenotype to the next is neither tested 

nor assumed. However, in contrast to SNP-based colocalization, this method provides a 

probability that two phenotypes colocalize at an HLA gene, rather than a locus. 

 

HLA-colocalization handles the two main problems with SNP-based colocalization at the HLA 

described in the introduction. First, it alleviates LD bias enough that BVS becomes reliable. That 

is, while there is still considerable LD between some HLA alleles at different genes (Fig. 1b), 

there is by definition no LD between alleles of the same gene (the probability of carrying any 

given two HLA allele at a certain gene depends only on populational allele frequency). This 

considerably simplifies LD at the HLA and allows BVS to efficiently select the most predictive 

alleles in the first step of the algorithm (Fig. 1c). Second, by working with HLA alleles directly, we 

introduce biological context to colocalization, since the result can be directly interpreted at the 

level of individual HLA genes. 

 

Simulation 

We used simulation of two quantitative traits to determine the PIP estimates expected if there 

was a true colocalization between two traits at one or more HLA gene using our method, 

compared to estimates expected if there was no colocalization, whilst varying the proportion of 

variance explained by the HLA genes on the likelihood of both traits. To do this we ran 50,000 

simulations of random pairs of traits using 3-field HLA allele calls obtained from whole-exome 

sequence (WES) data available from UK Biobank (UKB)
2
. For those simulations defining a true 

colocalization, the causal genes were randomly selected with the proportionality factor for each 

allele within that gene randomly assigned to both traits. The final proportion of variance 

explained by these alleles and genes was then averaged by adding random error, and linear 
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regression was performed assuming an additive model. These simulations are designed to 

capture the model outlined above, i.e. where multiple alleles at a single gene may affect the trait 

with a spectrum of effect sizes, such that colocalizing traits have proportional effect sizes (which 

are on the logistic scale in our binary trait simulations). 

 

Simulation results are summarized in Fig. 2. As the variance explained by HLA genes increased, 

the colocalization probability increased rapidly for truly colocalizing genes (Fig. 2a), and 

remained low for non-colocalizing genes (Fig. 2b). Importantly, this was observed in all 

continental ancestries, despite differences in LD architecture and sample size (min: 2,647 in UK 

Biobank east Asians, max: 9,449 in UK Biobank south Asians). Assessing the method’s ability to 

differentiate between colocalizing and non-colocalizing genes, the area under the receiver 

operating characteristic curve increased from an average of 60.7% in HLA genes simulated to 

explain 0-3% of a trait’s variance, to an average of 89.7% in HLA genes explaining 6-9% of a trait’s 

variance (Fig. 2c, see Supp. Fig. 1 for AUCs values by ancestries). 

 

We note that as with regular SNP-based colocalization, HLA-colocalization works only if there is a 

sufficient amount of genetic variation affecting the trait. Indeed, in our simulation, we only 

considered genes with 10 or more alleles. 

 

Lastly, we performed a similar simulation for two binary traits (Methods) and obtained similar 

results (Supp. Fig. 2-3). 

 

Hepatitis B virus and liver diseases HLA-colocalization 

We next applied our colocalization method to investigate the shared genetic architecture of 

measured human antibody responses against hepatitis B virus (HBV), and liver disease (including 

cancer). This was done in the China-Kadoorie Biobank (CKB), with HLA alleles imputation done at 

the G-group resolution on the HLA Michigan Imputation Server. We considered this analysis as a 

positive control since in East Asian populations most cases of liver disease would be expected to 

be caused by chronic hepatitis B infection and thus we would expect a significant sharing of 

genetic architecture. There is strong evidence that immunity to HBV, thus influencing risk of 

chronic infection and sequelae, is in part determined by HLA variants, specifically at HLA-DPB1
20

. 

HLA association studies were performed on hepatitis B surface antigenemia (cases: 3,097, 

controls: 97,543), and on liver disease or liver cancer (case: 3,325, control: 97,315). Our HLA-

colocalization method found that the expected gene colocalizes for the two traits (HLA-DPB1 

colocalization probability of 1). It also provided weak support for colocalization at HLA-DRB1 (P = 

31%) and HLA-DQB1 (P = 30%) (Fig. 3 and Supp. Data 1). 

 

Lastly, given that the above analysis was done in the same sample for HBV and liver disease 

phenotypes, we performed an analysis using data from a HLA association study of HBV infection 

in an east Asian genetic ancestry cohort from the Taiwan Biobank
21

. For this analysis, HLA allele 

imputation was done using HIBAG for class II genes only. For HLA-colocalization, analyses were 

limited to HLA-DRB1, HLA-DQB1, and HLA-DPB1, as HLA-DPA1 and HLA-DQA1 did not have 

enough alleles for the algorithm to converge. LD measures (r) between HLA alleles were taken 

from the CKB cohort. As expected, HLA-DPB1 colocalized with a probability of 1, while other 

genes did not show evidence of colocalization (Supp. Fig. 4). 

 

HLA-colocalization of Epstein-Barr virus antibody and multiple sclerosis risk 
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We next applied our colocalization method human antibody responses against Epstein-Barr virus 

(EBV), with multiple sclerosis disease (MS) risk. EBV and MS have long been reported to be 

associated, with a recent large-scale prospective cohort showing a clear temporal association 

between the two traits, with most cases of MS being preceded by EBV. In genetic studies, the 

association between HLA-DRB1*15:01 and both MS and EBV antibody levels has been observed 

in multiple independent cohorts of different ancestries
1,3,22–24

. Similarly, HLA-DQB1*02:01 has 

been linked to MS and EBV in Europeans
1,3,25

 but is in LD with HLA-DRB1*03:01. 

 

We used a subset of individuals from UKB with serological measurements measured against two 

EBV antigens
1,3

, and using their associated whole-exome sequencing 3-field resolution HLA allele 

calls, we performed HLA-colocalization with a case control HLA-allele analysis of multiple 

sclerosis risk, again using individuals from UKB. We ran additive model HLA allele association 

studies on levels of inverse quantile normalized viral capsid antigen (VCA, n = 7,741) and EBV 

nuclear antigen-1 (EBNA1, n = 7247) antibodies, and on multiple sclerosis (cases = 2,363, 

controls = 427,459). 

 

Fig. 4 shows the results comparing the frequentist regression of distributions of betas of HLA 

allele associations with each trait, using VCA antibody response, alongside the results of the 

Bayesian HLA-colocalization for the same traits. This demonstrates firstly that where linear 

regression of betas may suggest a correlation between MS risk and VCA antibody response 

shared at either HLA-DQB1 or DRB1, the Bayesian HLA colocalization method supports 

previously reported associations between exposure to EBV (as measured by VCA levels) and 

multiple sclerosis risk being genetically linked at HLA-DRB1 (P = 97%). Equivalent results were 

obtained for EBNA1 antibody levels and MS risk (HLA-DRB1 P = 92%), but with additional 

support for HLA-DQB1 (P = 100%) (Supp. Fig. 5, Supp. Data 1). 

 

The EBV and MS analysis above used a partially overlapping cohort of participants in the UK 

Biobank. However, in practice, colocalization is often performed in independent cohorts using 

summary statistics and an LD reference panel. We therefore repeated the analysis, but this time 

using a large independent cohort of MS cases (n=17,465) and controls (n=30,385) from the 

International Multiple Sclerosis Genetics Consortium (IMGSC) instead of participants with MS in 

the UK Biobank. The LD reference panel was obtained from European genetic ancestry UK 

Biobank but excluding participants with measured EBV antibody levels. Hence, summary 

statistics from the two phenotypes and the HLA allele LD reference panel were fully 

independent. Note that for this analysis, summary statistics were only available for the HLA-A, 

HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1. Again, we found his probability of colocalization at 

HLA-DRB1 for VCA (P = 91%, Supp. Fig. 6). However, for EBNA, colocalization probabilities 

decreased to 0.54 for HLA-DRB1 and to 0.42 for HLA-DQB1 (Supp. Fig. 7, Supp. Data 1). Together, 

these results strongly support a link through HLA-DRB1 between EBV exposure and MS risk. 

Further, while using a full two-sample approach likely leads to some loss of power, the method 

still performs well in this scenario. 

 

Human infection antibody responses and auto-immune disease risk 

Lastly, to measure the performance of our method and find potentially novel colocalizing 

associations on a larger scale, we performed HLA-colocalization on the HLA-wide association 

analyses of all infection antibody levels available in UKB, compared against HLA associations with 

10 auto-immune diseases with well-described strong causal signals identified at the HLA
2
:  

asthma,  multiple sclerosis, polymyalgia rheumatica and giant cell arteritis (PMR-GCA), 
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rheumatoid arthritis, psoriasis, ankylosing spondylitis, auto-immune thyroid disorders, type 1 

diabetes mellitus (T1D), Coeliac disease, and ulcerative colitis. The selected infectious agents 

were all viruses: cytomegalovirus (CMV), EBV, JC virus (JCV), Merkel cell polyomavirus (MCV), 

and varicella zoster virus (VZV). As expected, the majority of pairs of traits did not colocalize at 

any tested HLA gene. Only 7.6% of tested pairs of traits showed HLA-colocalization probability 

higher than 90%. Furthermore, 88.6% of pairs showed a probability of HLA-colocalization of less 

than 30% (Supp. Fig. 8). These suggest that the method is well calibrated to real-world data. 

 

Of the pertinent high probability colocalizing pairs of traits, we find that EBV (measured with 

EBNA serology) colocalizes at the HLA with many auto-immune diseases: T1D at HLA-DRB1 (P = 

100%), auto-immune thyroid disorders at HLA-DPB1 (P > 99%), asthma at HLA-DQB1 (P > 99%), 

and PMR-GCA at HLA-DQB1 (P > 99%). EBV has been tentatively linked to be part of the 

pathophysiology of most of these diseases
26,27

. We also observed colocalization between 

demyelinating disease and two polyomaviridae: JCV and MCV both at HLA-DRB1 (P > 99%). JCV is 

a known cause of demyelinating diseases such as progressive multifocal leukoencephalopathy
28

, 

whereas MCV has been linked with the development of chronic inflammatory demyelinating 

polyneuropathy
29

, though this colocalization could also reflect the similarity between the two 

polyomaviridae. Interestingly, we found that CMV colocalizes strongly (using both the pp52 and 

pp150 antigens) with ulcerative colitis at HLA-DRB1 (P > 99%). While HLA-colocalization cannot 

test the direction of causality between CMV and ulcerative colitis, CMV is known to be one of 

the most common complications of ulcerative colitis and its immunosuppressive therapy
30–32

. 

Hence, the results from HLA-colocalization matches what can be observed in clinical practice. 

 

Of the class I HLA genes, the strongest signals were found for VZV, which colocalized at HLA-B (P 

> 99%) with multiple auto-immune diseases: T1D, PMR-GCA, rheumatoid arthritis, multiple 

sclerosis or demyelinating diseases, Coeliac disease, and asthma. VZV is also suspected to be 

involved in many of these diseases, though more research is needed to understand the direction 

of causality. See Supp. Data 2 for the full results. 

 

Discussion 

Genetic colocalization methods are a useful causal inference tool which has been successfully 

applied to many loci across the genome. However, usual SNP-based methods fail at the HLA due 

to its complex LD and high polymorphism density. This has limited opportunities to translate 

genetic findings at the HLA locus into actionable therapeutic targets. Here, we have presented a 

genetic colocalization method which provides an accurate measurement of the degree of genetic 

architecture shared between two traits at HLA genes. Simulations and real-world application to 

two well established pairs of human diseases demonstrated high accuracy and low false positive 

signal rate. Lastly, a large-scale screen of colocalization between viral serologies and 

autoimmune diseases demonstrated that the method was well-calibrated, and still able to 

discover novel associations with biological and clinical plausibility (e.g. CMV and ulcerative 

colitis
30–32

). 

 

However, there are still important caveats to HLA-colocalization. Most of these are similar to 

those encountered in SNP-based genetic colocalization. First, HLA-colocalization requires that 

sufficient genetic variation is captured by the HLA alleles. In our simulation, the BVS algorithm 

would often fail to converge for genes with less than 10 alleles. This fits with the intuition that 

the more information is given about LD architecture at a locus (by expanding the LD matrix), the 

easier it is to recover the most informative alleles for each trait. Hence HLA-colocalization can 
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only be used in cohorts with enough genetic diversity at the HLA. In practice this also means that 

the cohort needs to be large enough. Second, our method also assumes that at least one of the 

HLA genes is causal for the trait. This is similar to the SNP-based colocalization assumption that 

there be at least 1 causal SNP at the locus for each phenotype. In the case of HLA allele 

colocalization, this means that the analysis needs to include all genes for which there could be a 

causal variant. This also implies that HLA-colocalization at an HLA gene does not provide 

information on whether the shared causal effect is due to coding variants, or due to non-coding 

variants that tag the relevant HLA alleles. Nevertheless, any resultant probability suggesting 

colocalization can at least prioritise the locus for downstream translational or functional studies. 

For example, our results add further support that a vaccine preventing EBV infection could 

potentially prevent multiple sclerosis, and that prioritising DRB1 presented peptides could be 

advantageous. 

 

Lastly, HLA colocalization requires an LD matrix between HLA alleles which can come from a 

reference population. If this LD matrix is not available owing to availability of summary statistics 

only, and then applied incorrectly, it will bias the results. This is a well-described problem in 

regular fine-mapping (and by extension SNP-based colocalization), especially in meta-analyses of 

genome-wide association studies
33

. This is easily observed in our HBV results above. In the CKB 

cohort, the allele with the strongest association was HLA-DPB1*05:01. However, in other cohorts 

of different genetic ancestries in the literature
20

, HLA-DPB1*04:01 has the strongest association, 

a difference explained by allele frequency differences, as effect sizes are maintained. For 

example, in CKB, HLA-DPB1*05:01 has a beta of 0.23 and a frequency of 37% (p = 2.1x10
-19

) 

while HLA-DPB1*04:01 has a beta of -0.31 and a frequency of 37% (p = 2.5x10
-11

). In a 

Bangladeshi cohort using a related quantitative phenotype of opposite effect direction (level of 

Anti-HBs), HLA-DPB1*05:01 has a beta of -1.03 and a frequency of 0.7% (p = 1.2x10
-5

) while HLA-

DPB1*04:01 has a beta of 0.49 and a frequency of 31% (p = 4.5x10
-30

). In both cohorts, HLA-

DPB1 is clearly associated (and likely causal) for HBV serological traits, but would lead to 

different PIPs due to differences in allele frequencies. Hence, like SNP-based colocalization, 

differences in genetic architecture across populations also prohibit the use of HLA-colocalization 

using two datasets from different ancestries. 

 

In conclusion, HLA-colocalization is a new genetic causal inference method with good 

performance at the HLA. It requires few assumptions (essentially the same as for regular 

colocalization), is easy to implement with already existing tools, and performs well on simulated 

and real-world data. We believe it has the potential to advance the HLA field and lead to many 

clinical translational opportunities. 

 

Methods 

HLA-colocalization steps 

The algorithm uses HLA allele association studies summary statistics and a population LD matrix 

as input. The alleles and LD architecture therefore need to be the same in both samples. It then 

works in two steps. First, we perform BVS using SuSiE and obtain PIPs or each allele. SuSiE is 

used because it provides an efficient way to approximate the posterior inclusion probabilities
34

. 

This step was done in R with the susie_rss function, with default parameters, and using all HLA 

alleles at the same time. 

 

Second, to measure how similar each gene’s causal signature is, we perform Bayesian linear 

regression on each pair of PIPs. This is done using Stan
35

 in R, with the rstanarm package. We use 
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the default priors used by rstanarm for linear regression. Specifically, the prior for the intercept 

term is Normal with a mean equal to the mean PIPs of the second trait, and a standard deviation 

of 2.5 times the standard deviation of the second trait. The prior for the slope is Normal with a 

mean of 0, and a standard deviation of 2.5 times the ratio of the standard deviation of the 

second trait and the standard deviation of the first trait. The probability of direction is then 

extracted for the slope coefficient (assuming that the coefficient is positive, otherwise 

colocalization is rejected). This regression step is done for each gene separately. 

 

The final probability of HLA-colocalization is a function of the two steps. Specifically, there is 

colocalization if a gene has at least one pair of alleles with high PIPs in both traits, and if the 

slope of the regression is positive. The probability of each statement is then multiplied to give 

the following probability of colocalization (at each gene separately): 
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where N is the number of alleles at the HLA gene, ����,����� � is the posterior inclusion 

probability of HLA allele i for trait j, and PD is the probability of direction of the Bayesian 

regression slope estimate at the HLA gene. 

 

HLA allele data sources and association studies 

For all UK Biobank analyses (including simulations, see section below), HLA alleles were obtained 

from previously published work
2
. Briefly, HLA alleles were called at a 3-field resolution using the 

HLA-HD algorithm
36

 on UK Biobank whole-exome sequences. For the HBV and liver disease 

analyses, HLA alleles were imputed at G-group resolution using whole-genome genotyping data 

and the Michigan Imputation Server multiethnic HLA imputation panel (v2)
37

. For the IMSGC 

multiple sclerosis analyses, HLA allele imputation was performed by the IMSGC, and is described 

elsewhere
38

. 

 

Other than for the analysis from the IMSGC and the Taiwan Biobank (both described 

elsewhere
21,38

), all HLA association studies were performed using Regenie
39

 with an additive 

effect model (like genome-wide association studies). Age, sex, and the first 10 principal 

components were used as covariates. Approximate Firth regression penalty was used for case-

control phenotypes using the default Regenie settings.  

 

For the UK Biobank analyses, we also included recruitment center as a covariate, while 

geographical region was also used in CKB analyses. For EBV serologies, phenotypes were first 

inverse quantile normalized, then used as continuous variables. The HBV surface antigenemia is 
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only reported as a binary trait in the CKB and was therefore analyzed as a case-control study. 

Multiple sclerosis was also analyzed as a categorical binary trait. For the binary traits in the UK 

Biobank, controls were selected as anybody who was not a case in the biobank. In CKB, controls 

were selected from the pre-specified control population, which adjusts for the by-design over-

representation of patients with cancer and other chronic diseases in the cohort
8
. 

 

Simulation methods 

To demonstrate the effectiveness of our method, we simulated two phenotypes with varying 

level of gene-level colocalization at the HLA. The simulation was done as follows. First, we 

assume that each HLA gene HLA-X has &� alleles '��,�, … , ��,��
*. For the first phenotype (p1), 

we assign to each gene HLA-X a variance parameter +�

�

, which represents the spread of the 

distribution of effects of each allele in that gene. Each allele ��,�  then has an associated effect on 

p1 distributed as ,�,�

� ~ &���
	�0, ��

��

���,��������,��
), where �.�,�  is the allele frequency of the i

th
 

allele of gene HLA-X. The reason for the denominator in the variance component of the normal 

distribution is to better reflect the fact that common variants have smaller effect sizes
40

. During 

the simulation we randomly set up to one third of +�

�

 to zero, denoting complete lack of causal 

effect of HLA-X on p1. We also randomly set up to all ,�,�

�

 to zero, to denote complete lack of 

causal effect of allele ��,�  on p1. Lastly, we then center all ,�,�

�

 so that their allele frequency 

weighted average is 0. This represents the fact that the effect of an HLA allele at a gene is always 

expressed relative to the other alleles at that gene. 

 

For the second phenotype (p2), every gene can be divided into two categories. First, if p1 and p2 

do not colocalize at HLA-X, then we assign effects ,�,�


 to each of its alleles in the same way that 

it was done for p1 above. Specifically, the simulation of ,�,�

�

 and ,�,�




 are totally independent. If 

p1 and p2 colocalize, then  ,�,�

� � /� % ,�,�




, where /�  is a constant simulated independently for 

each gene. This is the same method used for SNP-based colocalization simulation
17

, and 

represents the fact that if two phenotypes share the same genetic determinants at an HLA gene, 

then alleles with a larger effect on the first phenotype should also have larger effect on the 

second. For each simulation, the number of causal genes for each phenotype was determined 

randomly (i.e. uniform distribution from 0 to the number of genes). From the number of causal 

genes for each gene, the number of shared causal gene was also determined randomly from a 

uniform distribution. 

 

Using parameters above, we then simulate p1 and p2 for each participant, and add random 

noise to each simulation so that HLA genes explain on average 10% of the variance of the 

phenotypes. Lastly, HLA alleles association studies were performed on this simulated individual 

level data to obtain betas and standard errors. These were then used to perform HLA 

colocalization on the simulated data. 

 

This was done in each of the 5 continental ancestry groups in the UK Biobank. For computational 

practicalities, the European ancestry group was limited to those who had serological 

measurements done (n = 8,158)
1,3

. Sample sizes were as follows for the 4 other groups: 8,725 

participants of African genetic ancestry, 2,898 of Admixed American genetic ancestry, 2,647 of 

East Asian genetic Ancestry, and 9,449 of South Asian genetic ancestry. 
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We also performed a binary trait analysis. We used the same method as above to simulate betas 

on the liability scale, then transformed the results to binary phenotypes with the probit model. 

Note that due to decreased statistical power for binary traits, we simulated 10 times as many 

participants in this simulation as for the quantitative trait simulations above. 

 

Lastly, we also ran a separate simulation with a number of single effect of 20, and obtained 

similar results (Supp. Fig. 11-12) 

 

Ethics 

All primary individual level participant data from the UKB was obtained using application 27449.  

The UKB has ethics approval from the North West Multi-centre Research Ethics Committee. 

Ethics approval for the CKB study was obtainedEthical Review Committee of the Chinese Centre 

for Disease Control and Prevention (Beijing, China, 005/2004) and the Oxford Tropical Research 

Ethics Committee, University of Oxford (UK, 025-04). Data from all other cohorts are publicly 

available summary statistics from their respective sources. 

 

Data and code availability 

All code necessary to perform HLA colocalization and the above simulation is available at 

https://github.com/DrGBL/hlacoloc. Primary data from the UKB and the CKB are available 

through their respective owners. All summary statistics needed to replicate our results are 

available on the git or on their respective publications when applicable. 

 

Supplementary files 

Supplementary Data 1: Colocalization results 

Supplementary Data 2: Pathogen and autoimmune diseases colocalization full results 

 

Supplementary Figure 1: Per ancestry ROC area under the curves for simulations of quantitative 

traits 

Supplementary Figure 2: HLA allele HLA-colocalization simulation results for binary traits 

Supplementary Figure 3: Per ancestry ROC area under the curves for simulations of binary traits 

Supplementary Figure 4: EBNA and multiple sclerosis HLA-colocalization in the UK Biobank 

Supplementary Figure 5: VCA and multiple sclerosis HLA-colocalization in the IMSGC 

Supplementary Figure 6: EBNA and multiple sclerosis HLA-colocalization in the IMSGC 

Supplementary Figure 7: HBV and liver disease HLA-colocalization in the Taiwan Biobank 

Supplementary Figure 8: Summary of pathogen and autoimmune diseases colocalizations 

Supplementary Figure 9: HLA allele HLA-colocalization simulation results for quantitative traits 

with L=20 

Supplementary Figure 10: Per ancestry ROC area under the curves for simulations of quantitative 

traits with L=20 

Supplementary Figure 11: HLA allele HLA-colocalization simulation results for binary traits with 

L=20 

Supplementary Figure 12: Per ancestry ROC area under the curves for simulations of binary traits 

with L=20 
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Figure 1: Visual representation of LD at the HLA and HLA-colocalization. 

 
 

a) Distribution of effect sizes in a typical SNP-based association study. P-values decay as variants 

become further away from the lead SNP. This is also observed at the HLA locus when a SNP 

association is observed with a trait, and the LD may span the entirety of the HLA locus. b) In 

contrast to SNP associations, HLA allele associations do not display decaying LD with increasing 

genomic distance. This is because HLA alleles for a given gene all share the same position. 

However, between gene LD still exists, and is represented by the matching colours in the figure. 

c) After using BVS model, we obtain the most predictive HLA allele combination for the trait. In 

some cases, only alleles at one gene will be predictive (red dots). In other cases, it could be more 

(yellow dots, with alleles at 2 genes). In most cases, no HLA alleles will be predictive of the trait 

above and beyond the other more predictive alleles (dots of other colours). This significantly 

reduces the problem of LD in colocalization. 
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Figure 2: HLA allele HLA-colocalization simulation results for quantitative traits 
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Figure 2. Simulation results for HLA-colocalization method.  Pairs of quantitative traits were 

simulated having either true overlap, or no true overlap between causal HLA alleles, using a 

bivariate normal model as described in Methods. In each simulation a total proportion of trait 

variance explained was assumed.  A total of 250,000 simulations (50,000 per ancestry group) 

were performed covering different parameter values (Methods). HLA allele distributions were 

simulated using UK Biobank participants. a) average posterior probability of colocalization in 

truly colocalizing genes. This increases with the amount of phenotype variance explained by 

each gene, as expected. b) average posterior probability of colocalization in truly non-

colocalizing genes, which remains stable with increasing variance explained. For plots a and b, 

the lines were drawn using a generalized additive model with geom_smooth in R. The grey area 

represents 95% confidence intervals. The individual dots represent the average in the 

corresponding variance bins. c) average area under the curve as a function of variance explained 

for each gene. For this plot, average ROC area under the curve across ancestry was shown. 

Legend: afr: African genetic ancestry, amr: Admixed American genetic ancestry, eas: East Asian 

genetic ancestry, eur: European genetic ancestry, sas: South Asian genetic ancestry. 
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Figure 3: Liver disease and HBV antigenemia HLA-colocalization 

 
a) linear regression (with 95% confidence intervals) of beta coefficients from the additive HLA 

allele association studies. b) Bayesian regression of HBV and liver disease PIP causal signature. 

The black lines show the regression fit, while the blue lines show 100 random draws from the 

posterior distributions. The resulting probabilities of HLA-colocalization (P_coloc) are also 
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written for ease. Hence, after Bayesian variable selection at the HLA locus, HLA-DPB1 shows 

evidence of shared liver disease and HBV genetic architecture. 
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Figure 4: VCA and Multiple sclerosis HLA-colocalization 

 
a) linear regression (with 95% confidence intervals) of beta coefficients from the additive HLA 

allele association studies. b) Bayesian regression of multiple sclerosis and VCA PIP causal 

signature. The black lines show the regression fit, while the blue lines show 100 random draws 

from the posterior distributions. The resulting probabilities of HLA-colocalization (P_coloc) are 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316783doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.05.24316783
http://creativecommons.org/licenses/by-nc-nd/4.0/


also written for ease. Hence, after Bayesian variable selection at the HLA locus, both HLA-DQB1 

and HLA-DRB1 show evidence of shared multiple sclerosis and VCA genetic architecture. 
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Supplementary Figure 1: Per ancestry ROC area under the curves for simulations of quantitative traits 
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Area under the ROC curves of HLA-colocalization PIPs for different variance explained per gene and genetic ancestries for the simulation of the 

quantitative traits. Legend: afr: African genetic ancestry, amr: Admixed American genetic ancestry, eas: East Asian genetic ancestry, eur: 

European genetic ancestry, sas: South Asian genetic ancestry.
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Supplementary Figure 2: HLA allele HLA-colocalization simulation results for binary traits 
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a) average posterior probability of colocalization in truly colocalizing genes. This increases with 

the amount of phenotype variance explained by each gene, as expected. b) average posterior 

probability of colocalization in truly non-colocalizing gene, which remains stable with increasing 

variance explained. For plots a and b, the lines were drawn using a generalized additive model 

with geom_smooth in R. The grey area represents 95% confidence intervals. The individual dots 

represent the average in the corresponding variance bins. c) average area under the curve as a 

function of variance explained for each gene. For this plot, average ROC area under the curve 

across ancestry was shown. Legend: afr: African genetic ancestry, amr: Admixed American 

genetic ancestry, eas: East Asian genetic ancestry, eur: European genetic ancestry, sas: South 

Asian genetic ancestry.
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Supplementary Figure 3: Per ancestry ROC area under the curves for simulations of binary traits 
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Area under the ROC curves of HLA-colocalization PIPs for different variance explained per gene and genetic ancestries for the simulation of the 

binary traits. Legend: afr: African genetic ancestry, amr: Admixed American genetic ancestry, eas: East Asian genetic ancestry, eur: European 

genetic ancestry, sas: South Asian genetic ancestry.
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Supplementary Figure 4: Hepatitis B (HBV) and liver disease HLA-colocalization in the Taiwan 

Biobank 

 
 

a) linear regression (with 95% confidence intervals) of beta coefficients from the additive HLA 

allele association studies. b) Bayesian regression of liver disease PIPs on HBV PIPs causal 

signatures. The black lines show the regression fit, while the blue lines show 100 random draws 

from the posterior distributions. The resulting probabilities of HLA-colocalization (P_coloc) are 

also written for ease. Once again, we observe HLA-colocalization at HLA-DPB1. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316783doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.05.24316783
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 5: EBNA and multiple sclerosis HLA-colocalization in the UK Biobank 

 
a) linear regression (with 95% confidence intervals) of beta coefficients from the additive HLA 

allele association studies. b) Bayesian regression of multiple sclerosis PIPs on EBNA PIP causal 

signatures. The black lines show the regression fit, while the blue lines show 100 random draws 

from the posterior distributions. The resulting probabilities of HLA-colocalization (P_coloc) are 

also written for ease.   
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Supplementary Figure 6: VCA and multiple sclerosis HLA-colocalization in the IMSGC 

 
a) linear regression (with 95% confidence intervals) of beta coefficients from the additive HLA 

allele association studies. b) Bayesian regression of multiple sclerosis PIPs on VCA PIP causal 

signatures. The black lines show the regression fit, while the blue lines show 100 random draws 

from the posterior distributions. The resulting probabilities of HLA-colocalization (P_coloc) are 

also written for ease.  
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Supplementary Figure 7: EBNA and multiple sclerosis HLA-colocalization in the IMSGC 

 
a) linear regression (with 95% confidence intervals) of beta coefficients from the additive HLA 

allele association studies. b) Bayesian regression of multiple sclerosis PIPs on EBNA PIP causal 

signatures. The black lines show the regression fit, while the blue lines show 100 random draws 

from the posterior distributions. The resulting probabilities of HLA-colocalization (P_coloc) are 

also written for ease.   
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Supplementary Figure 8: pathogen and auto-immune traits colocalization results 

 
Distribution of HLA-colocalization probabilities for all pairs of pathogen serology and auto-

immune diseases traits (n = 630 pathogen to autoimmune diseases pairs). As can be seen, most 

pairs of traits do not colocalize, which is expected and suggest that our method is well calibrated 

to complex real-world data. See Supp. Data 2 for the full results. 
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Figure 9: HLA allele HLA-colocalization simulation results for quantitative traits with L = 20 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316783doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.05.24316783
http://creativecommons.org/licenses/by-nc-nd/4.0/


This simulation was done using the number of single effect option of SuSiE at 20 i.e. (L = 20). a) 

average posterior probability of colocalization in truly colocalizing genes. This increases with the 

amount of phenotype variance explained by each gene, as expected. b) average posterior 

probability of colocalization in truly non-colocalizing gene, which remains stable with increasing 

variance explained. For plots a and b, the lines were drawn using a generalized additive model 

with geom_smooth in R. The grey area represents 95% confidence intervals. The individual dots 

represent the average in the corresponding variance bins. c) average area under the curve as a 

function of variance explained for each gene. For this plot, average ROC area under the curve 

across ancestry was shown. Legend: afr: African genetic ancestry, amr: Admixed American 

genetic ancestry, eas: East Asian genetic ancestry, eur: European genetic ancestry, sas: South 

Asian genetic ancestry. 
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Supplementary Figure 10: Per ancestry ROC area under the curves for simulations of quantitative traits with L = 20 

 
This simulation was done using the number of single effect option of SuSiE at 20 i.e. (L = 20).  Area under the ROC curves of HLA-colocalization 

PIPs for different variance explained per gene and genetic ancestries for the simulation of the quantitative traits. Legend: afr: African genetic 

ancestry, amr: Admixed American genetic ancestry, eas: East Asian genetic ancestry, eur: European genetic ancestry, sas: South Asian genetic 

ancestry.
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Supplementary Figure 11: HLA allele HLA-colocalization simulation results for binary traits with L 

= 20 
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This simulation was done using the number of single effect option of SuSiE at 20 i.e. (L = 20).  a) 

average posterior probability of colocalization in truly colocalizing genes. This increases with the 

amount of phenotype variance explained by each gene, as expected. b) average posterior 

probability of colocalization in truly non-colocalizing gene, which remains stable with increasing 

variance explained. For plots a and b, the lines were drawn using a generalized additive model 

with geom_smooth in R. The grey area represents 95% confidence intervals. The individual dots 

represent the average in the corresponding variance bins. c) average area under the curve as a 

function of variance explained for each gene. For this plot, average ROC area under the curve 

across ancestry was shown. Legend: afr: African genetic ancestry, amr: Admixed American 

genetic ancestry, eas: East Asian genetic ancestry, eur: European genetic ancestry, sas: South 

Asian genetic ancestry.
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Supplementary Figure 12: Per ancestry ROC area under the curves for simulations of binary traits with L = 20 

 
This simulation was done using the number of single effect option of SuSiE at 20 i.e. (L = 20).  Area under the ROC curves of HLA-colocalization 

PIPs for different variance explained per gene and genetic ancestries for the simulation of the binary traits. Legend: afr: African genetic ancestry, 

amr: Admixed American genetic ancestry, eas: East Asian genetic ancestry, eur: European genetic ancestry, sas: South Asian genetic ancestry 
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